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Dedekind zeta functions, class number formulas, ...

ζk(s) =
∑

0 6=a⊂o

1

Nas
=

∏

p prime in o

1

1 −Np−s

The Euler product and sum expressions for ζk(s) converge
absolutely for Re(s) > 1. [Previously.]

The simplest family of rings of algebraic integers typically not

PIDs, but with the simple feature of finitely-many units, is
complex quadratic k = Q(

√
−D) for D > 0. Let the ring of

algebraic integers be o, quadratic symbol χ(p)=(−D/p)2, N the
conductor of χ, h(o) the class number. Then

h(o) =
−i · |o×| · coarea(o)

∑

a χ(a)e2πia/N

∑

a mod N

( a

N
− 1

2

)

· χ(a)

Discussion and elaboration ...
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Again, ...

o =







Z[
√
−D] = Z⊕ Z√−D (for −D = 2, 3 mod 4)Z[ 1+
√
−D

2 ] = Z⊕ Z 1+
√
−D

2 (for −D = 1 mod 4)

o is a free Z-module of rank 2, and is a lattice in C: o is a discrete

subgroup of C, and C/o is compact.

Galois norm is the complex norm-squared: NkQ(α) = α · ᾱ = |α|2.

Lemma: For a lattice Λ in C, the Epstein zeta function

ZΛ(s) =
∑

0 6=λ∈Λ

1

|λ|2s

has a meromorphic continuation to Re(s) > 1
2 and

ZΛ(s) =
π

co-area Λ
· 1

s− 1
+ (holomorphic near s = 1)

[Last time.]
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Corollary: For complex quadratic k,

ζk(s) =
∑

[b]

∑

a∼b

1

Nas
∼ π · h(o)

|o×| · coarea(o)(s− 1)
+ (holo at s = 1)

Proof: [Last time:] co-area(b−1) = Nb−1 · coarea(o). ///

Corollary With χ(p) = (−D/p)2,

π · h(o)

|o×| · coarea(o)
= L(1, χ)

Proof: [Last time:] From the factorization

ζk(s) = ζQ(s) · L(s, χ)

Since ζ(s) = ζQ(s) has residue 1 at s = 1, the value L(1, χ) is the
residue of ζk(s) at s = 1. ///
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For complex quadratic k, the special value L(1, χ) has a finite,
closed-form expression. Recall that the conductor N of χ is a
positive integer such that χ(p) depends only on p mod N .

Claim: The conductor N of χ(p) = (−D/p)2 is

N =







D (for −D = 1 mod 4)

4D (for −D = 2, 3 mod 4)

Proof: Use quadratic reciprocity. For D an odd prime,

(−D
p

)

2

=

(−1

p

)

2

(

D

p

)

2

= (−1)
p−1

2 · (−1)
p−1

2

D−1

2

(

p

D

)

2

= (−1)
p−1

2

D+1

2

(

p

D

)

2

=







(

p
D

)

2
(for D = 3 mod 4)

(−1)
p−1

2 ·
(

p
D

)

2
(for D = 1 mod 4)
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For D = 2q with odd prime q,

(−D
p

)

2

=

(−1

p

)

2

(

2

p

)

2

(

q

p

)

2

= (−1)
p−1

2 (−1)
p2

−1

8 (−1)
p−1

2

q−1

2

(

p

q

)

2

Here, as (−1)(p
2−1)/8 is a slightly un-transparent interpolation

of the quadratic symbol for 2, we must check the cases p =
1, 3, 5, 7 mod 8 to see that, no matter the congruence class of q,
the aggregate is only defined mod 8q = 4(2q).

For D = q1 . . . qℓ with odd primes qj ,
(−D

p

)

2

= (−1)
p−1

2
[1+

q1−1

2
+...+

qℓ−1

2
]

(

p

q1

)

2

. . .

(

p

qℓ

)

2

With ν the number of qj = 3 mod 4, the power of −1 is

(−1)
p−1

2
(1+ν). For ν = 1 mod 4, this depends on p mod 4,

and q1 . . . qℓ = 3 mod 4, while for ν = 3 mod 4 this is +1,
and q1 . . . qℓ = 1 mod 4. A similar consideration applies to
D = 2q1 . . . qℓ. ///
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Remark: The precise determination of the conductor of χ for
quadratic characters χ accounts for a classical usage: for square-
free integer d,

discriminant Q(
√
d) =







|d| (for d = 1 mod 4)

4|d| (for d = 2, 3 mod 4)

= conductor of

(

d

∗

)

2

This appears to differ from the square of co-area of o by a factor
of 4: for example,

co-area Z[
√
−5] = area of rectangle spanned by 1,

√
−5 =

√
5

while the discriminant/conductor is 20. Later, we will find that
the best normalization of measure on C rectifies this!
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The Fourier expansion of the sawtooth function is

s(x) = x− 1
2 =

−1

2πi

∑

n 6=0

e2πinx

n
(for 0 < x < 1)

The standard discussion of the Dirichlet kernel [for example, see
Functions on Circles in http://.../̃ garrett/m/mfms, course notes
from 2005-6] shows that Fourier series of piecewise differentiable
functions f with left and right limits at discontinuities do

converge, and to f , at points where f is differentiable.

Thus,
∑

a mod N

χ(a) ·
( a

N
− 1

2

)

=
∑

a mod N

χ(a) · s( a
N

)

=
−1

2πi

∑

a

χ(a)
∑

n 6=0

e2πina/N

n
=

−1

2πi

∑

n 6=0

χ(n)

n
·
∑

a

χ(a)e2πia/N

by replacing a by an−1 mod N . Since χ(−1) = −1 (!!!)...
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In fact, for quadratic characters, χ(−1) does tell whether the field
is real or complex:

Lemma: For quadratic characters χ,

χ(−1) =







−1 (for χ(p) = (−D/p)2)

+1 (for χ(p) = (D/p)2)
(squarefree D > 0)

Proof: As a simple case, take D odd prime. The conductor is
either D or 4D. For a prime p = −1 mod 4D,

χ(−1) =

(−D
p

)

2

= (−1)
p−1

2 (−1)
p−1

2

D−1

2

(

p

D

)

2

= (−1)
p−1

2

D+1

2

(−1

D

)

2

= (−1)
p−1

2

D+1

2 (−1)
D−1

2 = (−1)
p−1

2
·D = −1

since p = 3 mod 4. For (D/p)2 ...
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... with prime p = −1 mod 4D,

χ(−1) =

(

D

p

)

2

= (−1)
p−1

2

D−1

2

(

p

D

)

2

= (−1)
p−1

2

D−1

2

(−1

D

)

2

= (−1)
p−1

2

D−1

2 (−1)
D−1

2 = +1

Dirichlet’s theorem on primes in arithmetic progressions gives
infinitely-many primes p = −1 mod 4D, but this is excessive.

Instead, with n = −1 mod 4D, factor n = q1 . . . qℓ, apply quadratic
reciprocity, and track parities, as we did in the determination of
the conductor of quadratic characters. And factor D... ///

Thus, indeed, χ(−1) = −1 for complex quadratic fields. Back to
the class number formula computation...
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So far,

∑

a mod N

χ(a) ·
( a

N
− 1

2

)

=
−1

2πi

∑

n 6=0

χ(n)

n
·
∑

a

χ(a)e2πia/N

Since χ(−1) = −1, the summands χ(n)/n for ±n are identical,
rather than cancelling, so

∑

a mod N

χ(a) ·
( a

N
− 1

2

)

=
−1

πi
· L(1, χ) ·

∑

a

χ(a)e2πia/N

and

L(1, χ) =
−πi

∑

a χ(a)e2πia/N

∑

a mod N

χ(a) ·
( a

N
− 1

2

)
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Thus,

π · h(o)

|o×| · co-area(o)
=

−πi
∑

a χ(a)e2πia/N

∑

a mod N

( a

N
− 1

2

)

· χ(a)

and, for complex quadratic fields,

h(o) =
−i · |o×| · co-area(o)

∑

a χ(a)e2πia/N

∑

a mod N

( a

N
− 1

2

)

· χ(a)

Claim:
∣

∣

∣

∣

co-area(o)
∑

a χ(a)e2πia/N

∣

∣

∣

∣

=
1

2

Proof: For −D = 1 mod 4, o = Z[ 1+
√
−D

2 ], and the co-area of o is

det

(

Re(1) Im(1)

Re( 1+
√
−D

2 ) Im( 1+
√
−D

2 )

)

= det

(

1 0
1
2

√
D
2

)

=

√
D

2
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For −D = 2, 3 mod 4, o = Z[
√
−D], and the co-area of o is

det

(

Re(1) Im(1)
Re(

√
−D) Im(

√
−D)

)

= det

(

1 0
0

√
D

)

=
√
D

These conditions mod 4 also determine whether the conductor N
is D, or 4D, and in all cases

co-area(o)2 =
1

4
·N (in a naive normalization)

(Recall the) Claim: The Gauss sum for a character of conductor
N has absolute value

√
N .

Proof: Starting the computation in the obvious fashion, writing
ψ(a) = e2πia/N . Let Σ′ denote sum over (Z/N)×, and Σ′′ denote
sum over Z/N − (Z/N)×.

∣

∣

∣

∑

a mod N

χ(a)ψ(a)
∣

∣

∣

2

=
∑

a,b

′ χ(a)ψ(a)χ(b)ψ(−b)
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Replacing a by ab, this becomes

∑

a,b

′ χ(a)ψ
(

(a− 1) · b
)

We claim that, because χ has conductor N (and not smaller!)

∑

a

′ χ(a)ψ((a− 1) · b) = 0 (for gcd(b,N) > 1)

To see this, let p be a prime dividing gcd(b,N). That N is the
conductor of χ is to say that χ is primitive mod N , meaning that
χ does not factor through any quotient Z/(N/p). That is, there is
some η = 1 mod N/p such that χ(η) 6= 1.

Since p|b, and η = 1 mod N/p,

(aη − 1) · b = (a− 1)b+ a(η − 1)b = (a− 1)b mod N
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Thus, replacing a by ηa,

∑

a

′ χ(a)ψ((a− 1) · b) =
∑

a

′ χ(aη)ψ((aη − 1) · b)

= χ(η)
∑

a

′ χ(a)ψ((a− 1) · b)

Thus, the sum over a is 0. Thus, we can drop the coprimality
constraint:

∑

a,b

′ χ(a)ψ
(

(a− 1) · b
)

=
∑

a,b

χ(a)ψ
(

(a− 1) · b
)

For a 6= 1, the inner sum over b is 0, because the sum of a non-
trivial character over a finite group is 0. For a = 1 the sum over b
gives N . ///

Thus, the absolute value of the Gauss sum for any character with
conductor exactly N is

√
N .
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Returning to the class number formula for complex quadratic
fields,

h(o) =
ε · |o×|

2

∑

a mod N

( a

N
− 1

2

)

· χ(a) (for some |ε| = 1)

The number of summands can be reduced by a factor of 2, as
follows. Since χ(−1) = −1, χ(N − a) = χ(−a) = −χ(a). Likewise,

N − a

N
− 1

2 = 1 − a

N
− 1

2 = −
( a

N
− 1

2

)

Thus, we need only sum up over a < N/2. When N/2 is an
integer, N was even, so divisible by 4, so χ(N/2) = 0. Thus,

h(o) = ε · |o×|
∑

1≤a<N/2

( a

N
− 1

2

)

· χ(a) (for some |ε| = 1)



Garrett 11-18-2011 16

Example: D = 3 gives the Eisenstein integers o, which we know
to have class number 1, since the ring is a PID. Here |o×| = 6.

|o×|
∑

1≤a<N/2

( a

N
− 1

2

)

· χ(a) = 6( 1
3 − 1

2 ) · (+1) = −1

Adjust by ε = −1 to obtain h(o) = 1, indeed.

Example: For D = 5, the conductor is N = 20 and |o×| = 2.

|o×|
∑

1≤a<N/2

( a

N
− 1

2

)

· χ(a)

= 2
(

( 1
20 − 1

2 )(+1)+( 3
20 − 1

2 )
(−5

3

)

2
+( 7

20 − 1
2 )

(−5
7

)

2
+( 9

20 − 1
2 )

(−5
9

)

2

)

= 2
(

( 1
20 − 1

2 )(+1) + ( 3
20 − 1

2)(+1) + ( 7
20 − 1

2 )(+1) + ( 9
20 − 1

2 )(+1)
)

= 2
(

1
20 + 3

20 + 7
20 + 9

20 − 2
)

= −2

Adjust by ε = −1 to obtain h(o) = 2. This is not surprising, given

2 · 3 = (1 +
√
−5) · (1 −

√
−5)


