Topologies, completions/limits

An absolute value or norm $x \rightarrow|x|$ on a field k is a non-negative real-valued function on k such that

$$
\begin{cases}|x|=0 \text { only for } x=0 & \text { (positivity) } \\ |x y|=|x| \cdot|y| & \text { (multiplicativity) } \\ |x+y| \leq|x|+|y| & \text { (triangle inequality) }\end{cases}
$$

When $|x+y| \leq \max (|x|,|y|)$, the norm is non-archimedean, or a valuation.

A norm gives k has a metric topology by $d(x, y)=|x-y|$. Since $|x|=|x \cdot 1|=|x| \cdot|1|$ we have $|1|=1$. Also, $|\omega|^{n}=\left|\omega^{n}\right|=|1|$ for an $n^{t h}$ root of unity, so $|\omega|=1$. Then reflexivity, symmetry, and the triangle inequality follow for the metric.

Theorem: Two norms $|*|_{1}$ and $|*|_{2}$ on k give the same nondiscrete topology on a field k if and only if $|*|_{1}=|*|_{2}^{t}$ for some $0<t \in \mathbb{R}$. [Last time]

Theorem: Over a complete, non-discrete normed field k,

- A finite-dimensional k-vectorspace V has just one Hausdorff topology so that vector addition and scalar multiplication are continuous (a topological vectorspace topology). All linear endomorphisms are continuous.
- A finite-dimensional k-subspace V of a topological k-vectorspace W is necessarily a closed subspace of W.
- A k-linear map $\phi: X \rightarrow V$ to a finite-dimensional space V is continuous if and only if the kernel is closed.

Remark: The argument also succeeds over complete non-discrete division algebras.

A subset E of V is balanced when $x E \subset E$ for every $x \in k$ with $|x| \leq 1$.
Lemma: Let U be a neighborhood of 0 in V. Then U contains a balanced neighborhood N of 0 . [Last time]
Proposition: For a one-dimensional topological vectorspace V, that is, a free module on one generator e, the map $k \rightarrow V$ by $x \rightarrow x e$ is a homeomorphism. [Last time]
Corollary: Fix $x_{o} \in k$. A not-identically-zero k-linear k-valued function f on V is continuous if and only if the affine hyperplane

$$
H=\left\{v \in V: f(v)=x_{o}\right\}
$$

is closed in V. [Last time]

Proof of theorem: To prove the uniqueness of the topology, prove that for any k-basis e_{1}, \ldots, e_{n} for V, the map $k \times \ldots \times k \rightarrow V$ by

$$
\left(x_{1}, \ldots, x_{n}\right) \rightarrow x_{1} e_{1}+\ldots+x_{n} e_{n}
$$

is a homeomorphism. Prove this by induction on the dimension n. $n=1$ was treated already. Granting this, since k is complete, the lemma asserting the closed-ness of complete subspaces shows that any one-dimensional subspace is closed.

Take $n>1$, and let $H=k e_{1}+\ldots+k e_{n-1}$. By induction, H is closed in V, so V / H is a topological vector space. Let q be the quotient map. V / H is a one-dimensional topological vectorspace over k, with basis $q\left(e_{n}\right)$. By induction,

$$
\varphi: x q\left(e_{n}\right)=q\left(x e_{n}\right) \rightarrow x
$$

is a homeomorphism to k.

Likewise, $k e_{n}$ is a closed subspace and we have the quotient map $q^{\prime}: V \rightarrow V / k e_{n}$. We have a basis $q^{\prime}\left(e_{1}\right), \ldots, q^{\prime}\left(e_{n-1}\right)$ for the image, and by induction

$$
\phi^{\prime}: x_{1} q^{\prime}\left(e_{1}\right)+\ldots+x_{n-1} q^{\prime}\left(e_{n-1}\right) \rightarrow\left(x_{1}, \ldots, x_{n-1}\right)
$$

is a homeomorphism. By induction,

$$
v \rightarrow(\phi \circ q)(v) \times\left(\phi^{\prime} \circ q^{\prime}\right)(v)
$$

is continuous to

$$
k^{n-1} \times k \approx k^{n}
$$

On the other hand, by the continuity of scalar multiplication and vector addition, the map

$$
k^{n} \rightarrow V \quad \text { by } \quad x_{1} \times \ldots \times x_{n} \rightarrow x_{1} e_{1}+\ldots+x_{n} e_{n}
$$

is continuous.

The two maps are mutual inverses, proving they are homeomorphisms.

Thus, a n-dimensional subspace is homeomorphic to k^{n}, so is complete, since (as follows readily) a finite product of complete spaces is complete.

Thus, by the lemma asserting the closed-ness of complete subspaces, an n-dimensional subspace is always closed.
Continuity of a linear map $f: X \rightarrow k^{n}$ implies that the kernel $N=\operatorname{ker} f$ is closed. On the other hand, if N is closed, then X / N is a topological vectorspace of dimension at most n. Therefore, the induced map $\bar{f}: X / N \rightarrow V$ is unavoidably continuous. But then $f=\bar{f} \circ q$ is continuous, where q is the quotient map.

In particular, any k-linear map $V \rightarrow V$ has finite-dimensional kernel, so the kernel is closed, and the map is continuous. This completes the induction.

Corollary: Finite field extensions K of complete, non-discrete k have unique Hausdorff topologies making addition and multiplication continuous.

Proof: K is a finite-dimensional k-vectorspace, and the theorem gives uniqueness of a topological k vector space structure on K so that addition and scalar multiplication by k are continuous. The only ingredient perhaps not overtly supplied by the theorem is the continuity of the multiplication by elements of K. Such multiplications are k-linear endomorphisms of the vector space K, so are continuous, by the theorem.

Remark: This discussion still did not use local compactness of the field k, and is not specifically number theoretic.

Constructions/existence: For any Dedekind domain \mathfrak{o}, and for a non-zero prime \mathfrak{p} in \mathfrak{o}, the \mathfrak{p}-adic norm is

$$
|x|_{\mathfrak{p}}=C^{-\operatorname{ord}_{\mathfrak{p}} x} \quad\left(\text { where } x \cdot \mathfrak{o}=\mathfrak{p}^{\operatorname{ord}_{\mathfrak{p}} x} \cdot \text { prime-to-p }\right)
$$

and $C>1$ is a constant. Since this norm is ultrametric/nonarchimedean, the choice of C does not immediately matter, but it can matter in interactions of norms for varying \mathfrak{p}, as in the product formula for number fields and function fields. Recall the product formula for \mathbb{Q} :

$$
\prod_{v \leq \infty}|x|_{v}=1 \quad\left(\text { for } x \in \mathbb{Q}^{\times}\right)
$$

That is, with $|*|_{\infty}$ the 'usual' absolute value on \mathbb{R},

$$
|x|_{\infty} \cdot \prod_{p \text { prime }}|x|_{p}=1 \quad\left(\text { for } x \in \mathbb{Q}^{\times}\right)
$$

Recall the Proof: Both sides are multiplicative in x, so it suffices to consider $x= \pm 1$ and $x=q$ prime. For units ± 1, both sides are 1. For $x=q$ prime, $|q|_{\infty}=q$, while $|q|_{q}=1 / q$, and $|q|_{p}=1$ for $p \neq q$, so again both sides are 1 .

One normalization to have the product formula hold for number fields k : for \mathfrak{p} lying over p, letting $k_{\mathfrak{p}}$ be the \mathfrak{p}-adic completion of k and Q_{p} the usual p-adic completion of \mathbb{Q},

$$
|x|_{\mathfrak{p}}=\left|N_{\mathbb{Q}_{p}}^{k_{\mathfrak{p}}} x\right|_{p}
$$

For archimedean completion k_{v} of k, define (or renormalize)

$$
|x|_{v}=\left|N_{\mathbb{R}}^{k_{v}} x\right|_{\infty}
$$

The latter entails a normalization which (harmlessly) fails to satisfy the triangle inequality:

$$
|x|_{\mathbb{C}}=\left|N_{\mathbb{R}}^{\mathbb{C}} x\right|_{\infty}=x \cdot \bar{x}=\text { square of usual complex abs value }
$$

This normalization is used only in a multiplicative context, so failure of the triangle inequality is harmless. The metric topology is given by the usual norm.

In other words, for primes \mathfrak{p} in \mathfrak{o}, in the formula above take $C=N \mathfrak{p}=|\mathfrak{o} / \mathfrak{p}|$, so

$$
|x|_{\mathfrak{p}}=N \mathfrak{p}^{-\operatorname{ord}_{\mathfrak{p}} x}
$$

Theorem: (Product formula for number fields)

$$
\prod_{\operatorname{places} w \text { of } k}|x|_{w}=\prod_{\text {places } v \text { of } \mathbb{Q}} \prod_{w \mid v}\left|N_{Q_{v}}^{k_{w}}(x)\right|_{v}=1 \quad\left(\text { for } x \in k^{\times}\right)
$$

[Proof next]

