The picture:

Theorem: In a Noetherian, integrally closed integral domain \mathfrak{o} in which every non-zero prime ideal is maximal, every non-zero ideal is uniquely a product of prime ideals, and the non-zero fractional ideals form a group under multiplication.

Proof: [van der Waerden, Lang] Let \mathfrak{o} be a Noetherian integral domain, integrally closed in its field of fractions, and every nonzero prime ideal is maximal.

First: given non-zero ideal \mathfrak{a}, there is a product of non-zero prime ideals contained in \mathfrak{a}. If not, by Noetherian-ness there is a maximal \mathfrak{a} failing to contain a product of primes, and \mathfrak{a} is not prime. Thus, there are $b, c \in \mathfrak{o}$ neither in \mathfrak{a} such that $b c \in \mathfrak{a}$. Thus, $\mathfrak{b}=\mathfrak{a}+\mathfrak{o b}$ and $\mathfrak{c}=\mathfrak{a}+\mathfrak{o} c$ are strictly larger than \mathfrak{a}, and $\mathfrak{b c} \subset \mathfrak{a}$.

Since \mathfrak{a} was maximal among ideals not containing a product of primes, both $\mathfrak{b}, \mathfrak{c}$ contain such products. But then their product $\mathfrak{b c} \subset \mathfrak{a}$ does, contradiction.

Second: for maximal \mathfrak{m}, the \mathfrak{o}-module $\mathfrak{m}^{-1}=\{x \in k: x \mathfrak{m} \subset \mathfrak{o}\}$ is strictly larger than \mathfrak{o}. Certainly $\mathfrak{m}^{-1} \supset \mathfrak{o}$, since \mathfrak{m} is an ideal. We claim that \mathfrak{m}^{-1} is strictly larger than \mathfrak{o}. Indeed, for $m \in \mathfrak{m}$ and a (smallest possible) product of primes \mathfrak{p}_{j} such that $\mathfrak{p}_{1} \ldots \mathfrak{p}_{n} \subset$ mo.

Since $m \mathfrak{o} \subset \mathfrak{m}$ and \mathfrak{m} is prime, $\mathfrak{p}_{j} \subset \mathfrak{m}$ for at least one \mathfrak{p}_{j}, say \mathfrak{p}_{1}. Since every (non-zero) prime is maximal, $\mathfrak{p}_{1}=\mathfrak{m}$.

By minimality, $\mathfrak{p}_{2} \ldots \mathfrak{p}_{n} \not \subset m \mathfrak{o}$. That is, there is $y \in \mathfrak{p}_{2} \ldots \mathfrak{p}_{n}$ but $y \notin m \mathfrak{o}$, or $m^{-1} y \notin \mathfrak{o}$. But $y \mathfrak{m}=y \mathfrak{p}_{1} \subset m \mathfrak{o}$, so $m^{-1} y \mathfrak{m} \subset \mathfrak{o}$, and $m^{-1} y \in \mathfrak{m}^{-1}$ but not in \mathfrak{o}.

Third: maximal \mathfrak{m} is invertible. By this point, $\mathfrak{m} \subset \mathfrak{m}^{-1} \mathfrak{m} \subset \mathfrak{o}$. By maximality of \mathfrak{m}, either $\mathfrak{m}^{-1} \mathfrak{m}=\mathfrak{m}$ or $\mathfrak{m}^{-1} \mathfrak{m}=\mathfrak{o}$.

The Noetherian-ness of \mathfrak{o} implies that \mathfrak{m} is finitely-generated. A relation $\mathfrak{m}^{-1} \mathfrak{m}=\mathfrak{m}$ would show that \mathfrak{m}^{-1} stabilizes a non-zero, finitely-generated \mathfrak{o}-module. Since \mathfrak{o} is integrally closed in k, this would give $\mathfrak{m}^{-1} \subset \mathfrak{o}$, but we have seen otherwise. Thus, we have the inversion relation $\mathfrak{m}^{-1} \mathfrak{m}=\mathfrak{o}$ for maximal \mathfrak{m}.

Fourth: every non-zero ideal \mathfrak{a} has inverse $\mathfrak{a}^{-1}=\{y \in k: y \mathfrak{a} \subset \mathfrak{o}\}$. If not, there is maximal \mathfrak{a} failing this, and \mathfrak{a} cannot be a maximal ideal, by the previous step. Thus, \mathfrak{a} is properly contained in some maximal ideal \mathfrak{m}. Certainly $\mathfrak{a} \subset \mathfrak{m}^{-1} \mathfrak{a} \subset \mathfrak{a}^{-1} \mathfrak{a} \subset \mathfrak{o}$. Integralclosedness of \mathfrak{o} and $\mathfrak{m}^{-1} \neq \mathfrak{o}, \mathfrak{m}^{-1} \supset \mathfrak{o}$ show that $\mathfrak{m}^{-1} \mathfrak{a} \not \subset \mathfrak{a}$.

Since $\mathfrak{m}^{-1} \mathfrak{a}$ is strictly larger than \mathfrak{a}, it has inverse \mathfrak{f}. Thus, $\left(\mathfrak{f m}{ }^{-1}\right) \mathfrak{a}=\mathfrak{f}\left(\mathfrak{m}^{-1} \mathfrak{a}\right)=\mathfrak{o}$, and $\mathfrak{f m}^{-1}$ is an inverse for \mathfrak{a}, contradiction.

Fifth: ideals \mathfrak{a} have unique inverses. For fractional ideal \mathfrak{f} such that $\mathfrak{f a}=\mathfrak{o}$, certainly $\mathfrak{f} \subset\{y \in k: y \mathfrak{a} \subset \mathfrak{o}\}$. On the other hand, for $y \mathfrak{a} \subset \mathfrak{o}$, multiply by \mathfrak{f} to obtain $y \mathfrak{a} \mathfrak{f} \subset \mathfrak{f}$. Since $\mathfrak{a f}=\mathfrak{o} \ni 1, y \in \mathfrak{f}$.

Sixth: every fractional ideal \mathfrak{f} is uniquely invertible, and $\mathfrak{a} \subset \mathfrak{b}$ implies $\mathfrak{a}^{-1} \supset \mathfrak{b}^{-1}$. Let $0 \neq c \in \mathfrak{o}$ such that $c \mathfrak{f} \subset \mathfrak{o}$. Then $c \mathfrak{f}$ has unique inverse \mathfrak{k}, and \mathfrak{f} has unique inverse $c^{-1} \mathfrak{k}$. For $\mathfrak{a} \subset \mathfrak{b}$, visibly $\{x \in k: x \mathfrak{a} \subset \mathfrak{o}\} \supset\{x \in k: x \mathfrak{b} \subset \mathfrak{o}\}$, so inversion is inclusionreversing.

Seventh: every ideal \mathfrak{a} is a product of prime ideals. If not, let \mathfrak{a} be maximal among failures. It is not prime, so is properly contained in maximal \mathfrak{m}. Then $\mathfrak{a} \subset \mathfrak{m}$ gives $\mathfrak{m}^{-1} \mathfrak{a} \subset \mathfrak{o}$. Invertibility of fractional ideals gives $\mathfrak{m}^{-1} \mathfrak{a} \neq \mathfrak{o}$ and $\mathfrak{m}^{-1} \mathfrak{a} \neq \mathfrak{a}$. Thus, $\mathfrak{m}^{-1} \mathfrak{a}$ is a proper ideal strictly larger than \mathfrak{a}, and is a product of primes. Multiplication by \mathfrak{m} expresses \mathfrak{a} as a product, contradiction.

Eighth: for fractional ideals $\mathfrak{a}, \mathfrak{b}$, the divisibility property $\mathfrak{a} \mid \mathfrak{b}$, meaning there is an ideal \mathfrak{c} such that $\mathfrak{c} \cdot \mathfrak{a}=\mathfrak{b}$, is equivalent to $\mathfrak{a} \supset \mathfrak{b}$. Indeed, on one hand, $\mathfrak{c} \subset \mathfrak{o}$ gives $\mathfrak{b}=\mathfrak{c a} \subset \mathfrak{o a}=\mathfrak{a}$. On the other hand, for $\mathfrak{a} \supset \mathfrak{b}$, since inversion is inclusion-reversing, $\mathfrak{a}^{-1} \subset \mathfrak{b}^{-1}$, so $\mathfrak{c} \subset \mathfrak{a}^{-1} \mathfrak{b} \subset \mathfrak{o}$.

Ninth: unique factorization of ideals into primes. The definition of prime ideal \mathfrak{p} gives $\mathfrak{a b} \subset \mathfrak{p}$ only when $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$, for ideals $\mathfrak{a}, \mathfrak{b}$. That is, $\mathfrak{p} \mid \mathfrak{a b}$ implies $\mathfrak{p} \mid \mathfrak{a}$ or $\mathfrak{p} \mid \mathfrak{b}$. Given two factorizations

$$
\mathfrak{p}_{1} \ldots \mathfrak{p}_{m}=\mathfrak{a}=\mathfrak{q}_{1} \ldots \mathfrak{q}_{n}
$$

\mathfrak{p}_{1} must divide some \mathfrak{q}_{j}, thus, $\mathfrak{p}_{1}=\mathfrak{q}_{j}$. Renumber so $\mathfrak{p}_{1}=\mathfrak{q}_{1}$. Using invertibility, multiply by \mathfrak{p}_{1}^{-1}, obtaining $\mathfrak{p}_{2} \ldots \mathfrak{p}_{m}=\mathfrak{q}_{2} \ldots \mathfrak{q}_{n}$ and use induction.

Tenth: unique factorization of fractional ideals. Given fractional \mathfrak{a}, take $0 \neq c \in \mathfrak{o}$ such that $c \mathfrak{a} \subset \mathfrak{o}=\mathfrak{p}_{1} \ldots \mathfrak{p}_{m}$. Let $c \mathfrak{o}=\mathfrak{q}_{1} \ldots \mathfrak{q}_{n}$. Then

$$
\mathfrak{a}=\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{m}\right) \cdot\left(\mathfrak{q}_{1} \ldots \mathfrak{q}_{n}\right)^{-1}=\frac{\mathfrak{p}_{1} \ldots \mathfrak{p}_{m}}{\mathfrak{q}_{1} \ldots \mathfrak{q}_{n}}
$$

Cancel any common factors.

The order ord $\mathfrak{p} \mathfrak{a}$ at prime \mathfrak{p} of a (non-zero) fractional ideal \mathfrak{a} is the integer exponent of \mathfrak{p} appearing in a factorization of \mathfrak{a} :

$$
\mathfrak{a}=\mathfrak{p}^{\operatorname{ord}_{\mathfrak{p}} \mathfrak{a}} \cdot(\text { primes distinct from } \mathfrak{p})
$$

Similarly for $\alpha \in k^{\times}, \operatorname{ord}_{\mathfrak{p}} \alpha=\operatorname{ord}_{\mathfrak{p}} \alpha \mathbf{0}$.
Elements or fractional ideals are (locally) integral at \mathfrak{p}, when their \mathfrak{p}-orders are non-negative. An element is a \mathfrak{p}-unit when its \mathfrak{p}-ord is 0 .

Corollary: For Dedekind \mathfrak{o}, an element $\alpha \in k$ is in \mathfrak{o} if and only if it is \mathfrak{p}-integral everywhere locally. A fractional ideal \mathfrak{f} is a genuine ideal if and only if it is \mathfrak{p}-integral everywhere locally. Proof: Unique factorization: if $\mathfrak{f}=\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{m}\right) \cdot\left(\mathfrak{q}_{1} \ldots \mathfrak{q}_{n}\right)^{-1}$ is inside \mathfrak{o}, then $\mathfrak{p}_{1} \ldots \mathfrak{p}_{m} \subset \mathfrak{q}_{1} \ldots \mathfrak{q}_{n}$.

Lemma: Localization $S^{-1} \mathfrak{o}$ is Dedekind. The primes of $S^{-1} \mathfrak{o}$ are $S^{-1} \mathfrak{p}$ for primes \mathfrak{p} of \mathfrak{o} not meeting S. Factorization of fractional ideals behaves like

$$
S^{-1}\left(\prod_{\mathfrak{p}} \mathfrak{p}^{e(\mathfrak{p})}\right)=\prod_{\mathfrak{p}: \mathfrak{p} \cap S=\phi}\left(S^{-1} \mathfrak{p}\right)^{e(\mathfrak{p})}
$$

Proof: The integral domain property is preserved, because $S^{-1} \mathfrak{o}$ sits inside the field of fractions. Noetherian-ness is preserved: there are fewer ideals in $S^{-1} \mathfrak{o}$ than in \mathfrak{o}. Integral closedness: for $\alpha \in k$ integral over $S^{-1} \mathfrak{o}$, multiply out the denominators (from S) of the coefficients, obtaining an equation of the form

$$
s \cdot \alpha^{n}+c_{n-1} \alpha^{n-1}+\ldots+c_{1} \alpha+c_{o}=0 \quad(\text { with } s \in S)
$$

Thus,

$$
(s \alpha)^{n}+\left(c_{n-1} s\right) \cdot(s \alpha)^{n-1}+\ldots+\left(c_{1} s^{n-1}\right)(s \alpha)+\left(s^{n} c_{o}\right)=0
$$

By integral closedness, $s \alpha \in \mathfrak{o}$, and $\alpha \in S^{-1} \mathfrak{o}$.
A prime \mathfrak{p} meeting S becomes the whole ring $S^{-1} \mathfrak{o}$. For \mathfrak{p} not meeting S, if $(x / s)(y / t)=z / u$ with $x, y \in \mathfrak{o}, z \in \mathfrak{p}$, and $s, t, u \in S$, then $u \cdot x y=s t \cdot z$. Since $z \in \mathfrak{p}$ and $u \notin \mathfrak{p}, x y \in \mathfrak{p}$. Thus, $S^{-1} \mathfrak{p}$ is prime. Likewise, non-zero primes are maximal.

If $S^{-1} \mathfrak{p}=S^{-1} \mathfrak{q}$ for primes $\mathfrak{p}, \mathfrak{q}$, then $s \mathfrak{p}=\mathfrak{q}$ for some $s \in S \subset \mathfrak{o}$. Unique factorization of $s \cdot \mathfrak{o}$ shows $s \in \mathfrak{o}^{\times}$and $\mathfrak{p}=\mathfrak{q}$.

Finally, with S containing 1 and closed under multiplication, $S^{-1}(\mathfrak{a b})=\left(S^{-1} \mathfrak{a}\right) \cdot\left(S^{-1} \mathfrak{b}\right)$ for all fractional ideals $\mathfrak{a}, \mathfrak{b}$, from the definition of the multiplication $\mathfrak{a} \cdot \mathfrak{b}$. This gives the factorization in the localization.

When we only care about finitely-many primes...:
Proposition: Dedekind with finitely-many primes \Rightarrow PID.
Proof: Let the primes be $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$. Since $\mathfrak{p}_{j}^{2} \neq \mathfrak{p}_{j}$, there is $\varpi_{j} \in \mathfrak{p}_{j}-\mathfrak{p}_{j}^{2}$. Given $\mathfrak{a}=\mathfrak{p}_{1}^{e_{1}} \ldots \mathfrak{p}_{n}^{e_{n}}$, Sun-Ze's theorem gives a solution in \mathfrak{o} of

$$
x=\varpi_{j}^{e_{j}} \bmod \mathfrak{p}_{j}^{e_{j}+1} \quad(\text { for } j=1, \ldots, n)
$$

The principal ideal $x \mathfrak{o}$ has a prime factorization, with the same exponents as \mathfrak{a}.

Corollary: The localization of Dedekind \mathfrak{o} at a prime \mathfrak{p} is a PID, with unique prime $(\mathfrak{o}-\mathfrak{p})^{-1} \cdot \mathfrak{p}$.

Big Corollary: For Dedekind \mathfrak{o} in field of fractions k, the integral closure \mathfrak{O} in a finite separable extension K / k is Dedekind.
Proof: Use the theorem characterizing Dedekind domains. \mathfrak{O} is an integral domain and is integrally closed. By the Lying-Over theorem, primes \mathfrak{P} in \mathfrak{O} over non-zero, hence maximal, primes \mathfrak{p} in \mathfrak{o} are maximal.

Conversely, any prime \mathfrak{P} of \mathfrak{O} meets \mathfrak{o} in a prime ideal \mathfrak{p}. As observed earlier, \mathfrak{p} cannot be 0 , because Galois norms from \mathfrak{P} are in $\mathfrak{o} \cap \mathfrak{P}$ and are non-zero. Thus, \mathfrak{p} is maximal, and by Lying-Over \mathfrak{P} is maximal.

Noetherian-ness follows from the earlier result that \mathfrak{O} is finitelygenerated over \mathfrak{o}, using the non-degeneracy of the trace pairing corresponding to the finite separable extension K / k.

Ramification, residue field extension degrees: e, f, g
Prime \mathfrak{p} in \mathfrak{o} factors in an integral extension as $\mathfrak{p} \mathfrak{O}=\prod_{\mathfrak{P}} \mathfrak{P}^{e(\mathfrak{P} / \mathfrak{p})}$. The exponents $e(\mathfrak{P} / \mathfrak{p})$ are ramification indices.

The residue field extensions $\tilde{\kappa}=\mathfrak{O} / \mathfrak{P}$ over $\kappa=\mathfrak{o} / \mathfrak{p}$ have degrees $f(\mathfrak{P} / \mathfrak{p})=[\tilde{\kappa}: \kappa]$.

Theorem: For fixed \mathfrak{p} in \mathfrak{o},

$$
\sum_{\mathfrak{P} \mid \mathfrak{p}} e(\mathfrak{P} / \mathfrak{p}) \cdot f(\mathfrak{P} / \mathfrak{p})=[K: k]
$$

For K / k Galois, the ramification indices e and residue field extension degrees f depend only on \mathfrak{p} (and K / k), and in that case

$$
e \cdot f \cdot(\text { number of primes } \mathfrak{P} \mid \mathfrak{p})=[K: k]
$$

