
Garrett 11-14-2011 1

Recap: about Dedekind domains...

Theorem: A Noetherian, integrally closed, integral domain with
every non-zero prime ideal maximal, ... has unique factorization:
non-zero ideals are uniquely products of prime ideals, and non-
zero fractional ideals form a group.

Big Corollary: For Dedekind o in field of fractions k, the
integral closure O in a finite separable extension K/k is Dedekind.

Lemma: S−1o is Dedekind. Primes of S−1o are S−1p for primes
p of o not meeting S. Factorization is

S−1
(∏

p

pe(p)
)

=
∏

p: p∩S=φ

(S−1p)e(p)

Proposition: Dedekind with finitely-many primes ⇒ PID.

Continuing ...
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Ramification, residue field extension degrees: e, f, g

Prime p in o factors in an integral extension as pO =
∏

P Pe(P/p).
The exponents e(P/p) are ramification indices. The residue field
extensions κ̃ = O/P over κ = o/p have degrees f(P/p) = [κ̃ : κ].
When K/k is Galois,

e(P/p) · f(P/p) = |GP| e(P/p) = |IP|

Theorem: For fixed p in o,∑
P|p

e(P/p) · f(P/p) = [K : k]

For K/k Galois, the ramification indices e and residue field
extension degrees f depend only on p (and K/k), and in that case

e · f · (number of primes P|p) = [K : k]
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Proof: We first treat the case that o and O are PIDs, and then
reduce to this case by localizing. As usual, Sun-Ze’s theorem gives

O/pO ≈
⊕
P|p

O/Pe(P/p)

For o a PID, O is a free o-module of rank [K : k]. Then O/pO
is a κ = o/p-vectorspace of dimension [K : k]. Each O/Pe is a
κ-vectorspace, and the sum of their dimensions is [K : k]. The
κ-dimension of O/P is f(P/p). The slightly more complicated
O/Pe require slightly more effort.

The chain of κ-vectorspaces

{0} = Pe/Pe ⊂ Pe−1/Pe ⊂ . . . ⊂ P2/Pe ⊂ P/Pe ⊂ O/Pe

has consecutive quotients(
Pi/Pe

)/(
Pi+1/Pe

)
≈ Pi/Pi+1



Garrett 11-14-2011 4

Using the fact that O is a PID, let $ generate P. Visibly,
Pi+1/Pi ≈ O/P by the map

x+ O$ −→ $ix+ O$i+1 (multiplication by $i)

In general, for a chain {0} = Vo ⊂ V1 ⊂ . . . ⊂ Ve−1 ⊂ Ve
of finite-dimensional vectorspaces, we have

dimVe = dim(V1/Vo) + dim(V2/V1) + . . .+ dim(Ve/Ve−1)

In the case at hand, the dimensions of the consecutive quotients
are all f(P/p), so

dimκO/P
e = e(P/p) · f(P/p)

and [K : k] =
∑

P|p e(P/p) · f(P/p). The transitivity of Galois

on P|p gives equality among the e, fs in the Galois case.
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Now reduce to the case that o is a PID, by localizing at p, thus
leaving a single prime. We must show that localizing at S = o − p
does not change the e, fs.

A factorization pO =
∏

P Pe(P/p) gives a corresponding

(S−1p)(S−1O) =
∏
P

(S−1P)e(P/p)

The primes of O surviving to S−1O are exactly those lying over p,
seen as follows. For P to lie over p means that P ∩ o = p. Since
S ⊂ o, and p ∩ S = φ, P ∩ S = φ for P lying over p. For all other
P, P ∩ o is a prime ideal q 6= p of o. Taking Galois norms shows
that q 6= {0}, so S ∩ q 6= φ, and S−1P = O.

Thus, the ramification indices e(P/p) are unchanged by localizing.
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Next, show that the residue field extension degrees are unchanged
by localization. First, claim/recall that o/p ≈ S−1o/S−1p.
Indeed, o → S−1o → S−1o/S−1p has kernel o ∩ S−1p. For sx ∈ p
with s ∈ S and x ∈ o, then x ∈ p by primality of p and S ∩ p = φ.
This gives injectivity.

For surjectivity, given x
s +S−1p, find y ∈ o such that y− x

s ∈ S
−1p.

It suffices to have sy − x ∈ p. Since p is maximal, so + p = o, so
there is z ∈ o such that sz − 1 ∈ p. Multiplying through by x gives
(xz)s− x ∈ xp ⊂ p, proving surjectivity.

Similarly, claim that O/P ≈ S−1O/S−1P for P|p. The kernel of

O −→ S−1O −→ S−1O/S−1P

is O ∩ S−1P. For sx ∈ P with x ∈ O and s ∈ S, then either s ∈ P
or x ∈ P. Since P ∩ o = p and S ⊂ o, P ∩ S = φ. Thus, x ∈ P,
and O/P → S−1O/S−1P is injective.
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For surjectivity, given x
s + S−1P, find y ∈ O such that y − x

s ∈
S−1P. It suffices to have sy − x ∈ P. Since p is maximal,
so + p = o, so there is z ∈ o such that sz − 1 ∈ p ⊂ P. Multiplying
through by x gives (xz)s− x ∈ xP ⊂ P, proving surjectivity.

Thus, we can localize at S = o − p without changing the e, fs,
thereby assuming without loss of generality that o and O are
PIDs, being Dedekind with finitely-many primes. ///

Proposition: The e, f ’s are multiplicative in towers, that is, for
separable extensions k ⊂ E ⊂ K and corresponding primes
p ⊂ q ⊂ P,

e(P/p) = e(q/p) · e(P/q) f(P/p) = f(q/p) · f(P/q)

Proof: This follows from the ideas of the previous proof, together
with the fact from field theory that for fields κ ⊂ κ′ ⊂ κ̃,
dimκ κ̃ = dimκ κ

′ · dimκ′ κ̃ ///
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Remark: The incidental fact that localization at p does not alter
the e(P/p)s and f(P/p)’s for P|p will be re-used on several later
occasions. For example:

Proposition: For α 6= 0 in the integral closure O of Z in a
number field K, the Galois norm and ideal norm are essentially
the same:

|NK
Q (α)| = N(αO)

with ideal norm N(A) = #O/A for ideals A in O.

A stronger assertion has a simpler proof. To set it up, define a
variant notion of ideal norm NK

k from fractional ideals of O to
fractional ideals of o, first on primes P of O, by

(ideal-norm)NK
k P = pf(P/p) (for P|p)

and extend this to the group of fractional ideals by
multiplicativity:
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(ideal-norm)NK
k

(∏
P

P`P
)

=
∏
P

(NK
k P)`P

Proposition: With o ⊂ k and O ⊂ K as usual, for 0 6= α ∈ O,

(ideal-norm)NK
k (αO) = o · (Galois norm)NK

k (α)

Proof: Without loss of generality, we can take K/k Galois, since
extending to the Galois closure E of K over k has the effect of
raising everything to the [E : K] power. With G = Gal(K/k),

∏
σ∈G

σP =
∏

σ∈G/GP

(σP)ef =
( ∏

Pi|p

Pe
i

)f
= pf ·O

Thus, for an ideal A of O,
∏
σ∈G σA = (ideal-norm)NK

k A ·O
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On the other hand,∏
σ∈G

σ(αO) =
( ∏
σ∈G

σ(α)
)
·O = (Galois-norm)NK

k (α) ·O

Combining these,

(ideal-norm) NK
k (αO) ·O = (Galois-norm) NK

k (α) ·O

The ideal norm NK
k (αO) is in o, by definition, and NK

k (α) is in o.
Unique factorization into prime ideals in O proves

(ideal-norm) NK
k (αO) · o = (Galois-norm) NK

k (α) · o

as claimed. ///
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Equality of ideal and Galois norms eliminates ambiguities in
comparing the following general definition to simpler instances.

Now o must have finite residue fields. It suffices that its field of
fractions k is either a finite extension of Q or of Fq(x).

And revert to using the ideal norm unadorned N to refer to the
ideal norm Na = #o/a.

Dedekind zeta functions: Even though the subscript should
make a reference to the ring o rather than k, the ring o is
essentially implied by specifying the field k. (This is not quite
true for functions fields, but never mind.)

ζk(s) =
∑

06=a⊂o

1

Nas

The Dedekind property and the same analysis as for Z suggests
(convergence?!) the Euler product

ζk(s) =
∑

06=a⊂o

1

Nas
=

∏
p prime in o

1

1−Np−s
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Understanding splitting/factorization of primes in extensions of Z
or of Fq[x] gives

Proposition: The Euler product expression for ζk(s) is
absolutely convergent for Re(s) > 1.

Proof: Treat the number field case. Group the Euler factors
according to the associated rational primes. The picture:

k
⊃

o
⊃

((QQQQQQQQQQQQQQQ p

o/p = κ̃

f(p/p)Q ⊃
Z

⊃

((QQQQQQQQQQQQQQQ p

Z/p = Fp
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With po = pe11 . . . p
eg
g with residue field extension degrees fi, and∑

i eifi = [k : Q], with σ = Re(s),∣∣∣ 1

1−Np−s

∣∣∣ =
1

1− p−fσ
≤
( 1

1− p−σ
)f

Thus, ∣∣∣∏
p|p

1

1−Np−s

∣∣∣ ≤ ( 1

1− p−σ
)[k:Q]

and the Euler product for ζk(s) is dominated by the Euler product
for ζQ(σ)[k:Q], nicely convergent for Re(s) > 1. ///

Remark: The estimate

|ζk(s)| ≤ ζQ(σ)[k:Q] (as σ = Re(s)→ 1+)

suggests a pole of order [k : Q] at s = 1, but, in fact, the pole is of
order 1 for all number fields k. [Below]


