Dedekind zeta functions, class number formulas, ...

$$
\zeta_{k}(s)=\sum_{0 \neq \mathfrak{a} \subset \mathfrak{o}} \frac{1}{N \mathfrak{a}^{s}}=\prod_{\mathfrak{p} \text { prime in } \mathfrak{o}} \frac{1}{1-N \mathfrak{p}^{-s}}
$$

The Euler product and sum expressions for $\zeta_{k}(s)$ converge absolutely for $\operatorname{Re}(s)>1$. [Previously.]

The simplest family of rings of algebraic integers typically not PIDs, but with the simple feature of finitely-many units, is complex quadratic $k=\mathbb{Q}(\sqrt{-D})$ for $D>0$. Let the ring of algebraic integers be \mathfrak{o}, quadratic symbol $\chi(p)=(-D / p)_{2}, N$ the conductor of $\chi, h(\mathfrak{o})$ the class number. Then

$$
h(\mathfrak{o})=\frac{-i \cdot\left|\mathfrak{o}^{\times}\right| \cdot \operatorname{coarea}(\mathfrak{o})}{\sum_{a} \chi(a) e^{2 \pi i a / N}} \sum_{a \bmod N}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a)
$$

Discussion and elaboration ...

Again, ...

$$
\mathfrak{o}=\left\{\begin{array}{cl}
\mathbb{Z}[\sqrt{-D}]=\mathbb{Z} \oplus \mathbb{Z} \sqrt{-D} & (\text { for }-D=2,3 \bmod 4) \\
\mathbb{Z}\left[\frac{1+\sqrt{-D}}{2}\right]=\mathbb{Z} \oplus \mathbb{Z} \frac{1+\sqrt{-D}}{2} & (\text { for }-D=1 \bmod 4)
\end{array}\right.
$$

\mathfrak{o} is a free \mathbb{Z}-module of rank 2 , and is a lattice in $\mathbb{C}: \mathfrak{o}$ is a discrete subgroup of \mathbb{C}, and $\mathbb{C} / \mathfrak{o}$ is compact.
Galois norm is the complex norm-squared: $N_{\mathbb{Q}}^{k}(\alpha)=\alpha \cdot \bar{\alpha}=|\alpha|^{2}$.
Lemma: For a lattice Λ in \mathbb{C}, the Epstein zeta function

$$
Z_{\Lambda}(s)=\sum_{0 \neq \lambda \in \Lambda} \frac{1}{|\lambda|^{2 s}}
$$

has a meromorphic continuation to $\operatorname{Re}(s)>\frac{1}{2}$ and

$$
Z_{\Lambda}(s)=\frac{\pi}{\operatorname{co-area} \Lambda} \cdot \frac{1}{s-1}+(\text { holomorphic near } s=1)
$$

[Last time.]

Corollary: For complex quadratic k,
$\zeta_{k}(s)=\sum_{[\mathfrak{b}]} \sum_{\mathfrak{a} \sim \mathfrak{b}} \frac{1}{N \mathfrak{a}^{s}} \sim \frac{\pi \cdot h(\mathfrak{o})}{\left|\mathfrak{o}^{\times}\right| \cdot \operatorname{coarea}(\mathfrak{o})(s-1)}+($ holo at $s=1)$
Proof: [Last time:] co-area $\left(\mathfrak{b}^{-1}\right)=N \mathfrak{b}^{-1} \cdot \operatorname{coarea}(\mathfrak{o})$.
Corollary With $\chi(p)=(-D / p)_{2}$,

$$
\frac{\pi \cdot h(\mathfrak{o})}{\left|\mathfrak{o}^{\times}\right| \cdot \operatorname{coarea}(\mathfrak{o})}=L(1, \chi)
$$

Proof: [Last time:] From the factorization

$$
\zeta_{k}(s)=\zeta_{\mathbb{Q}}(s) \cdot L(s, \chi)
$$

Since $\zeta(s)=\zeta_{\mathbb{Q}}(s)$ has residue 1 at $s=1$, the value $L(1, \chi)$ is the residue of $\zeta_{k}(s)$ at $s=1$.

For complex quadratic k, the special value $L(1, \chi)$ has a finite, closed-form expression. Recall that the conductor N of χ is a positive integer such that $\chi(p)$ depends only on $p \bmod N$.

Claim: The conductor N of $\chi(p)=(-D / p)_{2}$ is

$$
N=\left\{\begin{array}{cl}
D & (\text { for }-D=1 \bmod 4) \\
4 D & (\text { for }-D=2,3 \bmod 4)
\end{array}\right.
$$

Proof: Use quadratic reciprocity. For D an odd prime,

$$
\begin{aligned}
& \binom{-D}{p}_{2}=\binom{-1}{p}_{2}\binom{D}{p}_{2}=(-1)^{\frac{p-1}{2}} \cdot(-1)^{\frac{p-1}{2} \frac{D-1}{2}}\binom{p}{D}_{2} \\
= & (-1)^{\frac{p-1}{2} \frac{D+1}{2}}\binom{p}{D}_{2}=\left\{\begin{array}{cl}
(\text { for } D=3 \bmod 4) \\
D
\end{array}\right)_{2} \\
(-1)^{\frac{p-1}{2}} \cdot\binom{p}{D}_{2} & (\text { for } D=1 \bmod 4)
\end{aligned}
$$

For $D=2 q$ with odd prime q,

$$
\binom{-D}{p}_{2}=\binom{-1}{p}_{2}\binom{2}{p}_{2}\binom{q}{p}_{2}=(-1)^{\frac{p-1}{2}}(-1)^{\frac{p^{2}-1}{8}}(-1)^{\frac{p-1}{2} \frac{q-1}{2}}\binom{p}{q}_{2}
$$

Here, as $(-1)^{\left(p^{2}-1\right) / 8}$ is a slightly un-transparent interpolation of the quadratic symbol for 2 , we must check the cases $p=$ $1,3,5,7 \bmod 8$ to see that, no matter the congruence class of q, the aggregate is only defined $\bmod 8 q=4(2 q)$.

For $D=q_{1} \ldots q_{\ell}$ with odd primes q_{j},

$$
\binom{-D}{p}_{2}=(-1)^{\frac{p-1}{2}\left[1+\frac{q_{1}-1}{2}+\ldots+\frac{q_{\ell}-1}{2}\right]}\binom{p}{q_{1}}_{2} \ldots\binom{p}{q_{\ell}}_{2}
$$

With ν the number of $q_{j}=3 \bmod 4$, the power of -1 is $(-1)^{\frac{p-1}{2}(1+\nu)}$. For $\nu=1 \bmod 4$, this depends on $p \bmod 4$, and $q_{1} \ldots q_{\ell}=3 \bmod 4$, while for $\nu=3 \bmod 4$ this is +1 , and $q_{1} \ldots q_{\ell}=1 \bmod 4$. A similar consideration applies to $D=2 q_{1} \ldots q_{\ell}$.

Remark: The precise determination of the conductor of χ for quadratic characters χ accounts for a classical usage: for squarefree integer d,

$$
\begin{gathered}
\operatorname{discriminant} \mathbb{Q}(\sqrt{d})= \begin{cases}|d| & (\text { for } d=1 \bmod 4) \\
4|d| & (\text { for } d=2,3 \bmod 4)\end{cases} \\
=\text { conductor of }\binom{d}{*}_{2}
\end{gathered}
$$

This appears to differ from the square of co-area of \mathfrak{o} by a factor of 4: for example,
co-area $\mathbb{Z}[\sqrt{-5}]=$ area of rectangle spanned by $1, \sqrt{-5}=\sqrt{5}$
while the discriminant/conductor is 20 . Later, we will find that the best normalization of measure on \mathbb{C} rectifies this!

The Fourier expansion of the sawtooth function is

$$
s(x)=x-\frac{1}{2}=\frac{-1}{2 \pi i} \sum_{n \neq 0} \frac{e^{2 \pi i n x}}{n} \quad(\text { for } 0<x<1)
$$

The standard discussion of the Dirichlet kernel [for example, see Functions on Circles in http://.../ garrett/m/mfms, course notes from 2005-6] shows that Fourier series of piecewise differentiable functions f with left and right limits at discontinuities do converge, and to f, at points where f is differentiable.

Thus,

$$
\begin{gathered}
\sum_{a \bmod N} \chi(a) \cdot\left(\frac{a}{N}-\frac{1}{2}\right)=\sum_{a \bmod N} \chi(a) \cdot s\left(\frac{a}{N}\right) \\
=\frac{-1}{2 \pi i} \sum_{a} \chi(a) \sum_{n \neq 0} \frac{e^{2 \pi i n a / N}}{n}=\frac{-1}{2 \pi i} \sum_{n \neq 0} \frac{\chi(n)}{n} \cdot \sum_{a} \chi(a) e^{2 \pi i a / N}
\end{gathered}
$$

by replacing a by $a n^{-1} \bmod N$. Since $\chi(-1)=-1(!!!) \ldots$

In fact, for quadratic characters, $\chi(-1)$ does tell whether the field is real or complex:

Lemma: For quadratic characters χ,
$\chi(-1)=\left\{\begin{array}{ll}-1 & \left(\text { for } \chi(p)=(-D / p)_{2}\right) \\ +1 & \left(\text { for } \chi(p)=(D / p)_{2}\right)\end{array} \quad\right.$ (squarefree $\left.D>0\right)$
Proof: As a simple case, take D odd prime. The conductor is either D or $4 D$. For a prime $p=-1 \bmod 4 D$,

$$
\begin{gathered}
\chi(-1)=\binom{-D}{p}_{2}=(-1)^{\frac{p-1}{2}}(-1)^{\frac{p-1}{2} \frac{D-1}{2}}\binom{p}{D}_{2} \\
=(-1)^{\frac{p-1}{2} \frac{D+1}{2}}\binom{-1}{D}_{2}=(-1)^{\frac{p-1}{2} \frac{D+1}{2}}(-1)^{\frac{D-1}{2}}=(-1)^{\frac{p-1}{2} \cdot D}=-1
\end{gathered}
$$

since $p=3 \bmod 4$. For $(D / p)_{2} \ldots$
... with prime $p=-1 \bmod 4 D$,

$$
\begin{gathered}
\chi(-1)=\binom{D}{p}_{2}=(-1)^{\frac{p-1}{2} \frac{D-1}{2}}\binom{p}{D}_{2} \\
=(-1)^{\frac{p-1}{2} \frac{D-1}{2}}\binom{-1}{D}_{2}=(-1)^{\frac{p-1}{2} \frac{D-1}{2}}(-1)^{\frac{D-1}{2}}=+1
\end{gathered}
$$

Dirichlet's theorem on primes in arithmetic progressions gives infinitely-many primes $p=-1 \bmod 4 D$, but this is excessive.

Instead, with $n=-1 \bmod 4 D$, factor $n=q_{1} \ldots q_{\ell}$, apply quadratic reciprocity, and track parities, as we did in the determination of the conductor of quadratic characters. And factor $D \ldots$

Thus, indeed, $\chi(-1)=-1$ for complex quadratic fields. Back to the class number formula computation...

So far,

$$
\sum_{a \bmod N} \chi(a) \cdot\left(\frac{a}{N}-\frac{1}{2}\right)=\frac{-1}{2 \pi i} \sum_{n \neq 0} \frac{\chi(n)}{n} \cdot \sum_{a} \chi(a) e^{2 \pi i a / N}
$$

Since $\chi(-1)=-1$, the summands $\chi(n) / n$ for $\pm n$ are identical, rather than cancelling, so

$$
\sum_{a \bmod N} \chi(a) \cdot\left(\frac{a}{N}-\frac{1}{2}\right)=\frac{-1}{\pi i} \cdot L(1, \chi) \cdot \sum_{a} \chi(a) e^{2 \pi i a / N}
$$

and

$$
L(1, \chi)=\frac{-\pi i}{\sum_{a} \chi(a) e^{2 \pi i a / N}} \sum_{a \bmod N} \chi(a) \cdot\left(\frac{a}{N}-\frac{1}{2}\right)
$$

Thus,

$$
\frac{\pi \cdot h(\mathfrak{o})}{\left|\mathfrak{o}^{\times}\right| \cdot \operatorname{co-area}(\mathfrak{o})}=\frac{-\pi i}{\sum_{a} \chi(a) e^{2 \pi i a / N}} \sum_{a \bmod N}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a)
$$

and, for complex quadratic fields,

$$
h(\mathfrak{o})=\frac{-i \cdot\left|\mathfrak{o}^{\times}\right| \cdot \operatorname{co-area}(\mathfrak{o})}{\sum_{a} \chi(a) e^{2 \pi i a / N}} \sum_{a \bmod N}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a)
$$

Claim:

$$
\left|\frac{\operatorname{co-area}(\mathfrak{o})}{\sum_{a} \chi(a) e^{2 \pi i a / N}}\right|=\frac{1}{2}
$$

Proof: For $-D=1 \bmod 4, \mathfrak{o}=\mathbb{Z}\left[\frac{1+\sqrt{-D}}{2}\right]$, and the co-area of \mathfrak{o} is $\operatorname{det}\left(\begin{array}{cc}\operatorname{Re}(1) & \operatorname{Im}(1) \\ \operatorname{Re}\left(\frac{1+\sqrt{-D}}{2}\right) & \operatorname{Im}\left(\frac{1+\sqrt{-D}}{2}\right)\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}1 & 0 \\ \frac{1}{2} & \frac{\sqrt{D}}{2}\end{array}\right)=\frac{\sqrt{D}}{2}$

For $-D=2,3 \bmod 4, \mathfrak{o}=\mathbb{Z}[\sqrt{-D}]$, and the co-area of \mathfrak{o} is

$$
\operatorname{det}\left(\begin{array}{cc}
\operatorname{Re}(1) & \operatorname{Im}(1) \\
\operatorname{Re}(\sqrt{-D}) & \operatorname{Im}(\sqrt{-D})
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{D}
\end{array}\right)=\sqrt{D}
$$

These conditions mod 4 also determine whether the conductor N is D, or $4 D$, and in all cases

$$
\operatorname{co-area}(\mathfrak{o})^{2}=\frac{1}{4} \cdot N \quad \quad \text { (in a naive normalization) }
$$

(Recall the) Claim: The Gauss sum for a character of conductor N has absolute value \sqrt{N}.

Proof: Starting the computation in the obvious fashion, writing $\psi(a)=e^{2 \pi i a / N}$. Let Σ^{\prime} denote sum over $(\mathbb{Z} / N)^{\times}$, and $\Sigma^{\prime \prime}$ denote sum over $\mathbb{Z} / N-(\mathbb{Z} / N)^{\times}$.

$$
\left|\sum_{a \bmod N} \chi(a) \psi(a)\right|^{2}=\sum_{a, b}^{\prime} \chi(a) \psi(a) \bar{\chi}(b) \psi(-b)
$$

Replacing a by $a b$, this becomes

$$
\sum_{a, b}^{\prime} \chi(a) \psi((a-1) \cdot b)
$$

We claim that, because χ has conductor N (and not smaller!)

$$
\sum_{a}^{\prime} \chi(a) \psi((a-1) \cdot b)=0 \quad(\text { for } \operatorname{gcd}(b, N)>1)
$$

To see this, let p be a prime dividing $\operatorname{gcd}(b, N)$. That N is the conductor of χ is to say that χ is primitive $\bmod N$, meaning that χ does not factor through any quotient $\mathbb{Z} /(N / p)$. That is, there is some $\eta=1 \bmod N / p$ such that $\chi(\eta) \neq 1$.

Since $p \mid b$, and $\eta=1 \bmod N / p$,

$$
(a \eta-1) \cdot b=(a-1) b+a(\eta-1) b=(a-1) b \bmod N
$$

Thus, replacing a by ηa,

$$
\begin{gathered}
\sum_{a}^{\prime} \chi(a) \psi((a-1) \cdot b)=\sum_{a}^{\prime} \chi(a \eta) \psi((a \eta-1) \cdot b) \\
=\chi(\eta) \sum_{a}^{\prime} \chi(a) \psi((a-1) \cdot b)
\end{gathered}
$$

Thus, the sum over a is 0 . Thus, we can drop the coprimality constraint:

$$
\sum_{a, b}^{\prime} \chi(a) \psi((a-1) \cdot b)=\sum_{a, b} \chi(a) \psi((a-1) \cdot b)
$$

For $a \neq 1$, the inner sum over b is 0 , because the sum of a nontrivial character over a finite group is 0 . For $a=1$ the sum over b gives N.

Thus, the absolute value of the Gauss sum for any character with conductor exactly N is \sqrt{N}.

Returning to the class number formula for complex quadratic fields,

$$
h(\mathfrak{o})=\frac{\varepsilon \cdot\left|\mathfrak{o}^{\times}\right|}{2} \sum_{a \bmod N}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a) \quad(\text { for some }|\varepsilon|=1)
$$

The number of summands can be reduced by a factor of 2 , as follows. Since $\chi(-1)=-1, \chi(N-a)=\chi(-a)=-\chi(a)$. Likewise,

$$
\frac{N-a}{N}-\frac{1}{2}=1-\frac{a}{N}-\frac{1}{2}=-\left(\frac{a}{N}-\frac{1}{2}\right)
$$

Thus, we need only sum up over $a<N / 2$. When $N / 2$ is an integer, N was even, so divisible by 4 , so $\chi(N / 2)=0$. Thus,

$$
h(\mathfrak{o})=\varepsilon \cdot\left|\mathfrak{o}^{\times}\right| \sum_{1 \leq a<N / 2}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a) \quad(\text { for some }|\varepsilon|=1)
$$

Example: $D=3$ gives the Eisenstein integers \mathfrak{o}, which we know to have class number 1 , since the ring is a PID. Here $\left|\mathfrak{o}^{\times}\right|=6$.

$$
\left|\mathfrak{o}^{\times}\right| \sum_{1 \leq a<N / 2}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a)=6\left(\frac{1}{3}-\frac{1}{2}\right) \cdot(+1)=-1
$$

Adjust by $\varepsilon=-1$ to obtain $h(\mathfrak{o})=1$, indeed.
Example: For $D=5$, the conductor is $N=20$ and $\left|\mathfrak{o}^{\times}\right|=2$.

$$
\begin{gathered}
\left|\mathfrak{o}^{\times}\right| \sum_{1 \leq a<N / 2}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a) \\
=2\left(\left(\frac{1}{20}-\frac{1}{2}\right)(+1)+\left(\frac{3}{20}-\frac{1}{2}\right)\binom{-5}{3}_{2}+\left(\frac{7}{20}-\frac{1}{2}\right)\binom{-5}{7}_{2}+\left(\frac{9}{20}-\frac{1}{2}\right)\binom{-5}{9}_{2}\right) \\
=2\left(\left(\frac{1}{20}-\frac{1}{2}\right)(+1)+\left(\frac{3}{20}-\frac{1}{2}\right)(+1)+\left(\frac{7}{20}-\frac{1}{2}\right)(+1)+\left(\frac{9}{20}-\frac{1}{2}\right)(+1)\right) \\
=2\left(\frac{1}{20}+\frac{3}{20}+\frac{7}{20}+\frac{9}{20}-2\right)=-2
\end{gathered}
$$

Adjust by $\varepsilon=-1$ to obtain $h(\mathfrak{o})=2$. This is not surprising, given

$$
2 \cdot 3=(1+\sqrt{-5}) \cdot(1-\sqrt{-5})
$$

