Recap: about Dedekind domains...
Theorem: A Noetherian, integrally closed, integral domain with every non-zero prime ideal maximal, ... has unique factorization: non-zero ideals are uniquely products of prime ideals, and nonzero fractional ideals form a group.

Big Corollary: For Dedekind \mathfrak{o} in field of fractions k, the integral closure \mathfrak{O} in a finite separable extension K / k is Dedekind.

Lemma: $S^{-1} \mathfrak{o}$ is Dedekind. Primes of $S^{-1} \mathfrak{o}$ are $S^{-1} \mathfrak{p}$ for primes \mathfrak{p} of \mathfrak{o} not meeting S. Factorization is

$$
S^{-1}\left(\prod_{\mathfrak{p}} \mathfrak{p}^{e(\mathfrak{p})}\right)=\prod_{\mathfrak{p}: \mathfrak{p} \cap S=\phi}\left(S^{-1} \mathfrak{p}\right)^{e(\mathfrak{p})}
$$

Proposition: Dedekind with finitely-many primes \Rightarrow PID.
Continuing ...

Ramification, residue field extension degrees: e, f, g
Prime \mathfrak{p} in \mathfrak{o} factors in an integral extension as $\mathfrak{p} \mathfrak{O}=\prod_{\mathfrak{P}} \mathfrak{P}^{e(\mathfrak{P} / \mathfrak{p})}$. The exponents $e(\mathfrak{P} / \mathfrak{p})$ are ramification indices. The residue field extensions $\tilde{\kappa}=\mathfrak{O} / \mathfrak{P}$ over $\kappa=\mathfrak{o} / \mathfrak{p}$ have degrees $f(\mathfrak{P} / \mathfrak{p})=[\tilde{\kappa}: \kappa]$. When K / k is Galois,

$$
e(\mathfrak{P} / \mathfrak{p}) \cdot f(\mathfrak{P} / \mathfrak{p})=\left|G_{\mathfrak{P}}\right| \quad e(\mathfrak{P} / \mathfrak{p})=\left|I_{\mathfrak{P}}\right|
$$

Theorem: For fixed \mathfrak{p} in \mathfrak{o},

$$
\sum_{\mathfrak{P} \mid \mathfrak{p}} e(\mathfrak{P} / \mathfrak{p}) \cdot f(\mathfrak{P} / \mathfrak{p})=[K: k]
$$

For K / k Galois, the ramification indices e and residue field extension degrees f depend only on \mathfrak{p} (and K / k), and in that case

$$
e \cdot f \cdot(\text { number of primes } \mathfrak{P} \mid \mathfrak{p})=[K: k]
$$

Proof: We first treat the case that \mathfrak{o} and \mathfrak{O} are PIDs, and then reduce to this case by localizing. As usual, Sun-Ze's theorem gives

$$
\mathfrak{O} / \mathfrak{p O} \approx \bigoplus_{\mathfrak{P} \mid \mathfrak{p}} \mathfrak{O} / \mathfrak{P}^{e(\mathfrak{P} / \mathfrak{p})}
$$

For \mathfrak{o} a PID, \mathfrak{O} is a free \mathfrak{o}-module of $\operatorname{rank}[K: k]$. Then $\mathfrak{O} / \mathfrak{p} \mathfrak{O}$ is a $\kappa=\mathfrak{o} / \mathfrak{p}$-vectorspace of dimension $[K: k]$. Each $\mathfrak{O} / \mathfrak{P}^{e}$ is a κ-vectorspace, and the sum of their dimensions is $[K: k]$. The κ-dimension of $\mathfrak{O} / \mathfrak{P}$ is $f(\mathfrak{P} / \mathfrak{p})$. The slightly more complicated $\mathfrak{O} / \mathfrak{P}^{e}$ require slightly more effort.

The chain of κ-vectorspaces

$$
\{0\}=\mathfrak{P}^{e} / \mathfrak{P}^{e} \subset \mathfrak{P}^{e-1} / \mathfrak{P}^{e} \subset \ldots \subset \mathfrak{P}^{2} / \mathfrak{P}^{e} \subset \mathfrak{P} / \mathfrak{P}^{e} \subset \mathfrak{O} / \mathfrak{P}^{e}
$$

has consecutive quotients

$$
\left(\mathfrak{P}^{i} / \mathfrak{P}^{e}\right) /\left(\mathfrak{P}^{i+1} / \mathfrak{P}^{e}\right) \approx \mathfrak{P}^{i} / \mathfrak{P}^{i+1}
$$

Using the fact that \mathfrak{O} is a PID, let ϖ generate \mathfrak{P}. Visibly, $\mathfrak{P}^{i+1} / \mathfrak{P}^{i} \approx \mathfrak{O} / \mathfrak{P}$ by the map

$$
x+\mathfrak{O} \varpi \longrightarrow \varpi^{i} x+\mathfrak{O} \varpi^{i+1} \quad \text { (multiplication by } \varpi^{i} \text {) }
$$

In general, for a chain $\{0\}=V_{o} \subset V_{1} \subset \ldots \subset V_{e-1} \subset V_{e}$ of finite-dimensional vectorspaces, we have

$$
\operatorname{dim} V_{e}=\operatorname{dim}\left(V_{1} / V_{o}\right)+\operatorname{dim}\left(V_{2} / V_{1}\right)+\ldots+\operatorname{dim}\left(V_{e} / V_{e-1}\right)
$$

In the case at hand, the dimensions of the consecutive quotients are all $f(\mathfrak{P} / \mathfrak{p})$, so

$$
\operatorname{dim}_{\kappa} \mathfrak{O} / \mathfrak{P}^{e}=e(\mathfrak{P} / \mathfrak{p}) \cdot f(\mathfrak{P} / \mathfrak{p})
$$

and $[K: k]=\sum_{\mathfrak{P} \mid \mathfrak{p}} e(\mathfrak{P} / \mathfrak{p}) \cdot f(\mathfrak{P} / \mathfrak{p})$. The transitivity of Galois on $\mathfrak{P} \mid \mathfrak{p}$ gives equality among the $e, f \mathrm{~s}$ in the Galois case.

Now reduce to the case that \mathfrak{o} is a PID, by localizing at \mathfrak{p}, thus leaving a single prime. We must show that localizing at $S=\mathfrak{o}-\mathfrak{p}$ does not change the $e, f \mathrm{~s}$.

A factorization $\mathfrak{p O}=\prod_{\mathfrak{P}} \mathfrak{P}^{e(\mathfrak{P} / \mathfrak{p})}$ gives a corresponding

$$
\left(S^{-1} \mathfrak{p}\right)\left(S^{-1} \mathfrak{O}\right)=\prod_{\mathfrak{P}}\left(S^{-1} \mathfrak{P}\right)^{e(\mathfrak{P} / \mathfrak{p})}
$$

The primes of \mathfrak{O} surviving to $S^{-1} \mathfrak{O}$ are exactly those lying over \mathfrak{p}, seen as follows. For \mathfrak{P} to lie over \mathfrak{p} means that $\mathfrak{P} \cap \mathfrak{o}=\mathfrak{p}$. Since $S \subset \mathfrak{o}$, and $\mathfrak{p} \cap S=\phi, \mathfrak{P} \cap S=\phi$ for \mathfrak{P} lying over \mathfrak{p}. For all other $\mathfrak{P}, \mathfrak{P} \cap \mathfrak{o}$ is a prime ideal $\mathfrak{q} \neq \mathfrak{p}$ of \mathfrak{o}. Taking Galois norms shows that $\mathfrak{q} \neq\{0\}$, so $S \cap \mathfrak{q} \neq \phi$, and $S^{-1} \mathfrak{P}=\mathfrak{O}$.

Thus, the ramification indices $e(\mathfrak{P} / \mathfrak{p})$ are unchanged by localizing.

Next, show that the residue field extension degrees are unchanged by localization. First, claim/recall that $\mathfrak{o} / \mathfrak{p} \approx S^{-1} \mathfrak{o} / S^{-1} \mathfrak{p}$. Indeed, $\mathfrak{o} \rightarrow S^{-1} \mathfrak{o} \rightarrow S^{-1} \mathfrak{o} / S^{-1} \mathfrak{p}$ has kernel $\mathfrak{o} \cap S^{-1} \mathfrak{p}$. For $s x \in \mathfrak{p}$ with $s \in S$ and $x \in \mathfrak{o}$, then $x \in \mathfrak{p}$ by primality of \mathfrak{p} and $S \cap \mathfrak{p}=\phi$. This gives injectivity.

For surjectivity, given $\frac{x}{s}+S^{-1} \mathfrak{p}$, find $y \in \mathfrak{o}$ such that $y-\frac{x}{s} \in S^{-1} \mathfrak{p}$. It suffices to have $s y-x \in \mathfrak{p}$. Since \mathfrak{p} is maximal, $s \mathfrak{o}+\mathfrak{p}=\mathfrak{o}$, so there is $z \in \mathfrak{o}$ such that $s z-1 \in \mathfrak{p}$. Multiplying through by x gives $(x z) s-x \in x \mathfrak{p} \subset \mathfrak{p}$, proving surjectivity.
Similarly, claim that $\mathfrak{O} / \mathfrak{P} \approx S^{-1} \mathfrak{O} / S^{-1} \mathfrak{P}$ for $\mathfrak{P} \mid \mathfrak{p}$. The kernel of

$$
\mathfrak{O} \longrightarrow S^{-1} \mathfrak{O} \longrightarrow S^{-1} \mathfrak{O} / S^{-1} \mathfrak{P}
$$

is $\mathfrak{O} \cap S^{-1} \mathfrak{P}$. For $s x \in \mathfrak{P}$ with $x \in \mathfrak{O}$ and $s \in S$, then either $s \in \mathfrak{P}$ or $x \in \mathfrak{P}$. Since $\mathfrak{P} \cap \mathfrak{o}=\mathfrak{p}$ and $S \subset \mathfrak{o}, \mathfrak{P} \cap S=\phi$. Thus, $x \in \mathfrak{P}$, and $\mathfrak{O} / \mathfrak{P} \rightarrow S^{-1} \mathfrak{O} / S^{-1} \mathfrak{P}$ is injective.

For surjectivity, given $\frac{x}{s}+S^{-1} \mathfrak{P}$, find $y \in \mathfrak{O}$ such that $y-\frac{x}{s} \in$ $S^{-1} \mathfrak{P}$. It suffices to have $s y-x \in \mathfrak{P}$. Since \mathfrak{p} is maximal, $s \mathfrak{o}+\mathfrak{p}=\mathfrak{o}$, so there is $z \in \mathfrak{o}$ such that $s z-1 \in \mathfrak{p} \subset \mathfrak{P}$. Multiplying through by x gives $(x z) s-x \in x \mathfrak{P} \subset \mathfrak{P}$, proving surjectivity.

Thus, we can localize at $S=\mathfrak{o}-\mathfrak{p}$ without changing the $e, f \mathrm{~s}$, thereby assuming without loss of generality that \mathfrak{o} and \mathfrak{O} are PIDs, being Dedekind with finitely-many primes.

Proposition: The e, f 's are multiplicative in towers, that is, for separable extensions $k \subset E \subset K$ and corresponding primes $\mathfrak{p} \subset \mathfrak{q} \subset \mathfrak{P}$,

$$
e(\mathfrak{P} / \mathfrak{p})=e(\mathfrak{q} / \mathfrak{p}) \cdot e(\mathfrak{P} / \mathfrak{q}) \quad f(\mathfrak{P} / \mathfrak{p})=f(\mathfrak{q} / \mathfrak{p}) \cdot f(\mathfrak{P} / \mathfrak{q})
$$

Proof: This follows from the ideas of the previous proof, together with the fact from field theory that for fields $\kappa \subset \kappa^{\prime} \subset \tilde{\kappa}$, $\operatorname{dim}_{\kappa} \tilde{\kappa}=\operatorname{dim}_{\kappa} \kappa^{\prime} \cdot \operatorname{dim}_{\kappa^{\prime}} \tilde{\kappa}$

Remark: The incidental fact that localization at \mathfrak{p} does not alter the $e(\mathfrak{P} / \mathfrak{p})$ s and $f(\mathfrak{P} / \mathfrak{p})$'s for $\mathfrak{P} \mid \mathfrak{p}$ will be re-used on several later occasions. For example:

Proposition: For $\alpha \neq 0$ in the integral closure \mathfrak{O} of \mathbb{Z} in a number field K, the Galois norm and ideal norm are essentially the same:

$$
\left|N_{\mathbb{Q}}^{K}(\alpha)\right|=N(\alpha \mathfrak{O})
$$

with ideal norm $N(\mathfrak{A})=\# \mathfrak{O} / \mathfrak{A}$ for ideals \mathfrak{A} in \mathfrak{O}.
A stronger assertion has a simpler proof. To set it up, define a variant notion of ideal norm N_{k}^{K} from fractional ideals of \mathfrak{O} to fractional ideals of \mathfrak{o}, first on primes \mathfrak{P} of \mathfrak{O}, by

$$
\text { (ideal-norm) } N_{k}^{K} \mathfrak{P}=\mathfrak{p}^{f(\mathfrak{P} / \mathfrak{p})} \quad(\text { for } \mathfrak{P} \mid \mathfrak{p})
$$

and extend this to the group of fractional ideals by multiplicativity:

$$
\text { (ideal-norm) } N_{k}^{K}\left(\prod_{\mathfrak{P}} \mathfrak{P}^{\ell \mathfrak{P}}\right)=\prod_{\mathfrak{P}}\left(N_{k}^{K} \mathfrak{P}\right)^{\ell_{\mathfrak{P}}}
$$

Proposition: With $\mathfrak{o} \subset k$ and $\mathfrak{O} \subset K$ as usual, for $0 \neq \alpha \in \mathfrak{O}$,

$$
(\text { ideal-norm }) N_{k}^{K}(\alpha \mathfrak{O})=\mathfrak{o} \cdot(\text { Galois norm }) N_{k}^{K}(\alpha)
$$

Proof: Without loss of generality, we can take K / k Galois, since extending to the Galois closure E of K over k has the effect of raising everything to the $[E: K]$ power. With $G=\operatorname{Gal}(K / k)$,

$$
\prod_{\sigma \in G} \sigma \mathfrak{P}=\prod_{\sigma \in G / G_{\mathfrak{F}}}(\sigma \mathfrak{P})^{e f}=\left(\prod_{\mathfrak{P}_{i} \mid \mathfrak{p}} \mathfrak{P}_{i}^{e}\right)^{f}=\mathfrak{p}^{f} \cdot \mathfrak{O}
$$

Thus, for an ideal \mathfrak{A} of $\mathfrak{O}, \prod_{\sigma \in G} \sigma \mathfrak{A}=$ (ideal-norm) $N_{k}^{K} \mathfrak{A} \cdot \mathfrak{O}$

On the other hand,

$$
\prod_{\sigma \in G} \sigma(\alpha \mathfrak{O})=\left(\prod_{\sigma \in G} \sigma(\alpha)\right) \cdot \mathfrak{O}=(\text { Galois-norm }) N_{k}^{K}(\alpha) \cdot \mathfrak{O}
$$

Combining these,

$$
\text { (ideal-norm) } N_{k}^{K}(\alpha \mathfrak{O}) \cdot \mathfrak{O}=\left(\text { Galois-norm) } N_{k}^{K}(\alpha) \cdot \mathfrak{O}\right.
$$

The ideal norm $N_{k}^{K}(\alpha \mathfrak{O})$ is in \mathfrak{o}, by definition, and $N_{k}^{K}(\alpha)$ is in \mathfrak{o}. Unique factorization into prime ideals in \mathfrak{O} proves

$$
(\text { ideal-norm }) N_{k}^{K}(\alpha \mathfrak{O}) \cdot \mathfrak{o}=(\text { Galois-norm }) N_{k}^{K}(\alpha) \cdot \mathfrak{o}
$$

as claimed.

Equality of ideal and Galois norms eliminates ambiguities in comparing the following general definition to simpler instances.

Now \mathfrak{o} must have finite residue fields. It suffices that its field of fractions k is either a finite extension of \mathbb{Q} or of $\mathbb{F}_{q}(x)$.

And revert to using the ideal norm unadorned N to refer to the ideal norm $N \mathfrak{a}=\# \mathfrak{o} / \mathfrak{a}$.

Dedekind zeta functions: Even though the subscript should make a reference to the ring \mathfrak{o} rather than k, the ring \mathfrak{o} is essentially implied by specifying the field k. (This is not quite true for functions fields, but never mind.)

$$
\zeta_{k}(s)=\sum_{0 \neq \mathfrak{a} \subset \mathfrak{o}} \frac{1}{N \mathfrak{a}^{s}}
$$

The Dedekind property and the same analysis as for \mathbb{Z} suggests (convergence?!) the Euler product

$$
\zeta_{k}(s)=\sum_{0 \neq \mathfrak{a} \subset \mathfrak{o}} \frac{1}{N \mathfrak{a}^{s}}=\prod_{\mathfrak{p} \text { prime in } \mathfrak{o}} \frac{1}{1-N \mathfrak{p}^{-s}}
$$

Understanding splitting/factorization of primes in extensions of \mathbb{Z} or of $\mathbb{F}_{q}[x]$ gives

Proposition: The Euler product expression for $\zeta_{k}(s)$ is absolutely convergent for $\operatorname{Re}(s)>1$.

Proof: Treat the number field case. Group the Euler factors according to the associated rational primes. The picture:

With $p \mathfrak{o}=\mathfrak{p}_{1}^{e_{1}} \ldots \mathfrak{p}_{g}^{e_{g}}$ with residue field extension degrees f_{i}, and $\sum_{i} e_{i} f_{i}=[k: \mathbb{Q}]$, with $\sigma=\operatorname{Re}(s)$,

$$
\left|\frac{1}{1-N \mathfrak{p}^{-s}}\right|=\frac{1}{1-p^{-f \sigma}} \leq\left(\frac{1}{1-p^{-\sigma}}\right)^{f}
$$

Thus,

$$
\left|\prod_{\mathfrak{p} \mid p} \frac{1}{1-N \mathfrak{p}^{-s}}\right| \leq\left(\frac{1}{1-p^{-\sigma}}\right)^{[k: \mathbb{Q}]}
$$

and the Euler product for $\zeta_{k}(s)$ is dominated by the Euler product for $\zeta_{\mathbb{Q}}(\sigma)^{[k: \mathbb{Q}]}$, nicely convergent for $\operatorname{Re}(s)>1$.

Remark: The estimate

$$
\left|\zeta_{k}(s)\right| \leq \zeta_{\mathbb{Q}}(\sigma)^{[k: \mathbb{Q}]} \quad\left(\text { as } \sigma=\operatorname{Re}(s) \rightarrow 1^{+}\right)
$$

suggests a pole of order $[k: \mathbb{Q}]$ at $s=1$, but, in fact, the pole is of order 1 for all number fields k. [Below]

