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Theorem: In a Noetherian, integrally closed integral domain o in
which every non-zero prime ideal is maximal, every non-zero ideal
is uniquely a product of prime ideals, and the non-zero fractional
ideals form a group under multiplication.

Proof: [van der Waerden, Lang] Let o be a Noetherian integral
domain, integrally closed in its field of fractions, and every non-
zero prime ideal is maximal.

First: given non-zero ideal a, there is a product of non-zero
prime ideals contained in a. If not, by Noetherian-ness there is
a maximal a failing to contain a product of primes, and a is not
prime. Thus, there are b, c ∈ o neither in a such that bc ∈ a. Thus,
b = a + ob and c = a + oc are strictly larger than a, and bc ⊂ a.

Since a was maximal among ideals not containing a product of
primes, both b, c contain such products. But then their product
bc ⊂ a does, contradiction.
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Second: for maximal m, the o-module m−1 = {x ∈ k : xm ⊂ o} is
strictly larger than o. Certainly m−1 ⊃ o, since m is an ideal. We
claim that m−1 is strictly larger than o. Indeed, for m ∈ m and a
(smallest possible) product of primes pj such that p1 . . . pn ⊂ mo.

Since mo ⊂ m and m is prime, pj ⊂ m for at least one pj , say p1.
Since every (non-zero) prime is maximal, p1 = m.

By minimality, p2 . . . pn 6⊂ mo. That is, there is y ∈ p2 . . . pn but
y 6∈ mo, or m−1y 6∈ o. But ym = yp1 ⊂ mo, so m−1ym ⊂ o, and
m−1y ∈ m−1 but not in o.

Third: maximal m is invertible. By this point, m ⊂ m−1m ⊂ o. By
maximality of m, either m−1m = m or m−1m = o.
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The Noetherian-ness of o implies that m is finitely-generated. A
relation m−1m = m would show that m−1 stabilizes a non-zero,
finitely-generated o-module. Since o is integrally closed in k, this
would give m−1 ⊂ o, but we have seen otherwise. Thus, we have
the inversion relation m−1m = o for maximal m.

Fourth: every non-zero ideal a has inverse a−1 = {y ∈ k : ya ⊂ o}.
If not, there is maximal a failing this, and a cannot be a maximal
ideal, by the previous step. Thus, a is properly contained in some
maximal ideal m. Certainly a ⊂ m−1a ⊂ a−1a ⊂ o. Integral-
closedness of o and m−1 6= o, m−1 ⊃ o show that m−1a 6⊂ a.

Since m−1a is strictly larger than a, it has inverse f. Thus,
(fm−1)a= f(m−1a)=o, and fm−1 is an inverse for a, contradiction.

Fifth: ideals a have unique inverses. For fractional ideal f such
that fa = o, certainly f ⊂ {y ∈ k : ya ⊂ o}. On the other hand, for
ya ⊂ o, multiply by f to obtain yaf ⊂ f. Since af = o ∋ 1, y ∈ f.
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Sixth: every fractional ideal f is uniquely invertible, and a ⊂ b

implies a−1 ⊃ b−1. Let 0 6= c ∈ o such that cf ⊂ o. Then cf has
unique inverse k, and f has unique inverse c−1k. For a ⊂ b, visibly
{x ∈ k : xa ⊂ o} ⊃ {x ∈ k : xb ⊂ o}, so inversion is inclusion-
reversing.

Seventh: every ideal a is a product of prime ideals. If not, let a be
maximal among failures. It is not prime, so is properly contained
in maximal m. Then a ⊂ m gives m−1a ⊂ o. Invertibility of
fractional ideals gives m−1a 6= o and m−1a 6= a. Thus, m−1a is
a proper ideal strictly larger than a, and is a product of primes.
Multiplication by m expresses a as a product, contradiction.

Eighth: for fractional ideals a, b, the divisibility property a|b,
meaning there is an ideal c such that c · a = b, is equivalent to
a ⊃ b. Indeed, on one hand, c ⊂ o gives b = ca ⊂ oa = a. On
the other hand, for a ⊃ b, since inversion is inclusion-reversing,
a−1 ⊂ b−1, so c ⊂ a−1b ⊂ o.
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Ninth: unique factorization of ideals into primes. The definition of
prime ideal p gives ab ⊂ p only when a ⊂ p or b ⊂ p, for ideals
a, b. That is, p|ab implies p|a or p|b. Given two factorizations

p1 . . . pm = a = q1 . . . qn

p1 must divide some qj , thus, p1 = qj . Renumber so p1 = q1.
Using invertibility, multiply by p−1

1 , obtaining p2 . . . pm = q2 . . . qn

and use induction.

Tenth: unique factorization of fractional ideals. Given fractional a,
take 0 6= c ∈ o such that ca ⊂ o = p1 . . . pm. Let co = q1 . . . qn.
Then

a = (p1 . . . pm) · (q1 . . . qn)−1 =
p1 . . . pm

q1 . . . qn

Cancel any common factors. ///



Garrett 11-11-2011 7

The order ordpa at prime p of a (non-zero) fractional ideal a is
the integer exponent of p appearing in a factorization of a:

a = pordpa · (primes distinct from p)

Similarly for α ∈ k×, ordpα = ordpαo.

Elements or fractional ideals are (locally) integral at p, when
their p-orders are non-negative. An element is a p-unit when its
p-ord is 0.

Corollary: For Dedekind o, an element α ∈ k is in o if and
only if it is p-integral everywhere locally. A fractional ideal f is
a genuine ideal if and only if it is p-integral everywhere locally.

Proof: Unique factorization: if f = (p1 . . . pm) · (q1 . . . qn)−1 is
inside o, then p1 . . . pm ⊂ q1 . . . qn. ///
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Lemma: Localization S−1o is Dedekind. The primes of S−1o are
S−1p for primes p of o not meeting S. Factorization of fractional
ideals behaves like

S−1
(

∏

p

pe(p)
)

=
∏

p: p∩S=φ

(S−1p)e(p)

Proof: The integral domain property is preserved, because S−1o

sits inside the field of fractions. Noetherian-ness is preserved:
there are fewer ideals in S−1o than in o. Integral closedness: for
α ∈ k integral over S−1o, multiply out the denominators (from S)
of the coefficients, obtaining an equation of the form

s · αn + cn−1α
n−1 + . . . + c1α + co = 0 (with s ∈ S)

Thus,

(sα)n + (cn−1s) · (sα)n−1 + . . . + (c1s
n−1)(sα) + (snco) = 0
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By integral closedness, sα ∈ o, and α ∈ S−1o.

A prime p meeting S becomes the whole ring S−1o. For p not
meeting S, if (x/s)(y/t) = z/u with x, y ∈ o, z ∈ p, and s, t, u ∈ S,
then u · xy = st · z. Since z ∈ p and u 6∈ p, xy ∈ p. Thus, S−1p is
prime. Likewise, non-zero primes are maximal.

If S−1p = S−1q for primes p, q, then sp = q for some s ∈ S ⊂ o.
Unique factorization of s · o shows s ∈ o× and p = q.

Finally, with S containing 1 and closed under multiplication,
S−1(ab) = (S−1a) · (S−1b) for all fractional ideals a, b, from the
definition of the multiplication a · b. This gives the factorization in
the localization. ///
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When we only care about finitely-many primes...:

Proposition: Dedekind with finitely-many primes ⇒ PID.

Proof: Let the primes be p1, . . . , pn. Since p2
j 6= pj , there is

̟j ∈ pj − p2
j . Given a = pe1

1 . . . pen
n , Sun-Ze’s theorem gives a

solution in o of

x = ̟
ej

j mod p
ej+1
j (for j = 1, . . . , n)

The principal ideal xo has a prime factorization, with the same
exponents as a. ///

Corollary: The localization of Dedekind o at a prime p is a PID,
with unique prime (o − p)−1 · p. ///
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Big Corollary: For Dedekind o in field of fractions k, the
integral closure O in a finite separable extension K/k is Dedekind.

Proof: Use the theorem characterizing Dedekind domains. O is
an integral domain and is integrally closed. By the Lying-Over
theorem, primes P in O over non-zero, hence maximal, primes p

in o are maximal.

Conversely, any prime P of O meets o in a prime ideal p. As
observed earlier, p cannot be 0, because Galois norms from P are
in o ∩ P and are non-zero. Thus, p is maximal, and by Lying-Over
P is maximal.

Noetherian-ness follows from the earlier result that O is finitely-
generated over o, using the non-degeneracy of the trace pairing

corresponding to the finite separable extension K/k. ///
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Ramification, residue field extension degrees: e, f, g

Prime p in o factors in an integral extension as pO =
∏

P Pe(P/p).
The exponents e(P/p) are ramification indices.

The residue field extensions κ̃ = O/P over κ = o/p have degrees
f(P/p) = [κ̃ : κ].

Theorem: For fixed p in o,

∑

P|p

e(P/p) · f(P/p) = [K : k]

For K/k Galois, the ramification indices e and residue field
extension degrees f depend only on p (and K/k), and in that case

e · f · (number of primes P|p) = [K : k]


