Introducing Dedekind zeta function of number fields
Proposition: For $\alpha \neq 0$ in the integral closure \mathfrak{O} of \mathbb{Z} in a number field K, the Galois norm and ideal norm are essentially the same:

$$
\left|N_{\mathbb{Q}}^{K}(\alpha)\right|=N(\alpha \mathfrak{O})
$$

with ideal norm $N(\mathfrak{A})=\# \mathfrak{O} / \mathfrak{A}$ for ideals \mathfrak{A} in \mathfrak{O}. [Last time.]
Now, at least for a little while, k is a finite extension of \mathbb{Q}.

Dedekind zeta functions:

$$
\zeta_{k}(s)=\sum_{0 \neq \mathfrak{a} \subset \mathfrak{o}} \frac{1}{N \mathfrak{a}^{s}}
$$

Granting convergence, the Dedekind property suggests the Euler product

$$
\zeta_{k}(s)=\sum_{0 \neq \mathfrak{a} \subset \mathfrak{o}} \frac{1}{N \mathfrak{a}^{s}}=\prod_{\mathfrak{p} \text { prime in } \mathfrak{o}} \frac{1}{1-N \mathfrak{p}^{-s}}
$$

Understanding splitting/factorization of primes in extensions of \mathbb{Z} or of $\mathbb{F}_{q}[x]$ gives

Proposition: The Euler product expression for $\zeta_{k}(s)$ is absolutely convergent for $\operatorname{Re}(s)>1$. [Last time.]

Remark: The proof used the estimate

$$
\left|\zeta_{k}(s)\right| \leq \zeta_{\mathbb{Q}}(\sigma)^{[k: \mathbb{Q}]} \quad(\sigma=\operatorname{Re}(s)>1)
$$

This is a bad estimate. It suggests that the meromorphically continued $\zeta_{k}(s)$ has a pole of order $[k: \mathbb{Q}]$ at $s=1$. In reality, this pole is of order 1 , but this is non-trivial to prove. It is related to finiteness of class number $h(\mathfrak{o})$ (order of ideal class group), and Dirichlet's Units Theorem (the units group \mathfrak{o}^{\times}is as large as possible).

Thus, the expected sum over principal ideals

$$
Z_{[\mathfrak{o}]}(s)=\sum_{0 \neq \alpha \in \mathfrak{o} / \mathfrak{o}^{\times}} \frac{1}{N(\alpha \mathfrak{o})^{s}}=\sum_{0 \neq \alpha \in \mathfrak{o} / \mathfrak{o}^{\times}} \frac{1}{\left|N_{\mathbb{Q}}^{k}(\alpha)\right|^{s}}
$$

is only a partial zeta function, because it is only part of $\zeta_{k}(s)$. For any ideal class [b], the corresponding partial zeta function is

$$
Z_{[\mathfrak{b}]}(s)=\sum_{0 \neq \mathfrak{a} \subset \mathfrak{o}, \mathfrak{a} \in[\mathfrak{b}]} \frac{1}{N \mathfrak{a}^{s}}
$$

and

$$
\zeta_{k}(s)=\sum_{\text {classes }[\mathfrak{b}]} Z_{[\mathfrak{b}]}(s)
$$

The partial zetas can be rewritten as sums over field elements, as follows. Given ideal class $[\mathfrak{b}]$, to say $\mathfrak{a} \in[\mathfrak{b}]$ is to say $\mathfrak{a}=\alpha \cdot \mathfrak{b}$ for some $\alpha \in k^{\times}$. That $\mathfrak{a} \subset \mathfrak{o}$ is $\alpha \mathfrak{b} \subset \mathfrak{o}$, or $\alpha \in \mathfrak{b}^{-1}$.

Also, $N(\alpha \mathfrak{b})=\left|N_{\mathbb{Q}}^{k}(\alpha)\right| \cdot N \mathfrak{b}$, so the subsum over ideals $[\mathfrak{b}]$ is

$$
Z_{[\mathfrak{b}]}(s)=\sum_{0 \neq \alpha \in \mathfrak{b}^{-1} / \mathfrak{o}^{\times}} \frac{1}{\left(\left|N_{\mathbb{Q}}^{k} \alpha\right| \cdot N \mathfrak{b}\right)^{s}}=\frac{1}{N \mathfrak{b}_{\substack{s}} \sum_{\substack{ \\\mathfrak{b}^{-1} / \mathfrak{o}^{\times}}} \frac{1}{\left|N_{\mathbb{Q}}^{k} \alpha\right|^{s}}, ~}
$$

The units group \mathfrak{o}^{\times}is finite for complex quadratic fields $k=$ $\mathbb{Q}(\sqrt{-D})$ for $D>0$ [and only in that case and for $k=\mathbb{Q}$ itself, by Dirichlet's Units Theorem, below...]. With $\left|\mathfrak{o}^{\times}\right|<\infty$,

$$
Z_{[\mathfrak{b}]}(s)=\frac{1}{N \mathfrak{b}^{s}} \frac{1}{\left|\mathfrak{o}^{\times}\right|} \sum_{0 \neq \alpha \in \mathfrak{b}^{-1}} \frac{1}{\left|N_{\mathbb{Q}}^{k} \alpha\right|^{s}}
$$

We will obtain a formula for the class number $h(\mathfrak{o})$ of \mathfrak{o} for complex quadratic fields. In particular, this proves finiteness in that case.

For $k=\mathbb{Q}(\sqrt{-D})$ for $D>0$, the ring of algebraic integers \mathfrak{o} is either $\mathbb{Z}[\sqrt{-D}]$ or $\mathbb{Z}\left[\frac{1+\sqrt{-D}}{2}\right]$, depending whether $-D=$ $2,3 \bmod 4$, or $-D=1 \bmod 4$.

More to the point, qualitatively \mathfrak{o} is a free \mathbb{Z}-module of rank 2 , and is a lattice in \mathbb{C}, in the sense that \mathfrak{o} is a discrete subgroup of \mathbb{C}, and $\mathbb{C} / \mathfrak{o}$ is compact.

For any complex quadratic field, the Galois norm is the complex norm squared, because the non-trivial Galois automorphism is the restriction of complex conjugation:

$$
N_{\mathbb{Q}}^{k}(\alpha)=\alpha \cdot \bar{\alpha}=|\alpha|^{2} \quad(\text { for complex quadratic } k)
$$

Thus, in particular, as we know well, in this situation $N_{\mathbb{Q}}^{k}(\alpha)$ is the square of the distance of α from 0 .

Lemma: For a lattice Λ in \mathbb{C}, the associated Epstein zeta function

$$
Z_{\Lambda}(s)=\sum_{0 \neq \lambda \in \Lambda} \frac{1}{|\lambda|^{2 s}}
$$

has a meromorphic continuation to $\operatorname{Re}(s)>1-\varepsilon$ for small $\varepsilon>0$, and

$$
Z_{\Lambda}(s)=\frac{\pi}{\text { co-area } \Lambda} \cdot \frac{1}{s-1}+(\text { holomorphic near } s=1)
$$

where co-area is intended to be the natural area of the quotient \mathbb{C} / Λ, or the inverse of the density of Λ. Formulaically,

$$
(\text { co-area }) \Lambda=\left|\operatorname{det}\left(\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right)\right|
$$

for \mathbb{Z}-basis $\lambda_{1}=x_{1}+i y_{1}, \lambda_{2}=x_{2}+i y_{2}$ of Λ. Equivalently,

$$
\begin{aligned}
& \text { (co-area) } \Lambda=\text { area of fundamental parallelogram for } \Lambda \\
& =\text { area of parallelogram with vertices } 0, \lambda_{1}, \lambda_{2}, \lambda_{1}+\lambda_{2}
\end{aligned}
$$

Proof: This is a slight sharpening of a higher-dimensional integral test applied to this situation. Part of the idea is that for some (or any) r_{o}

$$
\begin{gathered}
\sum_{0 \neq \lambda \in \Lambda} \frac{1}{|\lambda|^{2 s}} \sim \int_{|z| \geq r_{o}} \frac{(\text { density of } \Lambda)}{|z|^{2 s}} d x d y \\
=2 \pi \int_{r_{o}}^{\infty} \frac{(\text { density of } \Lambda)}{r^{2 s}} r d r=\frac{2 \pi(\text { density of } \Lambda)}{2(s-1)} \cdot r_{o}^{2-2 s} \\
=\frac{\pi}{\operatorname{co-area} \Lambda} \cdot \frac{1}{s-1} \cdot r_{o}^{2-2 s}=\frac{\pi}{\operatorname{co-area} \Lambda} \cdot \frac{1}{s-1}+(\text { holo near } s=1)
\end{gathered}
$$

This correctly suggests the blow-up at $s=1$ and the dependence on the co-area of Λ.

A small amount of care clarifies this, as a very easy example of a line of reasoning brought to classical perfection by Minkowski circa 1900.

Let $\nu(r)=\#\{0 \neq \lambda \in \Lambda:|\lambda| \leq r\}$ be the number of lattice points inside a circle of radius r.

Claim:

$$
\nu(r)=\frac{\pi r^{2}}{\operatorname{co-area} \Lambda}+O(r)
$$

where $O(r)$ denotes a function bounded by some constant multiple of r as $r \rightarrow \infty$.

Proof: Let F be any fundamental parallelogram for Λ with one vertex at 0 . Let d be the diameter of F. Let B_{r} be the ball in \mathbb{C} of radius r centered at 0 .

For $|\lambda| \leq r, \lambda+F \subset B_{r+d}$, so the number of lattice points inside B_{r} is bounded by the number of (disjoint!) copies of F inside B_{r+d}. Comparing areas,

$$
\nu(r) \leq \frac{\text { area } B_{r+d}}{\text { area } F}=\frac{\pi(r+d)^{2}}{\text { area } F}=\frac{\pi(r+d)^{2}}{\text { co-area } \Lambda}
$$

On the other hand, for $\lambda+F \subset B_{r}$, certainly $\lambda \in B_{r}$. The smaller B_{r-d} is entirely covered by $\lambda+F$'s fitting inside B_{r}, so

$$
\nu(r) \geq \frac{\text { area } B_{r-d}}{\operatorname{area} F}=\frac{\pi(r-d)^{2}}{\text { co-area } \Lambda}
$$

Together,

$$
\frac{\pi(r-d)^{2}}{\text { co-area } \Lambda} \leq \nu(r) \leq \frac{\pi(r+d)^{2}}{\text { co-area } \Lambda}
$$

which proves the claim that $\nu(r)=\pi r^{2} /$ co-area $(\Lambda)+O(r)$.
Using Riemann-Stieljes integrals and integration by parts,

$$
\sum_{0 \neq \lambda \in \Lambda} \frac{1}{|\lambda|^{2 s}}=\int_{r_{o}}^{\infty} \frac{1}{r^{2 s}} d \nu(r)=2 s \int_{r_{o}}^{\infty} \nu(r) \frac{d r}{r^{2 s+1}}
$$

And

$$
2 s \int_{r_{o}}^{\infty} \nu(r) \frac{d r}{r^{2 s+1}}=2 s \int_{r_{o}}^{\infty} \frac{\pi r^{2}}{\operatorname{co-area} \Lambda} \frac{d r}{r^{2 s+1}}+2 s \int_{r_{o}}^{\infty} O(r) \frac{d r}{r^{2 s+1}}
$$

The second summand is holomorphic for $\operatorname{Re}(2 s)>1$, and the first is

$$
2 s \frac{\pi}{\text { co-area } \Lambda} \cdot \int_{r_{o}}^{\infty} \frac{d r}{r^{2 s-1}}=\frac{s \pi}{\text { co-area } \Lambda} \cdot \frac{1}{s-1}
$$

The residue at $s=1$ is $\pi / \operatorname{co-area}(\Lambda)$.
That is, again, the Epstein zeta function $Z_{\Lambda}(s)$ attached to a lattice Λ is meromorphic on $\operatorname{Re}(s)>\frac{1}{2}$, with simple pole at $s=1$ with residue $\pi /$ co-area (Λ).

Corollary: For complex quadratic k, assuming $h(\mathfrak{o})<\infty$,

$$
\zeta_{k}(s)=\sum_{[\mathfrak{b}]} \sum_{\mathfrak{a} \sim \mathfrak{b}} \frac{1}{N \mathfrak{a}^{s}} \sim \frac{\pi \cdot h(\mathfrak{o})}{\left|\mathfrak{o}^{\times}\right| \cdot \operatorname{co}-\operatorname{area}(\mathfrak{o})}+(\text { holo at } s=1)
$$

Proof: As observed earlier,

$$
\zeta_{k}(s)=\sum_{[\mathfrak{b}]} \frac{1}{N \mathfrak{b}^{s}} \frac{1}{\left|\mathfrak{o}^{\times}\right|} \sum_{0 \neq \alpha \in \mathfrak{b}^{-1}} \frac{1}{N \alpha^{s}}=\sum_{[\mathfrak{b}]} \frac{1}{N \mathfrak{b}^{s}} \cdot Z_{\mathfrak{b}-1}(s)
$$

By the lemma, this will have residue

$$
\operatorname{Res}_{s=1} \zeta_{k}(s)=\sum_{[\mathfrak{b}]} \frac{1}{N \mathfrak{b}} \cdot \frac{\pi}{\left|\mathfrak{o}^{\times}\right| \cdot \text { co-area } \mathfrak{b}^{-1}}
$$

The co-area of \mathfrak{b}^{-1} is determined as follows. Observe that for an ideal \mathfrak{a}

$$
N \mathfrak{a}=[\mathfrak{o}: \mathfrak{a}]=\frac{\text { area } \mathbb{C} / \mathfrak{a}}{\operatorname{area} \mathbb{C} / \mathfrak{o}}=\frac{\text { co-area } \mathfrak{a}}{\text { co-area } \mathfrak{o}}
$$

By multiplicativity, the co-area of \mathfrak{b}^{-1} is $N\left(\mathfrak{b}^{-1}\right)=(N \mathfrak{b})^{-1}$. That is, the $\mathfrak{b}^{\text {th }}$ summand in the residue does not depend on \mathfrak{b}, and we have the assertion.

Corollary With $\chi(p)=(-D / p)_{2}$,

$$
\frac{\pi \cdot h(\mathfrak{o})}{\left|\mathfrak{o}^{\times}\right| \cdot \text { co-area } \mathfrak{o}}=L(1, \chi)
$$

Proof: Recall (!?!) the factorization

$$
\zeta_{k}(s)=\zeta_{\mathbb{Q}}(s) \cdot L(s, \chi)
$$

Since $\zeta(s)=\zeta_{\mathbb{Q}}(s)$ has residue 1 at $s=1$, the value $L(1, \chi)$ is the residue of $\zeta_{k}(s)$ at $s=1$.

Remark: For complex quadratic k, all the units are roots of unity, and the number of roots of unity is often denoted w. Thus, rewriting,

$$
\frac{\pi \cdot h}{w \cdot \operatorname{coarea}(\mathfrak{o})}=L(1, \chi)
$$

In particular, not only is $L(1, \chi) \neq 0$, it is positive.

Further, for complex quadratic k, the special value $L(1, \chi)$ has a finite, closed-form expression. Let N be the conductor of χ.

From the Fourier expansion of the sawtooth function

$$
\begin{gathered}
x-\frac{1}{2}=\frac{-1}{2 \pi i} \sum_{n \neq 0} \frac{e^{2 \pi i n x}}{n} \\
\sum_{a \bmod N}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a)=\frac{-1}{2 \pi i} \sum_{n \neq 0} \frac{1}{n} \sum_{a} \chi(a) e^{2 \pi i n a / N} \\
=\frac{-1}{2 \pi i} \sum_{n \neq 0} \frac{\chi(n)}{n} \cdot \sum_{a} \chi(a) e^{2 \pi i a / N}
\end{gathered}
$$

by replacing a by $a n^{-1} \bmod N$. Since $\chi(-1)=-1(!!!)$

$$
\sum_{a \bmod N}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a)=\frac{-1}{\pi i} \cdot L(1, \chi) \cdot \sum_{a} \chi(a) e^{2 \pi i a / N}
$$

Thus,

$$
L(1, \chi)=\frac{-\pi i}{\sum_{a} \chi(a) e^{2 \pi i a / N}} \sum_{a \bmod N}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a)
$$

Thus,

$$
\frac{\pi \cdot h(\mathfrak{o})}{w \cdot \operatorname{coarea}(\mathfrak{o})}=\frac{-\pi i}{\sum_{a} \chi(a) e^{2 \pi i a / N}} \sum_{a \bmod N}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a)
$$

and

$$
h(\mathfrak{o})=\frac{-i w \cdot \operatorname{coarea}(\mathfrak{o})}{\sum_{a} \chi(a) e^{2 \pi i a / N}} \sum_{a \bmod N}\left(\frac{a}{N}-\frac{1}{2}\right) \cdot \chi(a)
$$

Again, this is for complex quadratic fields.

