Dedekind zeta functions, class number formulas, ...

$$
\zeta_{k}(s)=\sum_{0 \neq \mathfrak{a} \subset \mathfrak{o}} \frac{1}{N \mathfrak{a}^{s}}=\prod_{\mathfrak{p} \text { prime in } \mathfrak{o}} \frac{1}{1-N \mathfrak{p}^{-s}}
$$

The simplest family of rings of algebraic integers typically not PIDs, but with the simple feature of finitely-many units, is complex quadratic $k=\mathbb{Q}(\sqrt{-D})$ for $D>0$. Let $h(\mathfrak{o})$ be the class number, $\chi(p)=(-D / p)_{2}$ with conductor N. Then

$$
h(\mathfrak{o})=\left|\left|\mathfrak{o}^{\times}\right| \sum_{a \bmod N}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a)\right|
$$

Used: $\chi(p)=(d / p)_{2}$ is odd, meaning $\chi(-1)=-1, \Leftrightarrow d<0$. Absolute value of Gauss sum for χ of conductor N is \sqrt{N}. For odd χ,

$$
L(1, \chi)=\frac{-\pi i}{\sum_{a} \bar{\chi}(a) e^{2 \pi i a / N}} \sum_{a \bmod N} \chi(a) \cdot\left(\frac{a}{N}-\frac{1}{2}\right)
$$

Used: For a lattice Λ in \mathbb{C}, the Epstein zeta function

$$
Z_{\Lambda}(s)=\sum_{0 \neq \lambda \in \Lambda} \frac{1}{|\lambda|^{2 s}}
$$

has a meromorphic continuation to $\operatorname{Re}(s)>\frac{1}{2}$ and

$$
Z_{\Lambda}(s)=\frac{\pi}{\operatorname{co-area} \Lambda} \cdot \frac{1}{s-1}+(\text { holomorphic near } s=1)
$$

For complex quadratic k,
$\zeta_{k}(s)=\sum_{[\mathfrak{b}]} \sum_{\mathfrak{a} \sim \mathfrak{b}} \frac{1}{N \mathfrak{a}^{s}} \sim \frac{\pi \cdot h(\mathfrak{o})}{\left|\mathfrak{o}^{\times}\right| \cdot \operatorname{coarea}(\mathfrak{o}) \cdot(s-1)}+($ holo at $s=1)$
With $\chi(p)=(-D / p)_{2}$, from the factorization $\left.\zeta_{k}(s)=\zeta_{(} s\right) \cdot L(s, \chi)$

$$
L(1, \chi)=\frac{\pi \cdot h(\mathfrak{o})}{\left|\mathfrak{o}^{\times}\right| \cdot \operatorname{coarea}(\mathfrak{o})}
$$

Example: $D=3$ gives the Eisenstein integers \mathfrak{o}, which we know to have class number 1 , since the ring is a PID. Here $\left|\mathfrak{o}^{\times}\right|=6$.

$$
\left|\mathfrak{o}^{\times}\right| \sum_{1 \leq a<N / 2}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a)=6\left(\frac{1}{3}-\frac{1}{2}\right) \cdot(+1)=-1
$$

Adjust by $\varepsilon=-1$ to obtain $h(\mathfrak{o})=1$, indeed.
Example: For $D=5$, the conductor is $N=20$ and $\left|\mathfrak{o}^{\times}\right|=2$.

$$
\begin{gathered}
\left|\mathfrak{o}^{\times}\right| \sum_{1 \leq a<N / 2}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a) \\
=2\left(\left(\frac{1}{20}-\frac{1}{2}\right)(+1)+\left(\frac{3}{20}-\frac{1}{2}\right)\binom{-5}{3}_{2}+\left(\frac{7}{20}-\frac{1}{2}\right)\binom{-5}{7}_{2}+\left(\frac{9}{20}-\frac{1}{2}\right)\binom{-5}{9}_{2}\right) \\
=2\left(\frac{1}{20}+\frac{3}{20}+\frac{7}{20}+\frac{9}{20}-2\right)=-2
\end{gathered}
$$

So $h(\mathfrak{o})=2$. That $h(\mathfrak{o})>1$ is not surprising, given

$$
2 \cdot 3=(1+\sqrt{-5}) \cdot(1-\sqrt{-5})
$$

It is non-trivial to give an (non-trivial) upper bound on $h(\mathfrak{o})$.

Topologies, completions/limits

An absolute value or norm $x \rightarrow|x|$ on a field k is a non-negative real-valued function on k such that

$$
\begin{cases}|x|=0 \text { only for } x=0 & \text { (positivity) } \\ |x y|=|x| \cdot|y| & \text { (multiplicativity) } \\ |x+y| \leq|x|+|y| & \text { (triangle inequality) }\end{cases}
$$

When $|x+y| \leq \max (|x|,|y|)$, the norm is non-archimedean, or a valuation.

A norm gives k has a metric topology by $d(x, y)=|x-y|$. Since $|x|=|x \cdot 1|=|x| \cdot|1|$ we have $|1|=1$. Also, $|\omega|^{n}=\left|\omega^{n}\right|=|1|$ for an $n^{t h}$ root of unity, so $|\omega|=1$. Then reflexivity, symmetry, and the triangle inequality follow for the metric.

Theorem: Two norms $|*|_{1}$ and $|*|_{2}$ on k give the same nondiscrete topology on a field k if and only if $|*|_{1}=|*|_{2}^{t}$ for some $0<t \in \mathbb{R}$.

Proof: If the two norms are related this way, they certainly give the same topology. Conversely, assume they give the same nondiscrete topology. Then $|x|_{1}<1$ implies $x^{n} \rightarrow 0$ in the $|*|_{1}$ topology. Thus, $x^{n} \rightarrow 0$ in the $|*|_{2}$ topology, so $|x|_{2}<1$. Similarly, if $|x|_{1}>1$, then $\left|x^{-1}\right|_{1}<1$, so $|x|_{2}>1$.

Fix y with $|y|_{1}>1$. Given $|x|_{1} \geq 1$, there is $t \in \mathbb{R}$ such that $|x|_{1}=|y|_{1}^{t}$. For rational $a / b>t,|x|_{1}<|y|_{1}^{a / b}$, so $\left|x^{b} / y^{a}\right|_{1}<1$. Then $\left|x^{b} / y^{a}\right|_{2}<1$, and $|x|_{2}<|y|_{2}^{a / b}$.
Similarly, $|x|_{2}>|y|_{2}^{a / b}$ for $a / b<t$. Thus, $|x|_{2}=|y|_{2}^{t}$, and

$$
|x|_{2}=|y|_{2}^{t}=\left(|y|_{1}^{\frac{\log |y|_{2}}{\log |y|_{1}}}\right)^{t}=\left(|y|_{1}^{t}\right)^{\frac{\log |y|_{2}}{\log |y|_{1}}}=|x|_{2}^{\frac{\log |y|_{2}}{\log |y|_{1}}}
$$

The completion of k with respect to a metric given by a norm is the usual metric completion, and the norm and metric extend by continuity. Assume k is not discrete.

It is reasonable to think of $k=\mathbb{R}, \mathbb{C}, \mathbb{Q}_{p}$ or finite extensions of \mathbb{Q}_{p}, and also $\mathbb{F}_{q}((x))$ and its finite extensions.
Theorem: Over a complete, non-discrete normed field k, - A finite-dimensional k-vectorspace V has just one Hausdorff topology so that vector addition and scalar multiplication are continuous (a topological vectorspace topology). All linear endomorphisms are continuous.

- A finite-dimensional k-subspace V of a topological k-vectorspace W is necessarily a closed subspace of W.
- A k-linear map $\phi: X \rightarrow V$ to a finite-dimensional space V is continuous if and only if the kernel is closed.

Remark: The main application of this is to finite field extensions V of $k=\mathbb{Q}_{p}$ or of $k=\mathbb{F}_{q}((x))$. The argument also succeeds over complete non-discrete division algebras.

A subset E of V is balanced when $x E \subset E$ for every $x \in k$ with $|x| \leq 1$.
Lemma: Let U be a neighborhood of 0 in V. Then U contains a balanced neighborhood N of 0 .
Proof: By continuity of scalar multiplication, there is $\varepsilon>0$ and a neighborhood U^{\prime} of $0 \in V$ so that when $|x|<\varepsilon$ and $v \in U^{\prime}$ then $x v \in U$. Since k is non-discrete, there is $x_{o} \in k$ with $0<\left|x_{o}\right|<\varepsilon$. Since scalar multiplication by a non-zero element is a homeomorphism, $x_{o} U^{\prime}$ is a neighborhood of 0 and $x_{o} U^{\prime} \subset U$. Put

$$
\begin{gathered}
N=\bigcup_{|y| \leq 1} y\left(x_{o} U^{\prime}\right) \\
|x y| \leq|y| \leq 1 \text { for }|x| \leq 1, \text { so } \\
x N=\bigcup_{|y| \leq 1} x\left(y x_{o} U^{\prime}\right) \subset \bigcup_{|y| \leq 1} y x_{o} U^{\prime}=N \quad / / /
\end{gathered}
$$

Proposition: For a one-dimensional topological vectorspace V, that is, a free module on one generator e, the map $k \rightarrow V$ by $x \rightarrow x e$ is a homeomorphism.

Proof: Scalar multiplication is continuous, so we need only show that the map is open. Given $\varepsilon>0$, by non-discreteness there is x_{o} in k so that $0<\left|x_{o}\right|<\varepsilon$. Since V is Hausdorff, there is a neighborhood U of 0 so that $x_{o} e \notin U$. Shrink U so it is balanced. Take $x \in k$ so that $x e \in U$. If $|x| \geq\left|x_{o}\right|$ then $\left|x_{o} x^{-1}\right| \leq 1$, so that

$$
x_{o} e=\left(x_{o} x^{-1}\right)(x e) \in U
$$

by the balanced-ness of U, contradiction. Thus,

$$
x e \in U \Longrightarrow|x|<\left|x_{o}\right|<\varepsilon \quad / / /
$$

Corollary: Fix $x_{o} \in k$. A not-identically-zero k-linear k-valued function f on V is continuous if and only if the affine hyperplane

$$
H=\left\{v \in V: f(v)=x_{o}\right\}
$$

is closed in V.
Proof: For f is continuous, H is closed, being the complement of the open $f^{-1}\left(\left\{x \neq x_{o}\right\}\right)$. For the converse, take $x_{o}=0$, since vector additions are homeomorphisms of V to itself.

For $v_{o}, v \in V$ with $f\left(v_{o}\right) \neq 0$,

$$
f\left(v-f(v) f\left(v_{o}\right)^{-1} v_{o}\right)=f(v)-f(v) f\left(v_{o}\right)^{-1} f\left(v_{o}\right)=0
$$

Thus, V / H is one-dimensional. Let $\bar{f}: V / H \rightarrow k$ be the induced k-linear map on V / H so that $f=\bar{f} \circ q$:

$$
\bar{f}(v+H)=f(v)
$$

By the previous proposition, \bar{f} is a homeomorphism to k. so f is continuous.

Proof of theorem: To prove the uniqueness of the topology, prove that for any k-basis e_{1}, \ldots, e_{n} for V, the map $k \times \ldots \times k \rightarrow V$ by

$$
\left(x_{1}, \ldots, x_{n}\right) \rightarrow x_{1} e_{1}+\ldots+x_{n} e_{n}
$$

is a homeomorphism. Prove this by induction on the dimension n. $n=1$ was treated already. Granting this, since k is complete, the lemma asserting the closed-ness of complete subspaces shows that any one-dimensional subspace is closed.

Take $n>1$, and let $H=k e_{1}+\ldots+k e_{n-1}$. By induction, H is closed in V, so V / H is a topological vector space. Let q be the quotient map. V / H is a one-dimensional topological vectorspace over k, with basis $q\left(e_{n}\right)$. By induction,

$$
\varphi: x q\left(e_{n}\right)=q\left(x e_{n}\right) \rightarrow x
$$

is a homeomorphism to k.

Likewise, $k e_{n}$ is a closed subspace and we have the quotient map

$$
q^{\prime}: V \rightarrow V / k e_{n}
$$

We have a basis $q^{\prime}\left(e_{1}\right), \ldots, q^{\prime}\left(e_{n-1}\right)$ for the image, and by induction

$$
\phi^{\prime}: x_{1} q^{\prime}\left(e_{1}\right)+\ldots+x_{n-1} q^{\prime}\left(e_{n-1}\right) \rightarrow\left(x_{1}, \ldots, x_{n-1}\right)
$$

is a homeomorphism.
By induction,

$$
v \rightarrow(\phi \circ q)(v) \times\left(\phi^{\prime} \circ q^{\prime}\right)(v)
$$

is continuous to

$$
k^{n-1} \times k \approx k^{n}
$$

On the other hand, by the continuity of scalar multiplication and vector addition, the map

$$
k^{n} \rightarrow V \quad \text { by } \quad x_{1} \times \ldots \times x_{n} \rightarrow x_{1} e_{1}+\ldots+x_{n} e_{n}
$$

is continuous.

The two maps are mutual inverses, proving that we have a homeomorphism.
Thus, a n-dimensional subspace is homeomorphic to k^{n}, so is complete, since (as follows readily) a finite product of complete spaces is complete.
Thus, by the lemma asserting the closed-ness of complete subspaces, an n-dimensional subspace is always closed.
Continuity of a linear map $f: X \rightarrow k^{n}$ implies that the kernel $N=\operatorname{ker} f$ is closed. On the other hand, if N is closed, then X / N is a topological vectorspace of dimension at most n. Therefore, the induced map $\bar{f}: X / N \rightarrow V$ is unavoidably continuous. But then $f=\bar{f} \circ q$ is continuous, where q is the quotient map.

In particular, any k-linear map $V \rightarrow V$ has finite-dimensional kernel, so the kernel is closed, and the map is continuous. This completes the induction.

Corollary: Finite field extensions K of complete, non-discrete k have unique Hausdorff topologies making addition and multiplication continuous.

Proof: K is a finite-dimensional k-vectorspace. The only ingredient perhaps not literally supplied by the theorem is the continuity of the multiplication by elements of K. Such multiplications are k-linear endomorphisms of the vector space K, so are continuous, by the theorem.

Remark: This discussion still did not use local compactness of the field k, so is not specifically number theoretic.

