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Theorem: In a Noetherian, integrally closed integral domain o in
which every non-zero prime ideal is maximal, every non-zero ideal
is uniquely a product of prime ideals, and the non-zero fractional
ideals form a group under multiplication.

Proof: [van der Waerden, Lang| Let o be a Noetherian integral
domain, integrally closed in its field of fractions, and every non-
zero prime ideal is maximal.

First: given non-zero ideal a, there is a product of non-zero

prime ideals contained in a. If not, by Noetherian-ness there is

a mazimal a failing to contain a product of primes, and a is not
prime. Thus, there are b, c € 0 neither in a such that bc € a. Thus,
b=a+ o0oband ¢ = a+ oc are strictly larger than a, and bc C a.

Since a was maximal among ideals not containing a product of
primes, both b, ¢ contain such products. But then their product
bc C a does, contradiction.
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Second: for maximal m, the o-module m~! = {x € k : z2m C o} is
strictly larger than o. Certainly m~! D o, since m is an ideal. We
claim that m™1! is strictly larger than o. Indeed, for m € m and a
(smallest possible) product of primes p; such that p; ...p, C mo.

Since mo C m and m is prime, p; C m for at least one p;, say p;.
Since every (non-zero) prime is maximal, p; = m.

By minimality, po...p, ¢ mo. That is, there is y € p5...p, but
y € mo, or m ly € 0. But ym = yp; C mo, so m tym C o, and
m~1y € m~! but not in o.

Third: maximal m is invertible. By this point, m C m~!m C 0. By
maximality of m, either m™'m =m or m~'m = o.
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The Noetherian-ness of o implies that m is finitely-generated. A
relation m~'m = m would show that m~! stabilizes a non-zero,
finitely-generated o-module. Since o is integrally closed in k, this
would give m~! C o, but we have seen otherwise. Thus, we have
the inversion relation m~!'m = o for maximal m.

Fourth: every non-zero ideal a has inverse a™! = {y € k : ya C o}.
If not, there is maximal a failing this, and a cannot be a maximal
ideal, by the previous step. Thus, a is properly contained in some
maximal ideal m. Certainly a C m~'a C a~la C o. Integral-
closedness of 0 and m~! # 0, m™! D 0 show that m~la ¢ a.

Since m~1a is strictly larger than a, it has inverse f. Thus,
(fm~a=f(m la)=o0, and fm~! is an inverse for a, contradiction.

Fifth: ideals a have unique inverses. For fractional ideal | such
that fa = o, certainly f C {y € k : ya C o}. On the other hand, for
ya C o, multiply by f to obtain yaj C §. Since af =031, y € §.
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Sixth: every fractional ideal f is uniquely invertible, and a C b
implies a=! D b~1. Let 0 # ¢ € o such that ¢f C 0. Then cf has
unique inverse £, and § has unique inverse ¢~ €. For a C b, visibly
{r € k:za Co} D{x € k:xb C o}, so inversion is inclusion-
reversing.

Seventh: every ideal a is a product of prime ideals. If not, let a be
maximal among failures. It is not prime, so is properly contained
in maximal m. Then a C m gives m™ta C o. Invertibility of
fractional ideals gives m™'a # o and m~'a # a. Thus, m™la is

a proper ideal strictly larger than a, and is a product of primes.
Multiplication by m expresses a as a product, contradiction.

Eighth: for fractional ideals a, b, the divisibility property a|b,
meaning there is an ideal ¢ such that ¢ - a = b, is equivalent to
a D b. Indeed, on one hand, ¢ C o0 gives b = ca C oa = a. On
the other hand, for a D b, since inversion is inclusion-reversing,
alcb !l soccalbcCo.
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Ninth: unique factorization of ideals into primes. The definition of
prime ideal p gives ab C p only when a C p or b C p, for ideals
a,b. That is, p|ab implies p|a or p|b. Given two factorizations

P1...Ppmp = a = (q1...qn
p1 must divide some q;, thus, p;1 = q;. Renumber so p; = q;.
Using tnvertibility, multiply by pl_l, obtaining ps...Ppm = q2...0qn
and use induction.

Tenth: unique factorization of fractional ideals. Given fractional a,
take 0 # ¢ € o such that ca C 0 = p1...p;m. Let co = q1...qn.

Then
pl .. pm

di1 .. -gn

Cancel any common factors. ///

a = (Pl---Pm)'(Ch---CIn)_l =
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The order ordya at prime p of a (non-zero) fractional ideal a is
the integer exponent of p appearing in a factorization of a:

a = pd®. (primes distinct from p)

Similarly for o € £, ordyar = ordy 0.

Elements or fractional ideals are (locally) integral at p, when
their p-orders are non-negative. An element is a p-unit when its
p-ord is O.

Corollary: For Dedekind o, an element o« € £ is in o if and
only if it is p-integral everywhere locally. A fractional ideal f is
a genuine ideal if and only if it is p-integral everywhere locally.

Proof: Unique factorization: if f = (p1...pm) - (q1...9,) L is
inside o, then p1...9,m C q1...0qn- ///
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Lemma: Localization S~!o is Dedekind. The primes of S~ o are
S~1p for primes p of 0 not meeting S. Factorization of fractional
ideals behaves like

5—1(Hpe<p>> = [T s tp)®
p

p:pNS=¢

Proof: The integral domain property is preserved, because S~ 1o
sits inside the field of fractions. Noetherian-ness is preserved:
there are fewer ideals in S~'o than in 0. Integral closedness: for
a € k integral over S~lo, multiply out the denominators (from S)
of the coefficients, obtaining an equation of the form

s-a”+c¢, 1" +.. . +ca+tc =0 (with s € .9)
Thus,

(50)™ 4 (cp—15) - (sa)™" L 4+ ... 4 (15" N (sa) + (s"¢c,) = 0
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By integral closedness, sa € 0, and o € S~ 1o.

A prime p meeting S becomes the whole ring S~'o. For p not
meeting S, if (z/s)(y/t) = z/u with x,y € 0, z € p, and s,t,u € S,
then u-xy = st- 2. Since z € pand v € p, vy € p. Thus, S~ 1p is
prime. Likewise, non-zero primes are maximal.

If S—'p = S—!q for primes p, g, then sp = g for some s € S C o.
Unique factorization of s - 0 shows s € 0 and p = q.

Finally, with .S containing 1 and closed under multiplication,
S~1(ab) = (S7'a) - (S71b) for all fractional ideals a, b, from the
definition of the multiplication a - b. This gives the factorization in
the localization. ///
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When we only care about finitely-many primes...:
Proposition: Dedekind with finitely-many primes = PID.

Proof: Let the primes be pq,...,p,. Since p? # Pp;, there is
w; € pj — p?. Given a = p7'...pc", Sun-Ze’s theorem gives a
solution in o of

e e;+1
r = w,.” modp;’

; ; (for j=1,...,n)

The principal ideal zo has a prime factorization, with the same
exponents as d. ///

Corollary: The localization of Dedekind o at a prime p is a PID,
with unique prime (o —p)~1 - p. ///



Garrett 11-11-2011 11

Big Corollary: For Dedekind o in field of fractions k, the
integral closure © in a finite separable extension K /k is Dedekind.

Proof: Use the theorem characterizing Dedekind domains. O is
an integral domain and is integrally closed. By the Lying-Over
theorem, primes ‘P in O over non-zero, hence maximal, primes p
in 0 are maximal.

Conversely, any prime @ of O meets o in a prime ideal p. As
observed earlier, p cannot be 0, because Galois norms from ‘3 are
in 0 NP and are non-zero. Thus, p is maximal, and by Lying-Over
T is maximal.

Noetherian-ness follows from the earlier result that O is finitely-
generated over o, using the non-degeneracy of the trace pairing
corresponding to the finite separable extension K/k. ///
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Ramification, residue field extension degrees: ¢, f, g

Prime p in o factors in an integral extension as pO = Hqs peF/p),
The exponents e()3/p) are ramification indices.

The residue field extensions & = O/ over kK = 0/p have degrees
F(B/p) = & : K].

Theorem: For fixed p in o,

> e B/p)- f(B/p) = [K:k]

PBlp

For K/k Galois, the ramification indices e and residue field
extension degrees f depend only on p (and K/k), and in that case

e - f - (number of primes Plp) = [K : k]




