Introducing Dedekind zeta function of number fields

Proposition: For $\alpha \neq 0$ in the integral closure \mathfrak{O} of \mathbb{Z} in a number field K, the Galois norm and ideal norm are essentially the same:

$$|N_{\mathbb{Q}}^{K}(\alpha)| = N(\alpha \mathfrak{O})$$

with *ideal* norm $N(\mathfrak{A}) = \#\mathfrak{O}/\mathfrak{A}$ for ideals \mathfrak{A} in \mathfrak{O} . [Last time.]

Now, at least for a little while, k is a finite extension of \mathbb{Q} .

Dedekind zeta functions:

$$\zeta_k(s) = \sum_{0 \neq \mathfrak{a} \subset \mathfrak{o}} \frac{1}{N \mathfrak{a}^s}$$

Granting convergence, the Dedekind property suggests the Euler product

$$\zeta_k(s) = \sum_{0 \neq \mathfrak{a} \subset \mathfrak{o}} \frac{1}{N \mathfrak{a}^s} = \prod_{\mathfrak{p} \text{ prime in } \mathfrak{o}} \frac{1}{1 - N \mathfrak{p}^{-s}}$$

Understanding splitting/factorization of primes in extensions of \mathbb{Z} or of $\mathbb{F}_q[x]$ gives

Proposition: The Euler product expression for $\zeta_k(s)$ is absolutely convergent for $\operatorname{Re}(s) > 1$. [Last time.]

Remark: The proof used the estimate

$$|\zeta_k(s)| \leq \zeta_{\mathbb{Q}}(\sigma)^{[k:\mathbb{Q}]}$$
 $(\sigma = \operatorname{Re}(s) > 1)$

This is a bad estimate. It suggests that the meromorphically continued $\zeta_k(s)$ has a pole of order $[k : \mathbb{Q}]$ at s = 1. In reality, this pole is of order 1, but this is non-trivial to prove. It is related to *finiteness of class number* $h(\mathfrak{o})$ (order of ideal class group), and *Dirichlet's Units Theorem* (the units group \mathfrak{o}^{\times} is as large as possible). Thus, the expected sum over principal ideals

$$Z_{[\mathfrak{o}]}(s) = \sum_{0 \neq \alpha \in \mathfrak{o}/\mathfrak{o}^{\times}} \frac{1}{N(\alpha \mathfrak{o})^s} = \sum_{0 \neq \alpha \in \mathfrak{o}/\mathfrak{o}^{\times}} \frac{1}{|N_{\mathbb{Q}}^k(\alpha)|^s}$$

is only a *partial zeta function*, because it is only *part* of $\zeta_k(s)$. For any ideal class [b], the corresponding partial zeta function is

$$Z_{[\mathfrak{b}]}(s) = \sum_{0 \neq \mathfrak{a} \subset \mathfrak{o}, \ \mathfrak{a} \in [\mathfrak{b}]} \frac{1}{N \mathfrak{a}^s}$$

and

$$\zeta_k(s) = \sum_{\text{classes } [\mathfrak{b}]} Z_{[\mathfrak{b}]}(s)$$

The partial zetas can be rewritten as sums over field elements, as follows. Given ideal class $[\mathfrak{b}]$, to say $\mathfrak{a} \in [\mathfrak{b}]$ is to say $\mathfrak{a} = \alpha \cdot \mathfrak{b}$ for some $\alpha \in k^{\times}$. That $\mathfrak{a} \subset \mathfrak{o}$ is $\alpha \mathfrak{b} \subset \mathfrak{o}$, or $\alpha \in \mathfrak{b}^{-1}$.

Also, $N(\alpha \mathfrak{b}) = |N_{\mathbb{Q}}^k(\alpha)| \cdot N\mathfrak{b}$, so the subsum over ideals $[\mathfrak{b}]$ is

$$Z_{[\mathfrak{b}]}(s) = \sum_{0 \neq \alpha \in \mathfrak{b}^{-1}/\mathfrak{o}^{\times}} \frac{1}{(|N^k_{\mathbb{Q}}\alpha| \cdot N\mathfrak{b})^s} = \frac{1}{N\mathfrak{b}^s} \sum_{0 \neq \alpha \in \mathfrak{b}^{-1}/\mathfrak{o}^{\times}} \frac{1}{|N^k_{\mathbb{Q}}\alpha|^s}$$

The units group \mathfrak{o}^{\times} is finite for *complex quadratic fields* $k = \mathbb{Q}(\sqrt{-D})$ for D > 0 [and *only* in that case and for $k = \mathbb{Q}$ itself, by Dirichlet's Units Theorem, below...]. With $|\mathfrak{o}^{\times}| < \infty$,

$$Z_{[\mathfrak{b}]}(s) = \frac{1}{N\mathfrak{b}^s} \frac{1}{|\mathfrak{o}^{\times}|} \sum_{0 \neq \alpha \in \mathfrak{b}^{-1}} \frac{1}{|N_{\mathbb{Q}}^k \alpha|^s}$$

We will obtain a formula for the class number $h(\mathfrak{o})$ of \mathfrak{o} for complex quadratic fields. In particular, this proves finiteness in that case.

For $k = \mathbb{Q}(\sqrt{-D})$ for D > 0, the ring of algebraic integers **o** is either $\mathbb{Z}[\sqrt{-D}]$ or $\mathbb{Z}[\frac{1+\sqrt{-D}}{2}]$, depending whether $-D = 2, 3 \mod 4$, or $-D = 1 \mod 4$.

More to the point, qualitatively \mathfrak{o} is a free \mathbb{Z} -module of rank 2, and is a *lattice* in \mathbb{C} , in the sense that \mathfrak{o} is a *discrete* subgroup of \mathbb{C} , and \mathbb{C}/\mathfrak{o} is *compact*.

For *any* complex quadratic field, the *Galois* norm is the *complex* norm squared, because the non-trivial Galois automorphism is the restriction of complex conjugation:

 $N_{\mathbb{O}}^k(\alpha) = \alpha \cdot \bar{\alpha} = |\alpha|^2$ (for complex quadratic k)

Thus, in particular, as we know well, in this situation $N^k_{\mathbb{Q}}(\alpha)$ is the square of the distance of α from 0.

Lemma: For a lattice Λ in \mathbb{C} , the associated Epstein zeta function

$$Z_{\Lambda}(s) = \sum_{0 \neq \lambda \in \Lambda} \frac{1}{|\lambda|^{2s}}$$

has a meromorphic continuation to $\operatorname{Re}(s) > 1 - \varepsilon$ for small $\varepsilon > 0$, and

$$Z_{\Lambda}(s) = \frac{\pi}{\text{co-area}\Lambda} \cdot \frac{1}{s-1} + (\text{holomorphic near } s=1)$$

where *co-area* is intended to be the natural area of the quotient \mathbb{C}/Λ , or the inverse of the *density* of Λ . Formulaically,

(co-area)
$$\Lambda = |\det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$$

for \mathbb{Z} -basis $\lambda_1 = x_1 + iy_1$, $\lambda_2 = x_2 + iy_2$ of Λ . Equivalently,

(co-area) Λ = area of fundamental parallelogram for Λ = area of parallelogram with vertices 0, λ_1 , λ_2 , $\lambda_1 + \lambda_2$ *Proof:* This is a slight sharpening of a higher-dimensional *integral* test applied to this situation. Part of the idea is that for some (or any) r_o

$$\begin{split} \sum_{0 \neq \lambda \in \Lambda} \frac{1}{|\lambda|^{2s}} &\sim \int_{|z| \ge r_o} \frac{(\text{density of } \Lambda)}{|z|^{2s}} \, dx \, dy \\ &= 2\pi \int_{r_o}^{\infty} \frac{(\text{density of } \Lambda)}{r^{2s}} \, r \, dr \, = \, \frac{2\pi (\text{density of } \Lambda)}{2(s-1)} \cdot r_o^{2-2s} \\ &= \frac{\pi}{\text{co-area } \Lambda} \cdot \frac{1}{s-1} \cdot r_o^{2-2s} \, = \, \frac{\pi}{\text{co-area } \Lambda} \cdot \frac{1}{s-1} + (\text{holo near } s = 1) \end{split}$$

This correctly suggests the blow-up at s = 1 and the dependence on the co-area of Λ .

A small amount of care clarifies this, as a very easy example of a line of reasoning brought to classical perfection by Minkowski *circa* 1900. Let $\nu(r) = \#\{0 \neq \lambda \in \Lambda : |\lambda| \leq r\}$ be the number of lattice points inside a circle of radius r.

Claim:

$$u(r) = \frac{\pi r^2}{\text{co-area }\Lambda} + O(r)$$

where O(r) denotes a function bounded by some constant multiple of r as $r \to \infty$.

Proof: Let F be any fundamental parallelogram for Λ with one vertex at 0. Let d be the diameter of F. Let B_r be the ball in \mathbb{C} of radius r centered at 0.

For $|\lambda| \leq r$, $\lambda + F \subset B_{r+d}$, so the number of lattice points inside B_r is bounded by the number of (disjoint!) copies of F inside B_{r+d} . Comparing areas,

$$\nu(r) \leq \frac{\operatorname{area} B_{r+d}}{\operatorname{area} F} = \frac{\pi (r+d)^2}{\operatorname{area} F} = \frac{\pi (r+d)^2}{\operatorname{co-area} \Lambda}$$

On the other hand, for $\lambda + F \subset B_r$, certainly $\lambda \in B_r$. The smaller B_{r-d} is entirely covered by $\lambda + F$'s fitting inside B_r , so

$$\nu(r) \geq \frac{\text{area } B_{r-d}}{\text{area } F} = \frac{\pi (r-d)^2}{\text{co-area } \Lambda}$$

Together,

$$\frac{\pi (r-d)^2}{\text{co-area }\Lambda} \leq \nu(r) \leq \frac{\pi (r+d)^2}{\text{co-area }\Lambda}$$

which proves the claim that $\nu(r) = \pi r^2 / \text{co-area}(\Lambda) + O(r)$. ///

Using Riemann-Stieljes integrals and integration by parts,

$$\sum_{0 \neq \lambda \in \Lambda} \frac{1}{|\lambda|^{2s}} = \int_{r_o}^{\infty} \frac{1}{r^{2s}} \, d\nu(r) = 2s \int_{r_o}^{\infty} \nu(r) \, \frac{dr}{r^{2s+1}}$$

///

And

$$2s \int_{r_o}^{\infty} \nu(r) \frac{dr}{r^{2s+1}} = 2s \int_{r_o}^{\infty} \frac{\pi r^2}{\text{co-area } \Lambda} \frac{dr}{r^{2s+1}} + 2s \int_{r_o}^{\infty} O(r) \frac{dr}{r^{2s+1}}$$

The second summand is holomorphic for $\operatorname{Re}(2s) > 1$, and the first is

$$2s \frac{\pi}{\text{co-area } \Lambda} \cdot \int_{r_o}^{\infty} \frac{dr}{r^{2s-1}} = \frac{s\pi}{\text{co-area } \Lambda} \cdot \frac{1}{s-1}$$

The residue at s = 1 is $\pi/\text{co-area}(\Lambda)$.

That is, again, the Epstein zeta function $Z_{\Lambda}(s)$ attached to a lattice Λ is meromorphic on $\operatorname{Re}(s) > \frac{1}{2}$, with simple pole at s = 1 with residue $\pi/\operatorname{co-area}(\Lambda)$.

Corollary: For complex quadratic k, assuming $h(\mathfrak{o}) < \infty$,

$$\zeta_k(s) = \sum_{[\mathfrak{b}]} \sum_{\mathfrak{a} \sim \mathfrak{b}} \frac{1}{N\mathfrak{a}^s} \sim \frac{\pi \cdot h(\mathfrak{o})}{|\mathfrak{o}^{\times}| \cdot \operatorname{co-area}(\mathfrak{o})} + (\text{holo at } s = 1)$$

Proof: As observed earlier,

$$\zeta_k(s) = \sum_{[\mathfrak{b}]} \frac{1}{N\mathfrak{b}^s} \frac{1}{|\mathfrak{o}^{\times}|} \sum_{0 \neq \alpha \in \mathfrak{b}^{-1}} \frac{1}{N\alpha^s} = \sum_{[\mathfrak{b}]} \frac{1}{N\mathfrak{b}^s} \cdot Z_{\mathfrak{b}^{-1}}(s)$$

By the lemma, this will have residue

$$\operatorname{Res}_{s=1}\zeta_k(s) = \sum_{[\mathfrak{b}]} \frac{1}{N\mathfrak{b}} \cdot \frac{\pi}{|\mathfrak{o}^{\times}| \cdot \operatorname{co-area} \mathfrak{b}^{-1}}$$

The co-area of \mathfrak{b}^{-1} is determined as follows. Observe that for an ideal \mathfrak{a}

$$N\mathfrak{a} = [\mathfrak{o}:\mathfrak{a}] = \frac{\operatorname{area} \mathbb{C}/\mathfrak{a}}{\operatorname{area} \mathbb{C}/\mathfrak{o}} = \frac{\operatorname{co-area} \mathfrak{a}}{\operatorname{co-area} \mathfrak{o}}$$

By multiplicativity, the co-area of \mathfrak{b}^{-1} is $N(\mathfrak{b}^{-1}) = (N\mathfrak{b})^{-1}$. That is, the \mathfrak{b}^{th} summand in the residue does not depend on \mathfrak{b} , and we have the assertion. ///

Corollary With $\chi(p) = (-D/p)_2$,

$$\frac{\pi \cdot h(\mathfrak{o})}{|\mathfrak{o}^{\times}| \cdot \text{co-area } \mathfrak{o}} = L(1, \chi)$$

Proof: Recall (!?!) the factorization

$$\zeta_k(s) = \zeta_{\mathbb{Q}}(s) \cdot L(s, \chi)$$

Since $\zeta(s) = \zeta_{\mathbb{Q}}(s)$ has residue 1 at s = 1, the value $L(1, \chi)$ is the residue of $\zeta_k(s)$ at s = 1.

Remark: For complex quadratic k, all the units are roots of unity, and the number of roots of unity is often denoted w. Thus, rewriting,

$$\frac{\pi \cdot h}{w \cdot \text{coarea}(\mathbf{o})} = L(1, \chi)$$

In particular, not only is $L(1, \chi) \neq 0$, it is *positive*.

Further, for complex quadratic k, the special value $L(1,\chi)$ has a finite, closed-form expression. Let N be the conductor of χ .

From the Fourier expansion of the sawtooth function

$$\begin{aligned} x - \frac{1}{2} &= \frac{-1}{2\pi i} \sum_{n \neq 0} \frac{e^{2\pi i n x}}{n} \\ \sum_{a \bmod N} \left(\frac{a}{N} - \frac{1}{2}\right) \cdot \chi(a) &= \frac{-1}{2\pi i} \sum_{n \neq 0} \frac{1}{n} \sum_{a} \chi(a) e^{2\pi i n a/N} \\ &= \frac{-1}{2\pi i} \sum_{n \neq 0} \frac{\chi(n)}{n} \cdot \sum_{a} \chi(a) e^{2\pi i a/N} \end{aligned}$$

by replacing a by $an^{-1} \mod N$. Since $\chi(-1) = -1$ (!!!)

$$\sum_{a \mod N} \left(\frac{a}{N} - \frac{1}{2}\right) \cdot \chi(a) = \frac{-1}{\pi i} \cdot L(1,\chi) \cdot \sum_{a} \chi(a) e^{2\pi i a/N}$$

Thus,

$$L(1,\chi) = \frac{-\pi i}{\sum_{a} \chi(a) e^{2\pi i a/N}} \sum_{a \mod N} \left(\frac{a}{N} - \frac{1}{2}\right) \cdot \chi(a)$$

Thus,

$$\frac{\pi \cdot h(\mathfrak{o})}{w \cdot \operatorname{coarea}(\mathfrak{o})} = \frac{-\pi i}{\sum_{a} \chi(a) e^{2\pi i a/N}} \sum_{a \mod N} \left(\frac{a}{N} - \frac{1}{2}\right) \cdot \chi(a)$$

and

$$h(\mathbf{o}) = \frac{-iw \cdot \operatorname{coarea}(\mathbf{o})}{\sum_{a} \chi(a) e^{2\pi i a/N}} \sum_{a \mod N} \left(\frac{a}{N} - \frac{1}{2}\right) \cdot \chi(a)$$

Again, this is for *complex quadratic* fields.