Recap: about Dedekind domains...

Theorem: A Noetherian, integrally closed, integral domain with every non-zero prime ideal maximal, ... *has unique factorization:* non-zero ideals are uniquely products of prime ideals, and non-zero fractional ideals form a *group*.

Big Corollary: For Dedekind \mathfrak{o} in field of fractions k, the integral closure \mathfrak{O} in a finite separable extension K/k is Dedekind.

Lemma: $S^{-1}\mathfrak{o}$ is Dedekind. Primes of $S^{-1}\mathfrak{o}$ are $S^{-1}\mathfrak{p}$ for primes \mathfrak{p} of \mathfrak{o} not meeting S. Factorization is

$$S^{-1}\Big(\prod_{\mathfrak{p}}\mathfrak{p}^{e(\mathfrak{p})}\Big) = \prod_{\mathfrak{p}:\,\mathfrak{p}\cap S = \phi} (S^{-1}\mathfrak{p})^{e(\mathfrak{p})}$$

Proposition: Dedekind with finitely-many primes \Rightarrow PID.

Continuing ...

Ramification, residue field extension degrees: e, f, g

Prime \mathfrak{p} in \mathfrak{o} factors in an integral extension as $\mathfrak{p}\mathfrak{O} = \prod_{\mathfrak{P}} \mathfrak{P}^{e(\mathfrak{P}/\mathfrak{p})}$. The exponents $e(\mathfrak{P}/\mathfrak{p})$ are **ramification** indices. The residue field extensions $\tilde{\kappa} = \mathfrak{O}/\mathfrak{P}$ over $\kappa = \mathfrak{o}/\mathfrak{p}$ have degrees $f(\mathfrak{P}/\mathfrak{p}) = [\tilde{\kappa} : \kappa]$. When K/k is Galois,

$$e(\mathfrak{P}/\mathfrak{p}) \cdot f(\mathfrak{P}/\mathfrak{p}) = |G_{\mathfrak{P}}| \qquad e(\mathfrak{P}/\mathfrak{p}) = |I_{\mathfrak{P}}|$$

Theorem: For fixed \mathfrak{p} in \mathfrak{o} ,

$$\sum_{\mathfrak{P}|\mathfrak{p}} e(\mathfrak{P}/\mathfrak{p}) \cdot f(\mathfrak{P}/\mathfrak{p}) = [K:k]$$

For K/k Galois, the ramification indices e and residue field extension degrees f depend only on \mathfrak{p} (and K/k), and in that case

 $e \cdot f \cdot (\text{number of primes } \mathfrak{P}|\mathfrak{p}) = [K:k]$

Proof: We first treat the case that \mathfrak{o} and \mathfrak{O} are PIDs, and then reduce to this case by localizing. As usual, Sun-Ze's theorem gives

$$\mathfrak{O}/\mathfrak{pO}~pprox igoplus_{\mathfrak{P}|\mathfrak{p}} \mathfrak{O}/\mathfrak{P}^{e(\mathfrak{P}/\mathfrak{p})}$$

For \mathfrak{o} a PID, \mathfrak{O} is a free \mathfrak{o} -module of rank [K : k]. Then $\mathfrak{O}/\mathfrak{p}\mathfrak{O}$ is a $\kappa = \mathfrak{o}/\mathfrak{p}$ -vectorspace of dimension [K : k]. Each $\mathfrak{O}/\mathfrak{P}^e$ is a κ -vectorspace, and the sum of their dimensions is [K : k]. The κ -dimension of $\mathfrak{O}/\mathfrak{P}$ is $f(\mathfrak{P}/\mathfrak{p})$. The slightly more complicated $\mathfrak{O}/\mathfrak{P}^e$ require slightly more effort.

The chain of κ -vector spaces

$$\{0\} = \mathfrak{P}^e/\mathfrak{P}^e \ \subset \ \mathfrak{P}^{e-1}/\mathfrak{P}^e \ \subset \ \ldots \ \subset \ \mathfrak{P}^2/\mathfrak{P}^e \ \subset \ \mathfrak{P}/\mathfrak{P}^e \ \subset \ \mathfrak{O}/\mathfrak{P}^e$$

has consecutive quotients

$$ig(\mathfrak{P}^i/\mathfrak{P}^eig)ig/ig(\mathfrak{P}^{i+1}/\mathfrak{P}^eig) ~pprox ~\mathfrak{P}^i/\mathfrak{P}^{i+1}$$

Using the fact that \mathfrak{O} is a PID, let ϖ generate \mathfrak{P} . Visibly, $\mathfrak{P}^{i+1}/\mathfrak{P}^i \approx \mathfrak{O}/\mathfrak{P}$ by the map

 $x + \mathfrak{O}\varpi \longrightarrow \varpi^i x + \mathfrak{O}\varpi^{i+1}$ (multiplication by ϖ^i)

In general, for a chain $\{0\} = V_o \subset V_1 \subset \ldots \subset V_{e-1} \subset V_e$ of finite-dimensional vectorspaces, we have

$$\dim V_e = \dim(V_1/V_o) + \dim(V_2/V_1) + \ldots + \dim(V_e/V_{e-1})$$

In the case at hand, the dimensions of the consecutive quotients are all $f(\mathfrak{P}/\mathfrak{p})$, so

$$\dim_{\kappa} \mathfrak{O}/\mathfrak{P}^{e} = e(\mathfrak{P}/\mathfrak{p}) \cdot f(\mathfrak{P}/\mathfrak{p})$$

and $[K:k] = \sum_{\mathfrak{P}|\mathfrak{p}} e(\mathfrak{P}/\mathfrak{p}) \cdot f(\mathfrak{P}/\mathfrak{p})$. The transitivity of Galois on $\mathfrak{P}|\mathfrak{p}$ gives equality among the e, fs in the Galois case.

Now reduce to the case that \mathfrak{o} is a PID, by *localizing* at \mathfrak{p} , thus leaving a single prime. We must show that localizing at $S = \mathfrak{o} - \mathfrak{p}$ does not change the e, fs.

A factorization $\mathfrak{p}\mathfrak{O} = \prod_{\mathfrak{P}} \mathfrak{P}^{e(\mathfrak{P}/\mathfrak{p})}$ gives a corresponding

$$(S^{-1}\mathfrak{p})(S^{-1}\mathfrak{O}) = \prod_{\mathfrak{P}} (S^{-1}\mathfrak{P})^{e(\mathfrak{P}/\mathfrak{p})}$$

The primes of \mathfrak{O} surviving to $S^{-1}\mathfrak{O}$ are exactly those lying over \mathfrak{p} , seen as follows. For \mathfrak{P} to lie over \mathfrak{p} means that $\mathfrak{P} \cap \mathfrak{o} = \mathfrak{p}$. Since $S \subset \mathfrak{o}$, and $\mathfrak{p} \cap S = \phi$, $\mathfrak{P} \cap S = \phi$ for \mathfrak{P} lying over \mathfrak{p} . For all other $\mathfrak{P}, \mathfrak{P} \cap \mathfrak{o}$ is a prime ideal $\mathfrak{q} \neq \mathfrak{p}$ of \mathfrak{o} . Taking Galois norms shows that $\mathfrak{q} \neq \{0\}$, so $S \cap \mathfrak{q} \neq \phi$, and $S^{-1}\mathfrak{P} = \mathfrak{O}$.

Thus, the ramification indices $e(\mathfrak{P}/\mathfrak{p})$ are unchanged by localizing.

Next, show that the residue field extension degrees are unchanged by localization. First, claim/recall that $\mathfrak{o}/\mathfrak{p} \approx S^{-1}\mathfrak{o}/S^{-1}\mathfrak{p}$. Indeed, $\mathfrak{o} \to S^{-1}\mathfrak{o} \to S^{-1}\mathfrak{o}/S^{-1}\mathfrak{p}$ has kernel $\mathfrak{o} \cap S^{-1}\mathfrak{p}$. For $sx \in \mathfrak{p}$ with $s \in S$ and $x \in \mathfrak{o}$, then $x \in \mathfrak{p}$ by primality of \mathfrak{p} and $S \cap \mathfrak{p} = \phi$. This gives injectivity.

For surjectivity, given $\frac{x}{s} + S^{-1}\mathfrak{p}$, find $y \in \mathfrak{o}$ such that $y - \frac{x}{s} \in S^{-1}\mathfrak{p}$. It suffices to have $sy - x \in \mathfrak{p}$. Since \mathfrak{p} is maximal, $s\mathfrak{o} + \mathfrak{p} = \mathfrak{o}$, so there is $z \in \mathfrak{o}$ such that $sz - 1 \in \mathfrak{p}$. Multiplying through by x gives $(xz)s - x \in x\mathfrak{p} \subset \mathfrak{p}$, proving surjectivity.

Similarly, claim that $\mathfrak{O}/\mathfrak{P} \approx S^{-1}\mathfrak{O}/S^{-1}\mathfrak{P}$ for $\mathfrak{P}|\mathfrak{p}$. The kernel of

$$\mathfrak{O} \longrightarrow S^{-1}\mathfrak{O} \longrightarrow S^{-1}\mathfrak{O}/S^{-1}\mathfrak{P}$$

is $\mathfrak{O} \cap S^{-1}\mathfrak{P}$. For $sx \in \mathfrak{P}$ with $x \in \mathfrak{O}$ and $s \in S$, then either $s \in \mathfrak{P}$ or $x \in \mathfrak{P}$. Since $\mathfrak{P} \cap \mathfrak{o} = \mathfrak{p}$ and $S \subset \mathfrak{o}, \mathfrak{P} \cap S = \phi$. Thus, $x \in \mathfrak{P}$, and $\mathfrak{O}/\mathfrak{P} \to S^{-1}\mathfrak{O}/S^{-1}\mathfrak{P}$ is *injective*. For surjectivity, given $\frac{x}{s} + S^{-1}\mathfrak{P}$, find $y \in \mathfrak{O}$ such that $y - \frac{x}{s} \in S^{-1}\mathfrak{P}$. It suffices to have $sy - x \in \mathfrak{P}$. Since \mathfrak{p} is maximal, $s\mathfrak{o} + \mathfrak{p} = \mathfrak{o}$, so there is $z \in \mathfrak{o}$ such that $sz - 1 \in \mathfrak{p} \subset \mathfrak{P}$. Multiplying through by x gives $(xz)s - x \in x\mathfrak{P} \subset \mathfrak{P}$, proving surjectivity.

Thus, we can localize at $S = \mathfrak{o} - \mathfrak{p}$ without changing the e, fs, thereby assuming without loss of generality that \mathfrak{o} and \mathfrak{O} are PIDs, being Dedekind with finitely-many primes. ///

Proposition: The *e*, *f*'s are *multiplicative in towers*, that is, for separable extensions $k \subset E \subset K$ and corresponding primes $\mathfrak{p} \subset \mathfrak{q} \subset \mathfrak{P}$,

 $e(\mathfrak{P}/\mathfrak{p}) \ = \ e(\mathfrak{q}/\mathfrak{p}) \cdot e(\mathfrak{P}/\mathfrak{q}) \qquad \qquad f(\mathfrak{P}/\mathfrak{p}) \ = \ f(\mathfrak{q}/\mathfrak{p}) \cdot f(\mathfrak{P}/\mathfrak{q})$

Proof: This follows from the ideas of the previous proof, together with the fact from field theory that for fields $\kappa \subset \kappa' \subset \tilde{\kappa}$, $\dim_{\kappa} \tilde{\kappa} = \dim_{\kappa} \kappa' \cdot \dim_{\kappa'} \tilde{\kappa}$ /// **Remark:** The incidental fact that localization at \mathfrak{p} does not alter the $e(\mathfrak{P}/\mathfrak{p})$ s and $f(\mathfrak{P}/\mathfrak{p})$'s for $\mathfrak{P}|\mathfrak{p}$ will be re-used on several later occasions. For example:

Proposition: For $\alpha \neq 0$ in the integral closure \mathfrak{O} of \mathbb{Z} in a number field K, the Galois norm and ideal norm are essentially the same:

$$|N_{\mathbb{Q}}^{K}(\alpha)| = N(\alpha \mathfrak{O})$$

with *ideal* norm $N(\mathfrak{A}) = \#\mathfrak{O}/\mathfrak{A}$ for ideals \mathfrak{A} in \mathfrak{O} .

A stronger assertion has a simpler proof. To set it up, define a variant notion of *ideal* norm N_k^K from fractional ideals of \mathfrak{O} to fractional ideals of \mathfrak{o} , first on primes \mathfrak{P} of \mathfrak{O} , by

(ideal-norm)
$$N_k^K \mathfrak{P} = \mathfrak{p}^{f(\mathfrak{P}/\mathfrak{p})}$$
 (for $\mathfrak{P}|\mathfrak{p}$)

and extend this to the group of fractional ideals by multiplicativity:

(ideal-norm)
$$N_k^K \left(\prod_{\mathfrak{P}} \mathfrak{P}^{\ell_{\mathfrak{P}}}\right) = \prod_{\mathfrak{P}} (N_k^K \mathfrak{P})^{\ell_{\mathfrak{P}}}$$

Proposition: With $\mathfrak{o} \subset k$ and $\mathfrak{O} \subset K$ as usual, for $0 \neq \alpha \in \mathfrak{O}$,

(ideal-norm)
$$N_k^K(\alpha \mathfrak{O}) = \mathfrak{o} \cdot (\text{Galois norm}) N_k^K(\alpha)$$

Proof: Without loss of generality, we can take K/k Galois, since extending to the Galois closure E of K over k has the effect of raising everything to the [E:K] power. With G = Gal(K/k),

$$\prod_{\sigma \in G} \sigma \mathfrak{P} = \prod_{\sigma \in G/G_{\mathfrak{P}}} (\sigma \mathfrak{P})^{ef} = \left(\prod_{\mathfrak{P}_i \mid \mathfrak{p}} \mathfrak{P}_i^e\right)^f = \mathfrak{p}^f \cdot \mathfrak{O}$$

Thus, for an ideal \mathfrak{A} of \mathfrak{O} , $\prod_{\sigma \in G} \sigma \mathfrak{A} = (\text{ideal-norm}) N_k^K \mathfrak{A} \cdot \mathfrak{O}$

///

On the other hand,

$$\prod_{\sigma \in G} \sigma(\alpha \mathfrak{O}) = \left(\prod_{\sigma \in G} \sigma(\alpha)\right) \cdot \mathfrak{O} = (\text{Galois-norm}) N_k^K(\alpha) \cdot \mathfrak{O}$$

Combining these,

(ideal-norm)
$$N_k^K(\alpha \mathfrak{O}) \cdot \mathfrak{O} =$$
 (Galois-norm) $N_k^K(\alpha) \cdot \mathfrak{O}$

The ideal norm $N_k^K(\alpha \mathfrak{O})$ is in \mathfrak{o} , by definition, and $N_k^K(\alpha)$ is in \mathfrak{o} . Unique factorization into prime ideals in \mathfrak{O} proves

(ideal-norm) $N_k^K(\alpha \mathfrak{O}) \cdot \mathfrak{o} =$ (Galois-norm) $N_k^K(\alpha) \cdot \mathfrak{o}$

as claimed.

Equality of ideal and Galois norms eliminates ambiguities in comparing the following general definition to simpler instances.

Now \mathfrak{o} must have *finite residue fields*. It suffices that its field of fractions k is either a finite extension of \mathbb{Q} or of $\mathbb{F}_q(x)$.

And revert to using the *ideal norm* unadorned N to refer to the ideal norm $N\mathfrak{a} = \#\mathfrak{o}/\mathfrak{a}$.

Dedekind zeta functions: Even though the subscript should make a reference to the ring σ rather than k, the ring σ is essentially implied by specifying the field k. (This is not quite true for functions fields, but never mind.)

$$\zeta_k(s) = \sum_{0 \neq \mathfrak{a} \subset \mathfrak{o}} \frac{1}{N \mathfrak{a}^s}$$

The Dedekind property and the same analysis as for \mathbb{Z} suggests (convergence?!) the Euler product

$$\zeta_k(s) = \sum_{0 \neq \mathfrak{a} \subset \mathfrak{o}} \frac{1}{N \mathfrak{a}^s} = \prod_{\mathfrak{p} \text{ prime in } \mathfrak{o}} \frac{1}{1 - N \mathfrak{p}^{-s}}$$

Understanding splitting/factorization of primes in extensions of \mathbb{Z} or of $\mathbb{F}_q[x]$ gives

Proposition: The Euler product expression for $\zeta_k(s)$ is absolutely convergent for $\operatorname{Re}(s) > 1$.

Proof: Treat the number field case. Group the Euler factors according to the associated rational primes. **The picture:**

With $p\mathfrak{o} = \mathfrak{p}_1^{e_1} \dots \mathfrak{p}_g^{e_g}$ with residue field extension degrees f_i , and $\sum_i e_i f_i = [k : \mathbb{Q}]$, with $\sigma = \operatorname{Re}(s)$,

$$\left|\frac{1}{1-N\mathfrak{p}^{-s}}\right| = \frac{1}{1-p^{-f\sigma}} \leq \left(\frac{1}{1-p^{-\sigma}}\right)^f$$

Thus,

$$\left|\prod_{\mathfrak{p}\mid p} \frac{1}{1-N\mathfrak{p}^{-s}}\right| \leq \left(\frac{1}{1-p^{-\sigma}}\right)^{[k:\mathbb{Q}]}$$

and the Euler product for $\zeta_k(s)$ is dominated by the Euler product for $\zeta_{\mathbb{Q}}(\sigma)^{[k:\mathbb{Q}]}$, nicely convergent for $\operatorname{Re}(s) > 1$. ///

Remark: The estimate

$$|\zeta_k(s)| \leq \zeta_{\mathbb{Q}}(\sigma)^{[k:\mathbb{Q}]}$$
 (as $\sigma = \operatorname{Re}(s) \to 1^+$)

suggests a pole of order $[k : \mathbb{Q}]$ at s = 1, **but**, in fact, the pole is of order 1 for all number fields k. [Below]