Garrett 11-16-2011

Introducing Dedekind zeta function of number fields

Proposition: For a # 0 in the integral closure O of Z in a
number field K, the Galois norm and ideal norm are essentially

the same:
ING ()] = N(aD)

with ideal norm N (1) = #9O /2 for ideals 2 in O. [Last time.]
Now, at least for a little while, k is a finite extension of Q.
Dedekind zeta functions:

Grls) = Z Nlas

0#aCo

Granting convergence, the Dedekind property suggests the Euler

product
Gr(s) = D Lo | ] S
S Nas 1— Np—s

0#aCo p prime in o
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Understanding splitting /factorization of primes in extensions of 7Z
or of F,[x] gives

Proposition: The Euler product expression for (x(s) is
absolutely convergent for Re(s) > 1. [Last time.]

Remark: The proof used the estimate

G(s)] < Golo)* Y (0 =Re(s) > 1)

This is a bad estimate. It suggests that the meromorphically
continued (i (s) has a pole of order [k : Q] at s = 1. In reality,
this pole is of order 1, but this is non-trivial to prove. It is related
to finiteness of class number h(o) (order of ideal class group),

and Dirichlet’s Units Theorem (the units group 0* is as large as
possible).
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Thus, the expected sum over principal ideals

1 1
) = 2 Nar 2. TNE@F

0#a € 0/0% 0#a € 0/0%

is only a partial zeta function, because it is only part of (x(s). For
any ideal class [b], the corresponding partial zeta function is

1
Z(s) = D Nm

0#aCo, ac|b]

and

Gels) = > Zy(s)
[b]

classes
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The partial zetas can be rewritten as sums over field elements, as
follows. Given ideal class [b], to say a € [b] is to say a = « - b for
some o € kX. That a Coisab Co,or o € b7 1.

Also, N(ab) = \N@(a)] -+ Nb, so the subsum over ideals [b] is

1 1 1
Z — = —
61(5) 2 (NEal-Nb)* — Nb° 2 [NEals

0#a € b—1 /o O#a € b=1/0X%

The units group 0 is finite for complex quadratic fields k =

Q(v—D) for D > 0 [and only in that case and for k = Q itself,
by Dirichlet’s Units Theorem, below...]. With [0*| < oo,

11 1
7 = Y
01(8) = N ox] = s INGal?

We will obtain a formula for the class number h(o) of o for
complex quadratic fields. In particular, this proves finiteness in
that case.
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For k = Q(v/—D) for D > 0, the ring of algebraic integers
0 is either Z[v/—D] or Z[**4=L], depending whether —D =
2,3 mod 4, or —D = 1 mod 4.

More to the point, qualitatively o is a free Z-module of rank 2, and
is a lattice in C, in the sense that o is a discrete subgroup of C,
and C/o is compact.

For any complex quadratic field, the Galots norm is the complex
norm squared, because the non-trivial Galois automorphism is the
restriction of complex conjugation:

N(S(oz) = a-a = |af? (for complex quadratic k)

Thus, in particular, as we know well, in this situation N@(a) is
the square of the distance of « from 0.
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Lemma: For a lattice A in C, the associated Epstein zeta

function .
ZA(S) - Z |)\‘23
0£ANEA

has a meromorphic continuation to Re(s) > 1 — ¢ for small £ > 0,

and
s 1

Za(s) = + (holomorphic near s = 1)

co-areaA s—1

where co-area is intended to be the natural area of the quotient
C/A, or the inverse of the density of A. Formulaically,

(co-area) A = |det (xl yl) |

T2 Y2

for Z-basis Ay = x1 + 1y1, Ao = x9 + 1Yo of A. Equivalently,

(co-area) A = area of fundamental parallelogram for A

= area of parallelogram with vertices 0, A1, Ao, A1 + Ao
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Proof: This is a slight sharpening of a higher-dimensional integral
test applied to this situation. Part of the idea is that for some (or
any) To

1 (density of A)
Z |A|2S /'ZZ,’,,O |Z|2S X y

0#AEA
o /OO (density of A) -y — 27 (density of A) 22
r r2s 2(s —1)
~ L2 T + (holo nea 1)
— . -r — . near s —
co-area A s—1 ° co-area A s —1

This correctly suggests the blow-up at s = 1 and the dependence
on the co-area of A.

A small amount of care clarifies this, as a very easy example of
a line of reasoning brought to classical perfection by Minkowski
crrea 1900.
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Let v(r) = #{0 # XA € A : |A\| < r} be the number of lattice points
inside a circle of radius r.

Claim: 5

V(T) _ mr

where O(r) denotes a function bounded by some constant multiple
of r as r = o0.

+ O(r)

co-area A

Proof: Let F be any fundamental parallelogram for A with one
vertex at 0. Let d be the diameter of F'. Let B, be the ball in C
of radius r centered at 0.

For [A| < r, A+ F C By44, so the number of lattice points inside
B, is bounded by the number of (disjoint!) copies of F' inside
B,14. Comparing areas,

o(r) < area Bryqg  w(r+d)?  w(r+d)?

area F area F co-area A
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On the other hand, for A + F' C B, certainly A € B,.. The smaller
B, _4 is entirely covered by A + F's fitting inside B,., so

area B,_4 m(r — d)?
> —
v(r) = area F co-area A
Together,
m(r —d)? 7(r +d)?
S S < N7
co-area A v(r) < co-area A
which proves the claim that v(r) = mr?/co-area(A) + O(r). ///

Using Riemann-Stieljes integrals and integration by parts,

1 >~ 1 > dr
Z NE :/T TTSdz/(r) — 23/T v(r) s

0£NEA o o
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And

o° dr 2 dr oC dr
QS/T v(r) r2s+1 2s /ro co-area A r2s+1 +25/T O(r) 72511

o o

The second summand is holomorphic for Re(2s) > 1, and the first
1s

5 7T /OO dr ST 1

S— . f— .

co-area A [, ~r2s—1 co-area A s—1

The residue at s = 1 is m/co-area(A). ///

That is, again, the Epstein zeta function Zj(s) attached to a
lattice A is meromorphic on Re(s) > %, with simple pole at s = 1
with residue m/co-area(A).

Corollary: For complex quadratic k, assuming h(o) < oo,

Cu(s) = Z Z Nlas ~ ™ ho) + (holo at s = 1)
[b]

—~ |0%| - co-area(o)
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Proof: As observed earlier,

11 1 1
Ghls) = ZNBS 0| 2 Now — 2= Np= 2o(8)
[b] 0£ach—1 (6]

By the lemma, this will have residue

1 ™
Ress=10k(s) = % Nb [o%|-co-area b1

The co-area of b—! is determined as follows. Observe that for an
ideal a

area C/a co-area a
Na = [o:a] = ja _

area C/o  co-area o

By multiplicativity, the co-area of b=1 is N(b~1) = (Nb)~!. That
is, the b summand in the residue does not depend on b, and we
have the assertion. ///
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Corollary With x(p) = (—=D/p)o,

7 - h(o)

l0%| - co-area o

= L(17X)

Proof: Recall (1?!) the factorization

Ce(s) = Cals) - L(s, x)

Since ((s) = (g(s) has residue 1 at s = 1, the value L(1, ) is the
residue of (x(s) at s = 1. ///

Remark: For complex quadratic k, all the units are roots of
unity, and the number of roots of unity is often denoted w. Thus,
rewriting,

7T-h

= L(1
w - coarea(o) (1,%)

In particular, not only is L(1,x) # 0, it is positive.
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Further, for complex quadratic k, the special value L(1,y) has a

finite, closed-form expression. Let N be the conductor of y.

From the Fourier expansion of the sawtooth function

- -1 627rina:
YT T o n
n#0
S ()@ = g 3 e
N 2 271 n
a mod N n#0 a
—1 X(n) Tia
= gy 2@
n#0 a

by replacing a by an™! mod N. Since x(—1) = —1 (!!!)

> (-3 xa) = ;—;-L(Lx)-Zx(a)e%m/N
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Thus,
—17r a
L(1l,x) = ~ — 1) . y(a)
so@e 2 (773

Thus,

7 - h(o) a 1

w - Coarea(o) o Z 627TZ(L/N " H%;N N _ 5 (a/>

and

[\DII—‘
<
—~
-
N—

—W - coarea a
ho) = s Yo (.-
X 627TZG/N a mod N

Again, this is for complex quadratic fields.
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