1

The picture:

Theorem: In a Noetherian, integrally closed integral domain \mathfrak{o} in which every non-zero prime ideal is *maximal*, every non-zero ideal is *uniquely a product of prime ideals*, and the non-zero fractional ideals form a *group* under multiplication.

Proof: [van der Waerden, Lang] Let \mathfrak{o} be a Noetherian integral domain, integrally closed in its field of fractions, and every non-zero prime ideal is maximal.

First: given non-zero ideal \mathfrak{a} , there is a product of non-zero prime ideals *contained in* \mathfrak{a} . If not, by Noetherian-ness there is a *maximal* \mathfrak{a} failing to contain a product of primes, and \mathfrak{a} is not prime. Thus, there are $b, c \in \mathfrak{o}$ neither in \mathfrak{a} such that $bc \in \mathfrak{a}$. Thus, $\mathfrak{b} = \mathfrak{a} + \mathfrak{o}b$ and $\mathfrak{c} = \mathfrak{a} + \mathfrak{o}c$ are strictly larger than \mathfrak{a} , and $\mathfrak{bc} \subset \mathfrak{a}$.

Since \mathfrak{a} was maximal among ideals not containing a product of primes, both $\mathfrak{b}, \mathfrak{c}$ contain such products. But then their product $\mathfrak{bc} \subset \mathfrak{a}$ does, contradiction.

Second: for maximal \mathfrak{m} , the \mathfrak{o} -module $\mathfrak{m}^{-1} = \{x \in k : x\mathfrak{m} \subset \mathfrak{o}\}$ is strictly larger than \mathfrak{o} . Certainly $\mathfrak{m}^{-1} \supset \mathfrak{o}$, since \mathfrak{m} is an ideal. We claim that \mathfrak{m}^{-1} is strictly larger than \mathfrak{o} . Indeed, for $m \in \mathfrak{m}$ and a (smallest possible) product of primes \mathfrak{p}_j such that $\mathfrak{p}_1 \dots \mathfrak{p}_n \subset m\mathfrak{o}$.

Since $m \mathfrak{o} \subset \mathfrak{m}$ and \mathfrak{m} is prime, $\mathfrak{p}_j \subset \mathfrak{m}$ for at least one \mathfrak{p}_j , say \mathfrak{p}_1 . Since every (non-zero) prime is maximal, $\mathfrak{p}_1 = \mathfrak{m}$.

By minimality, $\mathfrak{p}_2 \dots \mathfrak{p}_n \not\subset m\mathfrak{o}$. That is, there is $y \in \mathfrak{p}_2 \dots \mathfrak{p}_n$ but $y \not\in m\mathfrak{o}$, or $m^{-1}y \not\in \mathfrak{o}$. But $y\mathfrak{m} = y\mathfrak{p}_1 \subset m\mathfrak{o}$, so $m^{-1}y\mathfrak{m} \subset \mathfrak{o}$, and $m^{-1}y \in \mathfrak{m}^{-1}$ but not in \mathfrak{o} .

Third: maximal \mathfrak{m} is invertible. By this point, $\mathfrak{m} \subset \mathfrak{m}^{-1}\mathfrak{m} \subset \mathfrak{o}$. By maximality of \mathfrak{m} , either $\mathfrak{m}^{-1}\mathfrak{m} = \mathfrak{m}$ or $\mathfrak{m}^{-1}\mathfrak{m} = \mathfrak{o}$.

The Noetherian-ness of \mathfrak{o} implies that \mathfrak{m} is finitely-generated. A relation $\mathfrak{m}^{-1}\mathfrak{m} = \mathfrak{m}$ would show that \mathfrak{m}^{-1} stabilizes a non-zero, finitely-generated \mathfrak{o} -module. Since \mathfrak{o} is integrally closed in k, this would give $\mathfrak{m}^{-1} \subset \mathfrak{o}$, but we have seen otherwise. Thus, we have the inversion relation $\mathfrak{m}^{-1}\mathfrak{m} = \mathfrak{o}$ for maximal \mathfrak{m} .

Fourth: every non-zero ideal \mathfrak{a} has inverse $\mathfrak{a}^{-1} = \{y \in k : y\mathfrak{a} \subset \mathfrak{o}\}$. If not, there is maximal \mathfrak{a} failing this, and \mathfrak{a} cannot be a maximal ideal, by the previous step. Thus, \mathfrak{a} is properly contained in some maximal ideal \mathfrak{m} . Certainly $\mathfrak{a} \subset \mathfrak{m}^{-1}\mathfrak{a} \subset \mathfrak{a}^{-1}\mathfrak{a} \subset \mathfrak{o}$. Integral-closedness of \mathfrak{o} and $\mathfrak{m}^{-1} \neq \mathfrak{o}$, $\mathfrak{m}^{-1} \supset \mathfrak{o}$ show that $\mathfrak{m}^{-1}\mathfrak{a} \not\subset \mathfrak{a}$.

Since $\mathfrak{m}^{-1}\mathfrak{a}$ is strictly larger than \mathfrak{a} , it has inverse \mathfrak{f} . Thus, $(\mathfrak{f}\mathfrak{m}^{-1})\mathfrak{a} = \mathfrak{f}(\mathfrak{m}^{-1}\mathfrak{a}) = \mathfrak{o}$, and $\mathfrak{f}\mathfrak{m}^{-1}$ is an inverse for \mathfrak{a} , contradiction.

Fifth: ideals a have *unique* inverses. For fractional ideal \mathfrak{f} such that $\mathfrak{fa} = \mathfrak{o}$, certainly $\mathfrak{f} \subset \{y \in k : y\mathfrak{a} \subset \mathfrak{o}\}$. On the other hand, for $y\mathfrak{a} \subset \mathfrak{o}$, multiply by \mathfrak{f} to obtain $y\mathfrak{a}\mathfrak{f} \subset \mathfrak{f}$. Since $\mathfrak{a}\mathfrak{f} = \mathfrak{o} \ni 1$, $y \in \mathfrak{f}$.

Sixth: every fractional ideal \mathfrak{f} is uniquely invertible, and $\mathfrak{a} \subset \mathfrak{b}$ implies $\mathfrak{a}^{-1} \supset \mathfrak{b}^{-1}$. Let $0 \neq c \in \mathfrak{o}$ such that $c\mathfrak{f} \subset \mathfrak{o}$. Then $c\mathfrak{f}$ has unique inverse \mathfrak{k} , and \mathfrak{f} has unique inverse $c^{-1}\mathfrak{k}$. For $\mathfrak{a} \subset \mathfrak{b}$, visibly $\{x \in k : x\mathfrak{a} \subset \mathfrak{o}\} \supset \{x \in k : x\mathfrak{b} \subset \mathfrak{o}\}$, so inversion is inclusionreversing.

Seventh: every ideal \mathfrak{a} is a product of prime ideals. If not, let \mathfrak{a} be maximal among failures. It is not prime, so is properly contained in maximal \mathfrak{m} . Then $\mathfrak{a} \subset \mathfrak{m}$ gives $\mathfrak{m}^{-1}\mathfrak{a} \subset \mathfrak{o}$. Invertibility of fractional ideals gives $\mathfrak{m}^{-1}\mathfrak{a} \neq \mathfrak{o}$ and $\mathfrak{m}^{-1}\mathfrak{a} \neq \mathfrak{a}$. Thus, $\mathfrak{m}^{-1}\mathfrak{a}$ is a proper ideal strictly larger than \mathfrak{a} , and is a product of primes. Multiplication by \mathfrak{m} expresses \mathfrak{a} as a product, contradiction.

Eighth: for *fractional* ideals $\mathfrak{a}, \mathfrak{b}$, the **divisibility** property $\mathfrak{a}|\mathfrak{b}$, meaning there is an *ideal* \mathfrak{c} such that $\mathfrak{c} \cdot \mathfrak{a} = \mathfrak{b}$, is equivalent to $\mathfrak{a} \supset \mathfrak{b}$. Indeed, on one hand, $\mathfrak{c} \subset \mathfrak{o}$ gives $\mathfrak{b} = \mathfrak{c}\mathfrak{a} \subset \mathfrak{o}\mathfrak{a} = \mathfrak{a}$. On the other hand, for $\mathfrak{a} \supset \mathfrak{b}$, since inversion is inclusion-reversing, $\mathfrak{a}^{-1} \subset \mathfrak{b}^{-1}$, so $\mathfrak{c} \subset \mathfrak{a}^{-1}\mathfrak{b} \subset \mathfrak{o}$.

Ninth: unique factorization of ideals into primes. The definition of prime ideal \mathfrak{p} gives $\mathfrak{ab} \subset \mathfrak{p}$ only when $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$, for ideals $\mathfrak{a}, \mathfrak{b}$. That is, $\mathfrak{p}|\mathfrak{a}\mathfrak{b}$ implies $\mathfrak{p}|\mathfrak{a}$ or $\mathfrak{p}|\mathfrak{b}$. Given two factorizations

$$\mathfrak{p}_1\ldots\mathfrak{p}_m = \mathfrak{a} = \mathfrak{q}_1\ldots\mathfrak{q}_n$$

 \mathfrak{p}_1 must divide some \mathfrak{q}_j , thus, $\mathfrak{p}_1 = \mathfrak{q}_j$. Renumber so $\mathfrak{p}_1 = \mathfrak{q}_1$. Using *invertibility*, multiply by \mathfrak{p}_1^{-1} , obtaining $\mathfrak{p}_2 \dots \mathfrak{p}_m = \mathfrak{q}_2 \dots \mathfrak{q}_n$ and use induction.

Tenth: unique factorization of *fractional ideals*. Given fractional \mathfrak{a} , take $0 \neq c \in \mathfrak{o}$ such that $c\mathfrak{a} \subset \mathfrak{o} = \mathfrak{p}_1 \dots \mathfrak{p}_m$. Let $c\mathfrak{o} = \mathfrak{q}_1 \dots \mathfrak{q}_n$. Then

$$\mathfrak{a} = (\mathfrak{p}_1 \dots \mathfrak{p}_m) \cdot (\mathfrak{q}_1 \dots \mathfrak{q}_n)^{-1} = rac{\mathfrak{p}_1 \dots \mathfrak{p}_m}{\mathfrak{q}_1 \dots \mathfrak{q}_n}$$

Cancel any common factors.

The order $\operatorname{ord}_{\mathfrak{p}}\mathfrak{a}$ at prime \mathfrak{p} of a (non-zero) fractional ideal \mathfrak{a} is the integer exponent of \mathfrak{p} appearing in a factorization of \mathfrak{a} :

 $\mathfrak{a} = \mathfrak{p}^{\mathrm{ord}_{\mathfrak{p}}\mathfrak{a}} \cdot (\text{primes distinct from } \mathfrak{p})$ Similarly for $\alpha \in k^{\times}$, $\mathrm{ord}_{\mathfrak{p}}\alpha = \mathrm{ord}_{\mathfrak{p}}\alpha\mathfrak{o}$.

Elements or fractional ideals are (locally) integral at \mathfrak{p} , when their \mathfrak{p} -orders are non-negative. An element is a \mathfrak{p} -unit when its \mathfrak{p} -ord is 0.

Corollary: For Dedekind \mathfrak{o} , an element $\alpha \in k$ is in \mathfrak{o} if and only if it is \mathfrak{p} -integral everywhere locally. A fractional ideal \mathfrak{f} is a genuine ideal if and only if it is \mathfrak{p} -integral everywhere locally.

Proof: Unique factorization: if $\mathfrak{f} = (\mathfrak{p}_1 \dots \mathfrak{p}_m) \cdot (\mathfrak{q}_1 \dots \mathfrak{q}_n)^{-1}$ is inside \mathfrak{o} , then $\mathfrak{p}_1 \dots \mathfrak{p}_m \subset \mathfrak{q}_1 \dots \mathfrak{q}_n$. ///

Lemma: Localization $S^{-1}\mathfrak{o}$ is Dedekind. The primes of $S^{-1}\mathfrak{o}$ are $S^{-1}\mathfrak{p}$ for primes \mathfrak{p} of \mathfrak{o} not meeting S. Factorization of fractional ideals behaves like

$$S^{-1}\left(\prod_{\mathfrak{p}}\mathfrak{p}^{e(\mathfrak{p})}\right) = \prod_{\mathfrak{p}:\mathfrak{p}\cap S=\phi} (S^{-1}\mathfrak{p})^{e(\mathfrak{p})}$$

Proof: The integral domain property is preserved, because $S^{-1}\mathfrak{o}$ sits inside the field of fractions. Noetherian-ness is preserved: there are fewer ideals in $S^{-1}\mathfrak{o}$ than in \mathfrak{o} . Integral closedness: for $\alpha \in k$ integral over $S^{-1}\mathfrak{o}$, multiply out the denominators (from S) of the coefficients, obtaining an equation of the form

$$s \cdot \alpha^n + c_{n-1}\alpha^{n-1} + \ldots + c_1\alpha + c_o = 0 \qquad (\text{with } s \in S)$$

Thus,

$$(s\alpha)^{n} + (c_{n-1}s) \cdot (s\alpha)^{n-1} + \ldots + (c_{1}s^{n-1})(s\alpha) + (s^{n}c_{o}) = 0$$

By integral closedness, $s\alpha \in \mathfrak{o}$, and $\alpha \in S^{-1}\mathfrak{o}$.

A prime \mathfrak{p} meeting S becomes the whole ring $S^{-1}\mathfrak{o}$. For \mathfrak{p} not meeting S, if (x/s)(y/t) = z/u with $x, y \in \mathfrak{o}, z \in \mathfrak{p}$, and $s, t, u \in S$, then $u \cdot xy = st \cdot z$. Since $z \in \mathfrak{p}$ and $u \notin \mathfrak{p}, xy \in \mathfrak{p}$. Thus, $S^{-1}\mathfrak{p}$ is prime. Likewise, non-zero primes are *maximal*.

If $S^{-1}\mathfrak{p} = S^{-1}\mathfrak{q}$ for primes $\mathfrak{p}, \mathfrak{q}$, then $s\mathfrak{p} = \mathfrak{q}$ for some $s \in S \subset \mathfrak{o}$. Unique factorization of $s \cdot \mathfrak{o}$ shows $s \in \mathfrak{o}^{\times}$ and $\mathfrak{p} = \mathfrak{q}$.

Finally, with S containing 1 and closed under multiplication, $S^{-1}(\mathfrak{ab}) = (S^{-1}\mathfrak{a}) \cdot (S^{-1}\mathfrak{b})$ for all fractional ideals $\mathfrak{a}, \mathfrak{b}$, from the definition of the multiplication $\mathfrak{a} \cdot \mathfrak{b}$. This gives the factorization in the localization. /// When we only care about finitely-many primes...:

Proposition: Dedekind with finitely-many primes \Rightarrow PID.

Proof: Let the primes be $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$. Since $\mathfrak{p}_j^2 \neq \mathfrak{p}_j$, there is $\varpi_j \in \mathfrak{p}_j - \mathfrak{p}_j^2$. Given $\mathfrak{a} = \mathfrak{p}_1^{e_1} \ldots \mathfrak{p}_n^{e_n}$, Sun-Ze's theorem gives a solution in \mathfrak{o} of

$$x = \varpi_j^{e_j} \mod \mathfrak{p}_j^{e_j+1}$$
 (for $j = 1, \dots, n$)

The principal ideal $x\mathfrak{o}$ has a prime factorization, with the same exponents as \mathfrak{a} . ///

Corollary: The localization of Dedekind \mathfrak{o} at a prime \mathfrak{p} is a PID, with unique prime $(\mathfrak{o} - \mathfrak{p})^{-1} \cdot \mathfrak{p}$.

Big Corollary: For Dedekind \mathfrak{o} in field of fractions k, the integral closure \mathfrak{O} in a finite separable extension K/k is Dedekind.

Proof: Use the theorem characterizing Dedekind domains. \mathfrak{O} is an integral domain and is integrally closed. By the Lying-Over theorem, primes \mathfrak{P} in \mathfrak{O} over non-zero, hence maximal, primes \mathfrak{p} in \mathfrak{o} are maximal.

Conversely, any prime \mathfrak{P} of \mathfrak{O} meets \mathfrak{o} in a prime ideal \mathfrak{p} . As observed earlier, \mathfrak{p} cannot be 0, because Galois norms from \mathfrak{P} are in $\mathfrak{o} \cap \mathfrak{P}$ and are non-zero. Thus, \mathfrak{p} is maximal, and by Lying-Over \mathfrak{P} is maximal.

Noetherian-ness follows from the earlier result that \mathfrak{O} is finitelygenerated over \mathfrak{o} , using the non-degeneracy of the *trace pairing* corresponding to the finite separable extension K/k. ///

Ramification, residue field extension degrees: e, f, g

Prime \mathfrak{p} in \mathfrak{o} factors in an integral extension as $\mathfrak{p}\mathfrak{O} = \prod_{\mathfrak{P}} \mathfrak{P}^{e(\mathfrak{P}/\mathfrak{p})}$. The exponents $e(\mathfrak{P}/\mathfrak{p})$ are **ramification** indices.

The residue field extensions $\tilde{\kappa} = \mathfrak{O}/\mathfrak{P}$ over $\kappa = \mathfrak{o}/\mathfrak{p}$ have degrees $f(\mathfrak{P}/\mathfrak{p}) = [\tilde{\kappa} : \kappa].$

Theorem: For fixed \mathfrak{p} in \mathfrak{o} ,

$$\sum_{\mathfrak{P}|\mathfrak{p}} e(\mathfrak{P}/\mathfrak{p}) \cdot f(\mathfrak{P}/\mathfrak{p}) = [K:k]$$

For K/k Galois, the ramification indices e and residue field extension degrees f depend only on \mathfrak{p} (and K/k), and in that case

 $e \cdot f \cdot (\text{number of primes } \mathfrak{P}|\mathfrak{p}) = [K:k]$