Dedekind zeta functions, class number formulas, ...

$$\zeta_k(s) = \sum_{0 \neq \mathfrak{a} \subset \mathfrak{o}} \frac{1}{N\mathfrak{a}^s} = \prod_{\mathfrak{p} \text{ prime in } \mathfrak{o}} \frac{1}{1 - N\mathfrak{p}^{-s}}$$

The simplest family of rings of algebraic integers typically not PIDs, but with the simple feature of finitely-many units, is complex quadratic $k = \mathbb{Q}(\sqrt{-D})$ for D > 0. Let $h(\mathfrak{o})$ be the class number, $\chi(p) = (-D/p)_2$ with conductor N. Then

$$h(\mathfrak{o}) = \left| |\mathfrak{o}^{\times}| \sum_{a \bmod N} \left(\frac{a}{N} - \frac{1}{2} \right) \cdot \chi(a) \right|$$

Used: $\chi(p) = (d/p)_2$ is odd, meaning $\chi(-1) = -1$, $\Leftrightarrow d < 0$. Absolute value of Gauss sum for χ of conductor N is \sqrt{N} . For odd χ ,

$$L(1,\chi) = \frac{-\pi i}{\sum_{a} \overline{\chi}(a) e^{2\pi i a/N}} \sum_{a \bmod N} \chi(a) \cdot \left(\frac{a}{N} - \frac{1}{2}\right)$$

Used: For a lattice Λ in \mathbb{C} , the Epstein zeta function

$$Z_{\Lambda}(s) = \sum_{0 \neq \lambda \in \Lambda} \frac{1}{|\lambda|^{2s}}$$

has a meromorphic continuation to $Re(s) > \frac{1}{2}$ and

$$Z_{\Lambda}(s) = \frac{\pi}{\text{co-area }\Lambda} \cdot \frac{1}{s-1} + \text{(holomorphic near } s = 1)$$

For complex quadratic k,

$$\zeta_k(s) = \sum_{[\mathfrak{b}]} \sum_{\mathfrak{a} \sim \mathfrak{b}} \frac{1}{N\mathfrak{a}^s} \sim \frac{\pi \cdot h(\mathfrak{o})}{|\mathfrak{o}^{\times}| \cdot \operatorname{coarea}(\mathfrak{o}) \cdot (s-1)} + (\text{holo at } s = 1)$$

With $\chi(p) = (-D/p)_2$, from the factorization $\zeta_k(s) = \zeta_(s) \cdot L(s, \chi)$

$$L(1,\chi) = \frac{\pi \cdot h(\mathfrak{o})}{|\mathfrak{o}^{\times}| \cdot \operatorname{coarea}(\mathfrak{o})}$$

Example: D = 3 gives the Eisenstein integers \mathfrak{o} , which we know to have class number 1, since the ring is a PID. Here $|\mathfrak{o}^{\times}| = 6$.

$$|\mathfrak{o}^{\times}| \sum_{1 \le a < N/2} \left(\frac{a}{N} - \frac{1}{2}\right) \cdot \chi(a) = 6\left(\frac{1}{3} - \frac{1}{2}\right) \cdot (+1) = -1$$

Adjust by $\varepsilon = -1$ to obtain $h(\mathfrak{o}) = 1$, indeed.

Example: For D=5, the conductor is N=20 and $|\mathfrak{o}^{\times}|=2$.

$$|\mathfrak{o}^{\times}| \sum_{1 \le a < N/2} \left(\frac{a}{N} - \frac{1}{2}\right) \cdot \chi(a)$$

$$= 2\left(\left(\frac{1}{20} - \frac{1}{2}\right)(+1) + \left(\frac{3}{20} - \frac{1}{2}\right)\left(\frac{-5}{3}\right)_2 + \left(\frac{7}{20} - \frac{1}{2}\right)\left(\frac{-5}{7}\right)_2 + \left(\frac{9}{20} - \frac{1}{2}\right)\left(\frac{-5}{9}\right)_2\right)$$

$$= 2\left(\frac{1}{20} + \frac{3}{20} + \frac{7}{20} + \frac{9}{20} - 2\right) = -2$$

So $h(\mathfrak{o}) = 2$. That $h(\mathfrak{o}) > 1$ is not surprising, given

$$2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 - \sqrt{-5})$$

It is non-trivial to give an (non-trivial) upper bound on $h(\mathfrak{o})$.

Topologies, completions/limits

An **absolute value** or $norm \ x \to |x|$ on a field k is a non-negative real-valued function on k such that

$$\begin{cases} |x| = 0 \text{ only for } x = 0 & \text{(positivity)} \\ |xy| = |x| \cdot |y| & \text{(multiplicativity)} \\ |x+y| \le |x| + |y| & \text{(triangle inequality)} \end{cases}$$

When $|x + y| \le \max(|x|, |y|)$, the norm is non-archimedean, or a valuation.

A norm gives k has a metric topology by d(x,y) = |x-y|. Since $|x| = |x \cdot 1| = |x| \cdot |1|$ we have |1| = 1. Also, $|\omega|^n = |\omega^n| = |1|$ for an n^{th} root of unity, so $|\omega| = 1$. Then reflexivity, symmetry, and the triangle inequality follow for the metric.

Theorem: Two norms $|*|_1$ and $|*|_2$ on k give the same non-discrete topology on a field k if and only if $|*|_1 = |*|_2^t$ for some $0 < t \in \mathbb{R}$.

Proof: If the two norms are related this way, they certainly give the same topology. Conversely, assume they give the same non-discrete topology. Then $|x|_1 < 1$ implies $x^n \to 0$ in the $|*|_1$ topology. Thus, $x^n \to 0$ in the $|*|_2$ topology, so $|x|_2 < 1$. Similarly, if $|x|_1 > 1$, then $|x^{-1}|_1 < 1$, so $|x|_2 > 1$.

Fix y with $|y|_1 > 1$. Given $|x|_1 \ge 1$, there is $t \in \mathbb{R}$ such that $|x|_1 = |y|_1^t$. For rational a/b > t, $|x|_1 < |y|_1^{a/b}$, so $|x^b/y^a|_1 < 1$. Then $|x^b/y^a|_2 < 1$, and $|x|_2 < |y|_2^{a/b}$.

Similarly, $|x|_2 > |y|_2^{a/b}$ for a/b < t. Thus, $|x|_2 = |y|_2^t$, and

$$|x|_2 = |y|_2^t = \left(|y|_1^{\frac{\log|y|_2}{\log|y|_1}}\right)^t = \left(|y|_1^t\right)^{\frac{\log|y|_2}{\log|y|_1}} = |x|_2^{\frac{\log|y|_2}{\log|y|_1}} / / /$$

The *completion* of k with respect to a metric given by a norm is the usual metric completion, and the norm and metric extend by continuity. Assume k is not *discrete*.

It is reasonable to think of $k = \mathbb{R}, \mathbb{C}, \mathbb{Q}_p$ or finite extensions of \mathbb{Q}_p , and also $\mathbb{F}_q(x)$ and its finite extensions.

Theorem: Over a complete, non-discrete normed field k,

- A finite-dimensional k-vectorspace V has just one Hausdorff topology so that vector addition and scalar multiplication are continuous (a topological vectorspace topology). All linear endomorphisms are continuous.
- ullet A finite-dimensional k-subspace V of a topological k-vectorspace W is necessarily a closed subspace of W.
- A k-linear map $\phi: X \to V$ to a finite-dimensional space V is continuous if and only if the kernel is closed.

Remark: The main application of this is to finite field extensions V of $k = \mathbb{Q}_p$ or of $k = \mathbb{F}_q((x))$. The argument also succeeds over complete non-discrete division algebras.

A subset E of V is **balanced** when $xE \subset E$ for every $x \in k$ with $|x| \leq 1$.

Lemma: Let U be a neighborhood of 0 in V. Then U contains a balanced neighborhood N of 0.

Proof: By continuity of scalar multiplication, there is $\varepsilon > 0$ and a neighborhood U' of $0 \in V$ so that when $|x| < \varepsilon$ and $v \in U'$ then $xv \in U$. Since k is non-discrete, there is $x_o \in k$ with $0 < |x_o| < \varepsilon$. Since scalar multiplication by a non-zero element is a homeomorphism, x_oU' is a neighborhood of 0 and $x_oU' \subset U$. Put

$$N = \bigcup_{|y| \le 1} y(x_o U')$$

$$|xy| \le |y| \le 1 \text{ for } |x| \le 1, \text{ so}$$

$$xN = \bigcup_{|y| \le 1} x(yx_o U') \subset \bigcup_{|y| \le 1} yx_o U' = N \quad ///$$

Proposition: For a one-dimensional topological vectorspace V, that is, a free module on one generator e, the map $k \to V$ by $x \to xe$ is a homeomorphism.

Proof: Scalar multiplication is continuous, so we need only show that the map is *open*. Given $\varepsilon > 0$, by non-discreteness there is x_o in k so that $0 < |x_o| < \varepsilon$. Since V is Hausdorff, there is a neighborhood U of 0 so that $x_o e \notin U$. Shrink U so it is *balanced*. Take $x \in k$ so that $x \in U$. If $|x| \geq |x_o|$ then $|x_o x^{-1}| \leq 1$, so that

$$x_o e = (x_o x^{-1})(xe) \in U$$

by the balanced-ness of U, contradiction. Thus,

$$xe \in U \implies |x| < |x_o| < \varepsilon$$
 ///

Corollary: Fix $x_o \in k$. A not-identically-zero k-linear k-valued function f on V is *continuous* if and only if the affine hyperplane

$$H = \{ v \in V : f(v) = x_o \}$$

is closed in V.

Proof: For f is continuous, H is closed, being the complement of the open $f^{-1}(\{x \neq x_o\})$. For the converse, take $x_o = 0$, since vector additions are homeomorphisms of V to itself.

For $v_o, v \in V$ with $f(v_o) \neq 0$,

$$f(v - f(v)f(v_o)^{-1}v_o) = f(v) - f(v)f(v_o)^{-1}f(v_o) = 0$$

Thus, V/H is one-dimensional. Let $\bar{f}:V/H\to k$ be the induced k-linear map on V/H so that $f=\bar{f}\circ q$:

$$\bar{f}(v+H) = f(v)$$

By the previous proposition, \bar{f} is a homeomorphism to k. so f is continuous.

Proof of theorem: To prove the uniqueness of the topology, prove that for any k-basis e_1, \ldots, e_n for V, the map $k \times \ldots \times k \to V$ by

$$(x_1,\ldots,x_n)\to x_1e_1+\ldots+x_ne_n$$

is a homeomorphism. Prove this by induction on the dimension n.

n=1 was treated already. Granting this, since k is complete, the lemma asserting the closed-ness of complete subspaces shows that any one-dimensional subspace is closed.

Take n > 1, and let $H = ke_1 + \ldots + ke_{n-1}$. By induction, H is closed in V, so V/H is a topological vector space. Let q be the quotient map. V/H is a one-dimensional topological vectorspace over k, with basis $q(e_n)$. By induction,

$$\varphi : xq(e_n) = q(xe_n) \to x$$

is a homeomorphism to k.

Likewise, ke_n is a closed subspace and we have the quotient map

$$q': V \to V/ke_n$$

We have a basis $q'(e_1), \ldots, q'(e_{n-1})$ for the image, and by induction

$$\phi': x_1 q'(e_1) + \ldots + x_{n-1} q'(e_{n-1}) \to (x_1, \ldots, x_{n-1})$$

is a homeomorphism.

By induction,

$$v \to (\phi \circ q)(v) \times (\phi' \circ q')(v)$$

is continuous to

$$k^{n-1} \times k \approx k^n$$

On the other hand, by the continuity of scalar multiplication and vector addition, the map

$$k^n \to V$$
 by $x_1 \times \ldots \times x_n \to x_1 e_1 + \ldots + x_n e_n$

is continuous.

The two maps are mutual inverses, proving that we have a homeomorphism.

Thus, a n-dimensional subspace is homeomorphic to k^n , so is complete, since (as follows readily) a finite product of complete spaces is complete.

Thus, by the lemma asserting the closed-ness of complete subspaces, an *n*-dimensional subspace is always closed.

Continuity of a linear map $f: X \to k^n$ implies that the kernel $N = \ker f$ is closed. On the other hand, if N is closed, then X/N is a topological vectorspace of dimension at most n. Therefore, the induced map $\bar{f}: X/N \to V$ is unavoidably continuous. But then $f = \bar{f} \circ q$ is continuous, where q is the quotient map.

In particular, any k-linear map $V \to V$ has finite-dimensional kernel, so the kernel is closed, and the map is continuous.

This completes the induction.

Corollary: Finite field extensions K of complete, non-discrete k have unique Hausdorff topologies making addition and multiplication continuous.

Proof: K is a finite-dimensional k-vector space. The only ingredient perhaps not literally supplied by the theorem is the continuity of the multiplication by elements of K. Such multiplications are k-linear endomorphisms of the vector space K, so are continuous, by the theorem. ///

Remark: This discussion still did *not* use *local compactness* of the field k, so is not specifically number theoretic.