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Dedekind zeta functions, class number formulas, ...
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0#£aCo p prime in o

The Euler product and sum expressions for (x(s) converge
absolutely for Re(s) > 1. [Previously.]

The simplest family of rings of algebraic integers typically not
PIDs, but with the simple feature of finitely-many units, is
complex quadratic k = Q(v/—D) for D > 0. Let the ring of
algebraic integers be o0, quadratic symbol x(p)=(—D/p)2, N the
conductor of x, h(o) the class number. Then

o) = = e 2 (b x@

Discussion and elaboration ...
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Again,
ZlV—D] = Z®ZJ—D (for —D = 2,3 mod 4)
0 =
ZPY=L) = Ze 7z  (for —D = 1mod 4)

0 is a free Z-module of rank 2, and is a lattice in C: o is a discrete
subgroup of C, and C/o is compact.

Galois norm is the complex norm-squared: Ng(a) = a-a = |al?.

Lemma: For a lattice A in C, the Epstein zeta function

) = Y

0£NEA
has a meromorphic continuation to Re(s) > % and
T 1
ZAa(s) = . + (holomorphic near s = 1
Als) co-areaA s—1 ( p )

[Last time.]



Garrett 11-18-2011 3

Corollary: For complex quadratic k,

Ck(s) = ; Z Nlas ~ m - h(o) + (holo at s = 1)
b

r |0%]| - coarea(o)(s — 1)

Proof: [Last time:] co-area(b™!) = Nb~! - coarea(o). ///
Corollary With x(p) = (—=D/p)a,

7 - h(o)

= L(1
l0%| - coarea(o) (1)

Proof: [Last time:] From the factorization

Ck(s) = Cals) - L(s,x)

Since ((s) = (g(s) has residue 1 at s = 1, the value L(1, x) is the
residue of (x(s) at s = 1. ///
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For complex quadratic k, the special value L(1, x) has a finite,
closed-form expression. Recall that the conductor N of y is a
positive integer such that y(p) depends only on p mod N.

Claim: The conductor N of x(p) = (=D/p)2 is
D (for —D =1 mod 4)
N —
AD  (for —D = 2,3 mod 4)

Proof: Use quadratic reciprocity. For D an odd prime,

(7).~ (L), - o o),

_ (—1)= (p)2 ( (b)2 (for D = 3 mod 4)

\ (_1)1)—51 : (p)2 (for D =1 mod 4)

4
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For D = 2q with odd prime g,

()7 (G),G),G) - v cs())

Here, as (—1)(p2_1)/ 8 is a slightly un-transparent interpolation
of the quadratic symbol for 2, we must check the cases p =
1,3,5,7 mod 8 to see that, no matter the congruence class of ¢,
the aggregate is only defined mod 8¢ = 4(2q).

For D = q; ...q, with odd primes g,

<_D) _ (_1)”7_1[14-(117_14—...4—”7_1](19) <p)
b 2 q1/ o qe) o

With v the number of ¢; = 3 mod 4, the power of —1 is

(—1)p—51(1+”). For v = 1 mod 4, this depends on p mod 4,
and ¢q1...q¢ = 3 mod 4, while for v = 3 mod 4 this is +1,
and ¢1...q¢ = 1mod4. A similar consideration applies to

D=2q...q. ///
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Remark: The precise determination of the conductor of y for
quadratic characters x accounts for a classical usage: for square-
free integer d,

|d|  (for d =1 mod 4)
discriminant Q(vVd) =
4|d|  (for d = 2,3 mod 4)

d
= conductor of <*>

This appears to differ from the square of co-area of o by a factor
of 4: for example,

co-area Z[v/—b|] = area of rectangle spanned by 1,v/—5 = /5

while the discriminant/conductor is 20. Later, we will find that
the best normalization of measure on C rectifies this!

2

6
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The Fourier expansion of the sawtooth function is

-1 627rinx
:—,g (for 0 <z < 1)
271 7o n

The standard discussion of the Dirichlet kernel [for example, see
Functions on Circles in http://.../"garrett /m /mfms, course notes
from 2005-6] shows that Fourier series of piecewise differentiable
functions f with left and right limits at discontinuities do
converge, and to f, at points where f is differentiable.

Thus, . .
> xa) (-3 = D xla)s(3)

a mod N a mod N
_ —1 ( )Z e’ _ X(TL) Z ( ) 2mia/N
2w X\ N ' X\@)€

a n#0 n#0 a

by replacing a by an™! mod N. Since x(—1) = —1 (I!!)...

7
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In fact, for quadratic characters, y(—1) does tell whether the field
is real or complex:

Lemma: For quadratic characters Yy,

—1  (for x(p) = (=D/p)2)
x(=1) = (squarefree D > 0)

+1  (for x(p) = (D/p)2)

Proof: As a simple case, take D odd prime. The conductor is
either D or 4D. For a prime p = —1 mod 4D,

since p = 3 mod 4. For (D/p)s ...
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. with prime p = —1 mod 4D,

Dirichlet’s theorem on primes in arithmetic progressions gives
infinitely-many primes p = —1 mod 4D, but this is excessive.

Instead, with n = —1 mod 4D, factor n = ¢; ... gy, apply quadratic
reciprocity, and track parities, as we did in the determination of
the conductor of quadratic characters. And factor D... ///

Thus, indeed, x(—1) = —1 for complex quadratic fields. Back to
the class number formula computation...
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So far,
a 1 x(n) 2mia/N
> x(a)- (5 —3) = %ZZ Z a)e
a mod N n#0
Since x(—1) = —1, the summands x(n)/n for +n are identical,

rather than cancelling, so

and




Garrett 11-18-2011

Thus,

7 - h(o) B i 0«
[0%| - co-area(o) > x(a)e2mia/N ) %N (N — 1) - x(a)

and, for complex quadratic fields,

h(o) — —i - |0*| - co-area(o) Z (%—%)'X(G)

2mia /N
Za X(CL)G ol a mod N

co-area(0) ‘ 1
2

Sox@@m | T3

11

Proof: For —D = 1 mod 4, 0 = Z[2¥=2], and the co-area of o is

2

1
2
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For —D = 2,3 mod 4, 0 = Z[\/—D], and the co-area of o is

et (ro(up) 1(em) = (o vb) = VP

These conditions mod 4 also determine whether the conductor N
is D, or 4D, and in all cases

co-area(0)® = -~ - N (in a naive normalization)

1
4

(Recall the) Claim: The Gauss sum for a character of conductor
N has absolute value v/N.

Proof: Starting the computation in the obvious fashion, writing
Y(a) = e2™/N Let ¥/ denote sum over (Z/N)*, and ¥" denote
sum over Z/N — (Z/N)*.

Y @] = X @) (@) w0 (-b)
a,b

a mod N
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Replacing a by ab, this becomes
> "x(a)((a—1)-b)
a,b
We claim that, because x has conductor N (and not smaller!)

> "x(@)((a—1)-b) = 0 (for ged(b, N) > 1)

To see this, let p be a prime dividing ged(b, V). That N is the
conductor of y is to say that x is primitive mod N, meaning that
x does not factor through any quotient Z/(IN/p). That is, there is
some 17 = 1 mod N/p such that x(n) # 1.

Since p|b, and n = 1 mod N/p,

(an—1)-b = (a—1)b+a(n—1)b = (a—1)b mod N
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Thus, replacing a by na,

S @) la—1)-8) = 37 x(an) d((an—1) - b)

= x(m) )" x(a)¥((a—=1)-b)

Thus, the sum over a is 0. Thus, we can drop the coprimality
constraint:

Y x(@y((a=1)-b) = > x(@¢((a—1)-b)

For a # 1, the inner sum over b is 0, because the sum of a non-
trivial character over a finite group is 0. For a = 1 the sum over b

gives V. ///

Thus, the absolute value of the Gauss sum for any character with
conductor exactly NV is v V.



Garrett 11-18-2011 15

Returning to the class number formula for complex quadratic
fields,
h(o) = £ Jo”] Z (ﬁ — 1) - x(a) (for some |e| = 1)
2 a mod N N ’

The number of summands can be reduced by a factor of 2, as
follows. Since x(—1) = —1, x(N —a) = x(—a) = —x(a). Likewise,

)

Thus, we need only sum up over a < N/2. When N/2 is an
integer, N was even, so divisible by 4, so x(N/2) = 0. Thus,

N—-a
N 2

— 1

N~

N~

@ (ﬁ
N N

h(o) = - |0 Z (% — 1) - x(a) (for some || = 1)

1<a<N/2
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Example: D = 3 gives the Eisenstein integers o, which we know
to have class number 1, since the ring is a PID. Here |0*| = 6.

0] > (5 -4 x(@) = 6(3 -

1<a<N/2

Adjust by € = —1 to obtain h(0) = 1, indeed.

) (+1) = —1

N~

Example: For D = 5, the conductor is N = 20 and |0*| = 2.

0] Y (-3 x@

1<a<N/2
= (- DU+ (E - D)+ G- D)+ (5 - D))
- 2(( —%)(+1)+(%—%)(+1)+(%—%)(“H(%_%)(H))
— 2<%+2%+2—0+%—2) = —2

Adjust by € = —1 to obtain h(o) = 2. This is not surprising, given

2-3 = (1++v-5)-(1—-+-5)

e




