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Recap: about Dedekind domains...

Theorem: A Noetherian, integrally closed, integral domain with
every non-zero prime ideal maximal, ... has unique factorization:
non-zero ideals are uniquely products of prime ideals, and non-
zero fractional ideals form a group.

Big Corollary: For Dedekind o in field of fractions k, the

1

integral closure 9 in a finite separable extension K /k is Dedekind.

Lemma: S~ !0 is Dedekind. Primes of S~1o are S~!p for primes
p of 0 not meeting S. Factorization is

5—1(Hpe<p>) = JI s 'p)®
p

p:pNS=¢
Proposition: Dedekind with finitely-many primes = PID.

Continuing ...
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Ramification, residue field extension degrees: ¢, f, g

Prime p in o factors in an integral extension as pO = H’B peF/p),
The exponents e(J3/p) are ramification indices. The residue field
extensions Kk = O/ over k = o/p have degrees f(P/p) = [k : K]
When K/k is Galois,

e(B/p)- f(B/p) = Gyl e(B/p) = |y

Theorem: For fixed p in o,
D c(B/p) - f(B/p) = [K:H]
Blp

For K/k Galois, the ramification indices e and residue field
extension degrees f depend only on p (and K/k), and in that case

e - f - (number of primes Plp) = [K : k]
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Proof: We first treat the case that o and O are PIDs, and then
reduce to this case by localizing. As usual, Sun-Ze’s theorem gives

O/pO =~ @D/sﬁe(‘ﬁ/p)
Blp

For o a PID, O is a free o-module of rank [K : k]. Then O/pO
is a kK = o/p-vectorspace of dimension [K : k|. Each O/B¢ is a
k-vectorspace, and the sum of their dimensions is [K : k]. The
k-dimension of O/ is f(*B/p). The slightly more complicated

O /¢ require slightly more effort.

The chain of x-vectorspaces

{0} =Pe/P° C PP C ... C PP C PP C O/P°

has consecutive quotients

(B /) (R /)
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Using the fact that O is a PID, let w generate 3. Visibly,
BTl /P ~ O/P by the map

r+9Ow — wae+ Ot (multiplication by w*)

In general, for a chain {0} =V, CcVy C...C V.1 CV,
of finite-dimensional vectorspaces, we have

dimV, = dlm(Vl/Vo) + dlm(VQ/V1> + ...+ dim(Ve/Ve_l)

In the case at hand, the dimensions of the consecutive quotients

are all f(P/p), so
dim, O/ = e(B/p)- F(B/p)
and [K : k] = > 0, e(B/p) - f(P/p). The transitivity of Galois

on B|p gives equality among the e, fs in the Galois case.

4
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Now reduce to the case that o is a PID, by localizing at p, thus
leaving a single prime. We must show that localizing at S =0 — p
does not change the e, fs.

A factorization p = I_L43 Pe(F/P) gives a corresponding

(571p)(5710) = [ (5 ) ®/»
B

The primes of O surviving to S™19O are exactly those lying over p,
seen as follows. For 3 to lie over p means that . N o = p. Since
SCo,andpnNS =0, PNS = ¢ for P lying over p. For all other
B, B N o is aprime ideal q # p of 0. Taking Galois norms shows
that q # {0}, s0 SNq# ¢, and S~1P = O.

Thus, the ramification indices e(*J3/p) are unchanged by localizing.
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Next, show that the residue field extension degrees are unchanged
by localization. First, claim/recall that o/p =~ S~ to/S™1p.
Indeed, 0 — S~1o — S710/S!p has kernel o N S~ 1p. For sz € p
with s € S and x € o, then x € p by primality of p and SNp = ¢.
This gives injectivity.

For surjectivity, given f—l—S‘lp, find y € o such that y—% € S—1p.
It suffices to have sy — x € p. Since p is maximal, so + p = 0, so
there is z € o0 such that sz — 1 € p. Multiplying through by z gives
(xz)s —x € xp C p, proving surjectivity.

Similarly, claim that O/B ~ S™1O/S719 for P|p. The kernel of

O — SO — SO /sTIp

is O NS~ IP. For sx € P with x € O and s € S, then either s € P
orx € B. Since PNo=pand S Co,PNS = ¢. Thus, x € L,
and O/P — ST1O/S™IP is injective.
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For surjectivity, given £ + S—IY, find y € O such that y — T €
S—IPB. It suffices to have sy — € . Since p is maximal,

s0 +p = o, so there is z € 0 such that sz — 1 € p C*P. Multiplying
through by = gives (xz)s — x € P C B, proving surjectivity.

Thus, we can localize at S = o — p without changing the e, fs,
thereby assuming without loss of generality that o and O are
PIDs, being Dedekind with finitely-many primes. ///

Proposition: The e, f’s are multiplicative in towers, that is, for
separable extensions K C E C K and corresponding primes

pCacC®
e(PB/p) = ela/p)-e(P/a) FOB/p) = fla/p)- F(B/a)

Proof: This follows from the ideas of the previous proof, together
with the fact from field theory that for fields k C &’ C &,
dim, £ = dim, k" -dim, & ///
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Remark: The incidental fact that localization at p does not alter
the e(P/p)s and f(P/p)’s for P|p will be re-used on several later

occasions. For example:

Proposition: For o # 0 in the integral closure O of Z in a
number field K, the Galois norm and ideal norm are essentially
the same:

[Ng (@)] = N(aD)
with ideal norm N () = #9O /2 for ideals 2 in O.

A stronger assertion has a simpler proof. To set it up, define a
variant notion of ideal norm NX from fractional ideals of O to
fractional ideals of o, first on primes P of O, by

(ideal-norm) NEB = p/F/®) (for Bp)

and extend this to the group of fractional ideals by
multiplicativity:
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(ideal-norm) N,f(HiBE‘I‘) = 1_[(]\715%)&13
‘B B
Proposition: With o C k and © C K as usual, for 0 # o € O,
(ideal-norm) N (a9) = o-(Galois norm) N ()
Proof: Without loss of generality, we can take K/k Galois, since

extending to the Galois closure F of K over k£ has the effect of
raising everything to the [F : K] power. With G = Gal(K/k),

[Tow = II em = (I]%) =0

e c€G /Gy Bilp

Thus, for an ideal 2 of O, [[, .o oA = (ideal-norm) NX2l- O

9
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On the other hand,

H o(aD) = (H a(a)) .9 = (Galois-norm) N (a) - O

oceG ceG

Combining these,
(ideal-norm) Ni* (o) - O = (Galois-norm) N (a) - O

The ideal norm N (o) is in o, by definition, and N () is in o.
Unique factorization into prime ideals in © proves

(ideal-norm) Ni* (a9) -0 = (Galois-norm) N () - o

as claimed. ///
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Equality of ideal and Galois norms eliminates ambiguities in
comparing the following general definition to simpler instances.

Now o must have finite residue fields. It suffices that its field of
fractions k is either a finite extension of Q or of F,(z).

And revert to using the ideal norm unadorned N to refer to the
ideal norm Na = #o/a.

Dedekind zeta functions: Even though the subscript should
make a reference to the ring o rather than k, the ring o is
essentially implied by specifying the field k. (This is not quite
true for functions fields, but never mind.)

Gkls) = Z Nlas

0#aCo

The Dedekind property and the same analysis as for Z suggests
(convergence?!) the Euler product

1 1
) = >y = M s

0#aCo p prime in o
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Understanding splitting /factorization of primes in extensions of 7Z
or of F,[x] gives

Proposition: The Euler product expression for (x(s) is
absolutely convergent for Re(s) > 1.

Proof: Treat the number field case. Group the Euler factors
according to the associated rational primes. The picture:

k 0 p

T~

o/p=~«

Q 7 p f(p/p)

Z/p:]Fp
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With po = p{*...py° with residue field extension degrees f;, and
S eifi = [k : Q], with o = Re(s),

1 1 1 f
=l - e = (=
1—Np_5 l—p—fU 1_p—0'
Thus,
1 1 [£:Q]
== = (=)
1—Np—s 1—p°
plp

and the Euler product for (;(s) is dominated by the Euler product
for C@(O'>[k:@], nicely convergent for Re(s) > 1. ///

Remark: The estimate

Ce(s)] < C@(U)[k@] (as 0 =Re(s) = 1T)

suggests a pole of order [k : Q] at s = 1, but, in fact, the pole is of
order 1 for all number fields k. [Below]




