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Dedekind zeta functions, class number formulas, ...

1 1
Go) = 2y = 1 o=

0#aCo p prime in o

The simplest family of rings of algebraic integers typically not
PIDs, but with the simple feature of finitely-many units, is

complex quadratic k = Q(v/—D) for D > 0. Let h(0) be the class
number, x(p) = (—D/p)s with conductor N. Then

ho) = [lo¥] ¥ (5 —3)xl@)

a mod N

Used: x(p) = (d/p)2 is odd, meaning x(—1) = —1, < d < 0.
Absolute value of Gauss sum for y of conductor N is v/N. For odd
X

LX) = s >0 o) (- 3)

a mod N
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Used: For a lattice A in C, the Epstein zeta function

Zn(s) = Z |/\123

0£NEA

has a meromorphic continuation to Re(s) > 3 and
T 1
ZAa(s) = . + (holomorphic near s = 1
Als) co-areaA s—1 ( P )

For complex quadratic k,

Crls) = > > NLQS ULIC) + (holo at s = 1)
(6]

e~ N |0%| - coarea(o) - (s — 1)

With x(p) = (—=D/p)2, from the factorization (x(s) = ((s)-L(s,x)

L(lx) = 7 - h(o)

~ |o*| - coarea(o)
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Example: D = 3 gives the Eisenstein integers o, which we know
to have class number 1, since the ring is a PID. Here |0*| = 6.

0] > (5 —3)xle) = 6(3-

1<a<N/2
Adjust by € = —1 to obtain h(0) = 1, indeed.

Example: For D = 5, the conductor is N = 20 and |0*| = 2.

0] Y (-3 x@

1<a<N/2

)-(+1) = —1

N |

11 3 _1\(—5 7T 1\(—5 9 _1\(-5
= 2((FH-HDE)+GE - D)+ G-H(F)+E-H(),)
_ 1,3, 7,09 _
—2(%4—%4—%4—%—2)——2
So h(0) = 2. That h(o) > 1 is not surprising, given

2:3 = (1++v=5)-(1—-+/-5)

It is non-trivial to give an (non-trivial) upper bound on h(o).
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Topologies, completions/limits

An absolute value or norm x — |z| on a field k is a non-negative
real-valued function on k such that

(|z| = 0 only forx =0 (positivity)

o\

lxy| = |x| - |y (multiplicativity)

2z 4+ y| < x| + |y| (triangle inequality)

When |z + y| < max(|z|, |y|), the norm is non-archimedean, or a
valuation.

A norm gives k has a metric topology by d(x,y) = |x — y|. Since
|z| = |x - 1| = |z|- |1] we have |1| = 1. Also, |w|™ = |w"| = |1| for an
n" root of unity, so |w| = 1. Then reflexivity, symmetry, and the
triangle inequality follow for the metric.
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Theorem: Two norms | * |; and | % |2 on k give the same non-
discrete topology on a field k if and only if | * [; = | x |5 for some
0<telR.

Proof: If the two norms are related this way, they certainly give
the same topology. Conversely, assume they give the same non-
discrete topology. Then |z|; < 1 implies 2™ — 0 in the | * |4
topology. Thus, 2" — 0 in the [*| topology, so |x|s < 1. Similarly,
if |z|; > 1, then |21 < 1, so |z|z > 1.

Fix y with |y|; > 1. Given |z|; > 1, there is t € R such that
x|y = |y|}. For rational a/b > t, |z|1 < \y[cf/b, so 2% /y?|; < 1.
Then [z?/y*|s < 1, and |z|5 < |y|3"".

Similarly, |z]s > |y|g/b for a/b < t. Thus, |z|2 = |y|5, and

log |yl2 log |y|o log |yl2

© t Tog [y[1 o
ol = lt = (FEE) = (B R
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The completion of k with respect to a metric given by a norm is
the usual metric completion, and the norm and metric extend by
continuity. Assume k is not discrete.

It is reasonable to think of £k = R, C, Q,, or finite extensions of Q,,
and also F,((x)) and its finite extensions.

Theorem: Over a complete, non-discrete normed field k,

e A finite-dimensional k-vectorspace V has just one Hausdorff
topology so that vector addition and scalar multiplication

are continuous (a topological vectorspace topology). All linear
endomorphisms are continuous.

e A finite-dimensional k-subspace V' of a topological k-vectorspace
W is necessarily a closed subspace of W.

e A k-linear map ¢ : X — V to a finite-dimensional space V is
continuous if and only if the kernel is closed.

Remark: The main application of this is to finite field extensions
Vof k =Qp,orof k =F,((z)). The argument also succeeds over
complete non-discrete division algebras.
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A subset E of V' is balanced when xE C FE for every x € k with
lz| < 1.

Lemma: Let U be a neighborhood of 0 in V. Then U contains a
balanced neighborhood N of 0.

Proof: By continuity of scalar multiplication, there is ¢ > 0 and
a neighborhood U’ of 0 € V so that when |z| < e and v € U’
then xv € U. Since k is non-discrete, there is x, € k with

0 < |x,| < e. Since scalar multiplication by a non-zero element
is a homeomorphism, x,U’ is a neighborhood of 0 and x,U" C U.
Put

N = U y(z,U")
ly| <1
oy < |yl < 1for |z| < 1,50

N = U z(yx,U U yr,U = N ///

ly|<1 ly|<1
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Proposition: For a one-dimensional topological vectorspace V,
that is, a free module on one generator e, the map k — V by
xr — xe is a homeomorphism.

Proof: Scalar multiplication is continuous, so we need only show
that the map is open. Given € > 0, by non-discreteness there is
T, in k so that 0 < |z,| < e. Since V is Hausdorff, there is a
neighborhood U of 0 so that x,e ¢ U. Shrink U so it is balanced.
Take x € k so that ze € U. If |x| > |z,| then |z,27!| <1, so that

roe = (vox ) (ze) €U
by the balanced-ness of U, contradiction. Thus,

recU = |z| <|zo| <e ///

8
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Corollary: Fix x, € k. A not-identically-zero k-linear k-valued
function f on V is continuous if and only if the affine hyperplane

H={veV:fv)=ua,}
is closed in V.

Proof: For f is continuous, H is closed, being the complement
of the open f~1({x # z,}). For the converse, take x, = 0, since
vector additions are homeomorphisms of V' to itself.

For v,,v € V with f(v,) # 0,

flv=f)f(voe)'vo) = f(v) = f(v)f(vo) " flvo) =0

Thus, V/H is one-dimensional. Let f : V/H — k be the induced
k-linear map on V/H so that f = fogq:

flo+H) = f(v)

By the previous proposition, f is a homeomorphism to k. so f is
continuous. ///



Garrett 11-21-2011 10

Proof of theorem: To prove the uniqueness of the topology, prove
that for any k-basis e1,...,e, for V, themap k x ... x k — V by

(1,...,2p) = X161+ ... + Tpen

is a homeomorphism. Prove this by induction on the dimension n.

n = 1 was treated already. Granting this, since k is complete, the
lemma asserting the closed-ness of complete subspaces shows that
any one-dimensional subspace is closed.

Taken > 1, and let H = ke; + ... + ke,_1. By induction, H
is closed in V', so V/H is a topological vector space. Let ¢ be the
quotient map. V/H is a one-dimensional topological vectorspace
over k, with basis ¢(e,). By induction,

¢ :xq(en) = q(zen) = o

is a homeomorphism to k.
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Likewise, ke,, is a closed subspace and we have the quotient map
q V= Vike,

We have a basis ¢’(e1),...,¢ (en—1) for the image, and by
induction

¢ :x1¢(er) + ...+ rp_1q (en_1) — (1, ., Ty 1)

is a homeomorphism.

By induction,

v — (poq)(v) x (¢ oq")(v)

1s continuous to

EPl x ko~ k™

On the other hand, by the continuity of scalar multiplication and
vector addition, the map

k" =V by x1 X...Xx, = x161+...+2THE,

1S continuous.
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The two maps are mutual inverses, proving that we have a
homeomorphism.

Thus, a n-dimensional subspace is homeomorphic to k™, so is
complete, since (as follows readily) a finite product of complete
spaces is complete.

Thus, by the lemma asserting the closed-ness of complete
subspaces, an n-dimensional subspace is always closed.

Continuity of a linear map f : X — k™ implies that the kernel
N = ker f is closed. On the other hand, if N is closed, then X/N
is a topological vectorspace of dimension at most n. Therefore,
the induced map f : X/N — V is unavoidably continuous. But
then f = f o q is continuous, where ¢ is the quotient map.

In particular, any k-linear map V' — V has finite-dimensional
kernel, so the kernel is closed, and the map is continuous.

This completes the induction. ///
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Corollary: Finite field extensions K of complete, non-discrete
k have unique Hausdorff topologies making addition and
multiplication continuous.

Proof: K is a finite-dimensional k-vectorspace. The only
ingredient perhaps not literally supplied by the theorem is

the continuity of the multiplication by elements of K. Such
multiplications are k-linear endomorphisms of the vector space

K, so are continuous, by the theorem. ///

Remark: This discussion still did not use local compactness of the
field k, so is not specifically number theoretic.




