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Introducing Dedekind zeta function of number fields

Proposition: For α 6= 0 in the integral closure O of Z in a
number field K, the Galois norm and ideal norm are essentially
the same:

|NK
Q (α)| = N(αO)

with ideal norm N(A) = #O/A for ideals A in O. [Last time.]

Now, at least for a little while, k is a finite extension of Q.

Dedekind zeta functions:

ζk(s) =
∑

06=a⊂o

1

Nas

Granting convergence, the Dedekind property suggests the Euler
product

ζk(s) =
∑

06=a⊂o

1

Nas
=

∏
p prime in o

1

1−Np−s
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Understanding splitting/factorization of primes in extensions of Z
or of Fq[x] gives

Proposition: The Euler product expression for ζk(s) is
absolutely convergent for Re(s) > 1. [Last time.]

Remark: The proof used the estimate

|ζk(s)| ≤ ζQ(σ)[k:Q] (σ = Re(s) > 1)

This is a bad estimate. It suggests that the meromorphically
continued ζk(s) has a pole of order [k : Q] at s = 1. In reality,
this pole is of order 1, but this is non-trivial to prove. It is related
to finiteness of class number h(o) (order of ideal class group),
and Dirichlet’s Units Theorem (the units group o× is as large as
possible).
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Thus, the expected sum over principal ideals

Z[o](s) =
∑

06=α ∈ o/o×

1

N(αo)s
=

∑
06=α ∈ o/o×

1

|Nk
Q(α)|s

is only a partial zeta function, because it is only part of ζk(s). For
any ideal class [b], the corresponding partial zeta function is

Z[b](s) =
∑

06=a⊂o, a∈[b]

1

Nas

and
ζk(s) =

∑
classes [b]

Z[b](s)
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The partial zetas can be rewritten as sums over field elements, as
follows. Given ideal class [b], to say a ∈ [b] is to say a = α · b for
some α ∈ k×. That a ⊂ o is αb ⊂ o, or α ∈ b−1.

Also, N(αb) = |Nk
Q(α)| ·Nb, so the subsum over ideals [b] is

Z[b](s) =
∑

06=α ∈ b−1/o×

1

(|Nk
Qα| ·Nb)s

=
1

Nbs

∑
06=α ∈ b−1/o×

1

|Nk
Qα|s

The units group o× is finite for complex quadratic fields k =
Q(
√
−D) for D > 0 [and only in that case and for k = Q itself,

by Dirichlet’s Units Theorem, below...]. With |o×| <∞,

Z[b](s) =
1

Nbs
1

|o×|
∑

0 6=α ∈ b−1

1

|Nk
Qα|s

We will obtain a formula for the class number h(o) of o for
complex quadratic fields. In particular, this proves finiteness in
that case.
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For k = Q(
√
−D) for D > 0, the ring of algebraic integers

o is either Z[
√
−D] or Z[ 1+

√
−D

2 ], depending whether −D =
2, 3 mod 4, or −D = 1 mod 4.

More to the point, qualitatively o is a free Z-module of rank 2, and
is a lattice in C, in the sense that o is a discrete subgroup of C,
and C/o is compact.

For any complex quadratic field, the Galois norm is the complex
norm squared, because the non-trivial Galois automorphism is the
restriction of complex conjugation:

Nk
Q(α) = α · ᾱ = |α|2 (for complex quadratic k)

Thus, in particular, as we know well, in this situation Nk
Q(α) is

the square of the distance of α from 0.
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Lemma: For a lattice Λ in C, the associated Epstein zeta
function

ZΛ(s) =
∑

06=λ∈Λ

1

|λ|2s

has a meromorphic continuation to Re(s) > 1 − ε for small ε > 0,
and

ZΛ(s) =
π

co-area Λ
· 1

s− 1
+ (holomorphic near s = 1)

where co-area is intended to be the natural area of the quotient
C/Λ, or the inverse of the density of Λ. Formulaically,

(co-area) Λ = |det

(
x1 y1

x2 y2

)
|

for Z-basis λ1 = x1 + iy1, λ2 = x2 + iy2 of Λ. Equivalently,

(co-area) Λ = area of fundamental parallelogram for Λ

= area of parallelogram with vertices 0, λ1, λ2, λ1 + λ2
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Proof: This is a slight sharpening of a higher-dimensional integral
test applied to this situation. Part of the idea is that for some (or
any) ro

∑
0 6=λ∈Λ

1

|λ|2s
∼

∫
|z|≥ro

(density of Λ)

|z|2s
dx dy

= 2π

∫ ∞
ro

(density of Λ)

r2s
r dr =

2π(density of Λ)

2(s− 1)
· r2−2s
o

=
π

co-area Λ
· 1

s− 1
·r2−2s
o =

π

co-area Λ
· 1

s− 1
+ (holo near s = 1)

This correctly suggests the blow-up at s = 1 and the dependence
on the co-area of Λ.

A small amount of care clarifies this, as a very easy example of
a line of reasoning brought to classical perfection by Minkowski
circa 1900.
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Let ν(r) = #{0 6= λ ∈ Λ : |λ| ≤ r} be the number of lattice points
inside a circle of radius r.

Claim:

ν(r) =
πr2

co-area Λ
+O(r)

where O(r) denotes a function bounded by some constant multiple
of r as r →∞.

Proof: Let F be any fundamental parallelogram for Λ with one
vertex at 0. Let d be the diameter of F . Let Br be the ball in C
of radius r centered at 0.

For |λ| ≤ r, λ + F ⊂ Br+d, so the number of lattice points inside
Br is bounded by the number of (disjoint!) copies of F inside
Br+d. Comparing areas,

ν(r) ≤ area Br+d
area F

=
π(r + d)2

area F
=

π(r + d)2

co-area Λ
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On the other hand, for λ+ F ⊂ Br, certainly λ ∈ Br. The smaller
Br−d is entirely covered by λ+ F ’s fitting inside Br, so

ν(r) ≥ area Br−d
area F

=
π(r − d)2

co-area Λ

Together,
π(r − d)2

co-area Λ
≤ ν(r) ≤ π(r + d)2

co-area Λ

which proves the claim that ν(r) = πr2/co-area(Λ) +O(r). ///

Using Riemann-Stieljes integrals and integration by parts,

∑
06=λ∈Λ

1

|λ|2s
=

∫ ∞
ro

1

r2s
dν(r) = 2s

∫ ∞
ro

ν(r)
dr

r2s+1
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And

2s

∫ ∞
ro

ν(r)
dr

r2s+1
= 2s

∫ ∞
ro

πr2

co-area Λ

dr

r2s+1
+ 2s

∫ ∞
ro

O(r)
dr

r2s+1

The second summand is holomorphic for Re(2s) > 1, and the first
is

2s
π

co-area Λ
·
∫ ∞
ro

dr

r2s−1
=

sπ

co-area Λ
· 1

s− 1

The residue at s = 1 is π/co-area(Λ). ///

That is, again, the Epstein zeta function ZΛ(s) attached to a
lattice Λ is meromorphic on Re(s) > 1

2 , with simple pole at s = 1
with residue π/co-area(Λ).

Corollary: For complex quadratic k, assuming h(o) <∞,

ζk(s) =
∑
[b]

∑
a∼b

1

Nas
∼ π · h(o)

|o×| · co-area(o)
+ (holo at s = 1)
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Proof: As observed earlier,

ζk(s) =
∑
[b]

1

Nbs
1

|o×|
∑

06=α∈b−1

1

Nαs
=
∑
[b]

1

Nbs
· Zb−1(s)

By the lemma, this will have residue

Ress=1ζk(s) =
∑
[b]

1

Nb
· π

|o×| · co-area b−1

The co-area of b−1 is determined as follows. Observe that for an
ideal a

Na = [o : a] =
area C/a
area C/o

=
co-area a

co-area o

By multiplicativity, the co-area of b−1 is N(b−1) = (Nb)−1. That
is, the bth summand in the residue does not depend on b, and we
have the assertion. ///
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Corollary With χ(p) = (−D/p)2,

π · h(o)

|o×| · co-area o
= L(1, χ)

Proof: Recall (!?!) the factorization

ζk(s) = ζQ(s) · L(s, χ)

Since ζ(s) = ζQ(s) has residue 1 at s = 1, the value L(1, χ) is the
residue of ζk(s) at s = 1. ///

Remark: For complex quadratic k, all the units are roots of
unity, and the number of roots of unity is often denoted w. Thus,
rewriting,

π · h
w · coarea(o)

= L(1, χ)

In particular, not only is L(1, χ) 6= 0, it is positive.
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Further, for complex quadratic k, the special value L(1, χ) has a
finite, closed-form expression. Let N be the conductor of χ.

From the Fourier expansion of the sawtooth function

x− 1
2 =

−1

2πi

∑
n 6=0

e2πinx

n

∑
a mod N

( a
N
− 1

2

)
· χ(a) =

−1

2πi

∑
n 6=0

1

n

∑
a

χ(a)e2πina/N

=
−1

2πi

∑
n6=0

χ(n)

n
·
∑
a

χ(a)e2πia/N

by replacing a by an−1 mod N . Since χ(−1) = −1 (!!!)

∑
a mod N

( a
N
− 1

2

)
· χ(a) =

−1

πi
· L(1, χ) ·

∑
a

χ(a)e2πia/N
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Thus,

L(1, χ) =
−πi∑

a χ(a)e2πia/N

∑
a mod N

( a
N
− 1

2

)
· χ(a)

Thus,

π · h(o)

w · coarea(o)
=

−πi∑
a χ(a)e2πia/N

∑
a mod N

( a
N
− 1

2

)
· χ(a)

and

h(o) =
−iw · coarea(o)∑
a χ(a)e2πia/N

∑
a mod N

( a
N
− 1

2

)
· χ(a)

Again, this is for complex quadratic fields. ///


