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Topologies, completions/limits

An absolute value or norm x→ |x| on a field k is a non-negative
real-valued function on k such that

|x| = 0 only for x = 0 (positivity)

|xy| = |x| · |y| (multiplicativity)

|x+ y| ≤ |x|+ |y| (triangle inequality)

When |x + y| ≤ max(|x|, |y|), the norm is non-archimedean, or a
valuation.

A norm gives k has a metric topology by d(x, y) = |x − y|. Since
|x| = |x · 1| = |x| · |1| we have |1| = 1. Also, |ω|n = |ωn| = |1| for an
nth root of unity, so |ω| = 1. Then reflexivity, symmetry, and the
triangle inequality follow for the metric.
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Theorem: Two norms | ∗ |1 and | ∗ |2 on k give the same non-
discrete topology on a field k if and only if | ∗ |1 = | ∗ |t2 for some
0 < t ∈ R. [Last time]

Theorem: Over a complete, non-discrete normed field k,
• A finite-dimensional k-vectorspace V has just one Hausdorff
topology so that vector addition and scalar multiplication
are continuous (a topological vectorspace topology). All linear
endomorphisms are continuous.
• A finite-dimensional k-subspace V of a topological k-vectorspace
W is necessarily a closed subspace of W .
• A k-linear map φ : X → V to a finite-dimensional space V is
continuous if and only if the kernel is closed.

Remark: The argument also succeeds over complete non-discrete
division algebras.
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A subset E of V is balanced when xE ⊂ E for every x ∈ k with
|x| ≤ 1.

Lemma: Let U be a neighborhood of 0 in V . Then U contains a
balanced neighborhood N of 0. [Last time]

Proposition: For a one-dimensional topological vectorspace V ,
that is, a free module on one generator e, the map k → V by
x→ xe is a homeomorphism. [Last time]

Corollary: Fix xo ∈ k. A not-identically-zero k-linear k-valued
function f on V is continuous if and only if the affine hyperplane

H = {v ∈ V : f(v) = xo}
is closed in V . [Last time]
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Proof of theorem: To prove the uniqueness of the topology, prove
that for any k-basis e1, . . . , en for V , the map k × . . .× k → V by

(x1, . . . , xn)→ x1e1 + . . .+ xnen

is a homeomorphism. Prove this by induction on the dimension n.

n = 1 was treated already. Granting this, since k is complete, the
lemma asserting the closed-ness of complete subspaces shows that
any one-dimensional subspace is closed.

Take n > 1, and let H = ke1 + . . . + ken−1. By induction, H
is closed in V , so V/H is a topological vector space. Let q be the
quotient map. V/H is a one-dimensional topological vectorspace
over k, with basis q(en). By induction,

ϕ : xq(en) = q(xen)→ x

is a homeomorphism to k.
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Likewise, ken is a closed subspace and we have the quotient map
q′ : V → V/ken. We have a basis q′(e1), . . . , q′(en−1) for the
image, and by induction

φ′ : x1q
′(e1) + . . .+ xn−1q

′(en−1)→ (x1, . . . , xn−1)

is a homeomorphism. By induction,

v → (φ ◦ q)(v)× (φ′ ◦ q′)(v)

is continuous to

kn−1 × k ≈ kn

On the other hand, by the continuity of scalar multiplication and
vector addition, the map

kn → V by x1 × . . .× xn → x1e1 + . . .+ xnen
is continuous.
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The two maps are mutual inverses, proving they are
homeomorphisms.

Thus, a n-dimensional subspace is homeomorphic to kn, so is
complete, since (as follows readily) a finite product of complete
spaces is complete.

Thus, by the lemma asserting the closed-ness of complete
subspaces, an n-dimensional subspace is always closed.

Continuity of a linear map f : X → kn implies that the kernel
N = ker f is closed. On the other hand, if N is closed, then X/N
is a topological vectorspace of dimension at most n. Therefore,
the induced map f̄ : X/N → V is unavoidably continuous. But
then f = f̄ ◦ q is continuous, where q is the quotient map.

In particular, any k-linear map V → V has finite-dimensional
kernel, so the kernel is closed, and the map is continuous.

This completes the induction. ///
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Corollary: Finite field extensions K of complete, non-discrete
k have unique Hausdorff topologies making addition and
multiplication continuous.

Proof: K is a finite-dimensional k-vectorspace, and the theorem
gives uniqueness of a topological k vector space structure on K
so that addition and scalar multiplication by k are continuous.
The only ingredient perhaps not overtly supplied by the theorem
is the continuity of the multiplication by elements of K. Such
multiplications are k-linear endomorphisms of the vector space
K, so are continuous, by the theorem. ///

Remark: This discussion still did not use local compactness of the
field k, and is not specifically number theoretic.
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Constructions/existence: For any Dedekind domain o, and for
a non-zero prime p in o, the p-adic norm is

|x|p = C−ordpx (where x · o = pordpx · prime-to-p)

and C > 1 is a constant. Since this norm is ultrametric/non-
archimedean, the choice of C does not immediately matter, but
it can matter in interactions of norms for varying p, as in the
product formula for number fields and function fields. Recall
the product formula for Q:∏

v≤∞

|x|v = 1 (for x ∈ Q×)

That is, with | ∗ |∞ the ‘usual’ absolute value on R,

|x|∞ ·
∏

p prime

|x|p = 1 (for x ∈ Q×)
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Recall the Proof: Both sides are multiplicative in x, so it suffices
to consider x = ±1 and x = q prime. For units ±1, both sides are
1. For x = q prime, |q|∞ = q, while |q|q = 1/q, and |q|p = 1 for
p 6= q, so again both sides are 1. ///

One normalization to have the product formula hold for number
fields k: for p lying over p, letting kp be the p-adic completion of k
and Qp the usual p-adic completion of Q,

|x|p = |Nkp

Qp
x|p

For archimedean completion kv of k, define (or renormalize)

|x|v = |Nkv

R x|∞
The latter entails a normalization which (harmlessly) fails to
satisfy the triangle inequality:

|x|C = |NC
Rx|∞ = x · x = square of usual complex abs value

This normalization is used only in a multiplicative context, so
failure of the triangle inequality is harmless. The metric topology
is given by the usual norm.
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In other words, for primes p in o, in the formula above take
C = Np = |o/p|, so

|x|p = Np−ordpx

Theorem: (Product formula for number fields)∏
places w of k

|x|w =
∏

places v of Q

∏
w|v

|Nkw

Qv
(x)|v = 1 (for x ∈ k×)

[Proof next]


