Frobenius map/automorphism

Artin map/automorphism

Dedekind rings.

The picture:

Corollary: For *abelian* K/k, the decomposition subfield $K^{\mathfrak{P}}$ is the maximal subfield of K (containing k) in which \mathfrak{p} splits completely.

Proof: With $\sigma_1, \ldots, \sigma_n$ representatives for $G/G_{\mathfrak{P}}$, by transitivity, $\sigma_j \mathfrak{P}$ are distinct, and are all the primes over \mathfrak{p} . The abelian-ness implies that the decomposition subfields $K^{\mathfrak{P}}$ for the $\sigma_j \mathfrak{P}$ are all the same.

Let $\mathbf{q} = \mathfrak{P} \cap K^{\mathfrak{P}}$. From above, \mathfrak{P} is the only prime over \mathbf{q} , and $\sigma_j \mathfrak{P}$ is the only prime over $\sigma_j \mathbf{q}$, and the latter must be *distinct*. Since $[K:k] = |G| = |G_{\mathfrak{P}}| \cdot n$, necessarily \mathfrak{p} splits completely in $K^{\mathfrak{P}}$.

Conversely, with E an intermediate field in which \mathfrak{p} splits completely, $G_{\mathfrak{P}}$ fixes $\mathfrak{P} \cap E$. The hypothesis that \mathfrak{p} splits completely in E implies that the decomposition subgroup of $\mathfrak{P} \cap E$ in $\operatorname{Gal}(E/k)$ is *trivial*. That is, the restriction of $G_{\mathfrak{P}}$ to E is trivial, so $G_{\mathfrak{P}} \subset \operatorname{Gal}(K/E)$. The distinguishing feature of **number fields** (finite extensions of \mathbb{Q}) and **function fields** (finite extensions of $\mathbb{F}_p(x)$), and their completions, is that their *residue fields are finite*.

All finite extensions of finite fields are *cyclic* (Galois).

There is a canonical generator, the **Frobenius automorphism** $x \to x^q$ of the Galois group of *any* extension of \mathbb{F}_q .

Given a prime \mathfrak{p} and \mathfrak{P} lying over it in a Galois extension K/k of number fields or functions fields, with residue field extension $\tilde{\kappa}/\kappa$, with $\kappa \approx \mathbb{F}_q$, the **Frobenius map/automorphism** in $G_{\mathfrak{P}}$ is anything that maps to $x \to x^q$.

Artin map/automorphism is Frobenius for *abelian* extensions.

The point is that, by transitivity of Galois on primes \mathfrak{P} lying over \mathfrak{p} , in an *abelian* extension all decomposition groups $G_{\mathfrak{P}}$ are the same subgroup, so the Frobenius element of $\operatorname{Gal}(K/k)$ does not depend on the choice of \mathfrak{P} over \mathfrak{p} .

A fractional ideal \mathfrak{a} of \mathfrak{o} in its fraction field k is an \mathfrak{o} -submodule of k such that there is $0 \neq c \in \mathfrak{o}$ such that $c\mathfrak{a} \subset \mathfrak{o}$.

Examples: Fractional ideals of \mathbb{Z} are $\mathbb{Z} \cdot r$ for $r \in \mathbb{Q}$.

 \mathbb{Z} -submodules of \mathbb{Q} requiring infinitely-many generators are not fractional ideals. E.g., neither the localization $\mathbb{Z}_{(p)}$, nor the localization

 $\bigcup_{\ell \ge 1} \frac{1}{p^{\ell}} \cdot \mathbb{Z}$ (**not** a fractional ideal)

Theorem: In a Noetherian, integrally closed integral domain \mathfrak{o} in which every non-zero prime ideal is *maximal*, every non-zero ideal is *uniquely a product of prime ideals*, and the non-zero fractional ideals form a *group* under multiplication. [Below...]

Dedekind domains are Noetherian, integrally-closed integral domains in which every non-zero prime ideal is maximal. The **ideal class group** $I_k = I_o$ is the group of non-zero fractional ideals modulo *principal* fractional ideals.

Also: Dedekind domains are characterized by the fact that their ideals are finitely-generated *projective* modules. [Proof later.]

An R-module P is projective when any diagram

admits at least one extension to a commutative diagram

Free modules are projective, but over non-PIDs there are more.

While we're here: an R-module I is *injective* when any diagram

$$0 \longrightarrow A \longrightarrow B \qquad (\text{with } 0 \rightarrow A \rightarrow B \text{ exact})$$

admits at least one extension to a commutative diagram

$$0 \longrightarrow A \longrightarrow B \qquad (\text{with } 0 \to A \to B \text{ exact})$$

Baer showed that, for example, $divisible \mathbb{Z}$ -modules are injective.

7

The structure theorem for finitely-generated modules over PIDs, over Dedekind domains, is Steinitz' theorem:

A finitely-generated module M over a Dedekind domain ${\mathfrak o}$ is

$$M \approx \mathfrak{o}/\mathfrak{a}_1 \oplus \ldots \oplus \mathfrak{o}/\mathfrak{a}_n \oplus \mathfrak{o}^r \oplus \mathfrak{a}$$

where $\mathfrak{a}_1 | \dots | \mathfrak{a}_n$ are uniquely-determined non-zero ideals, the rank r of the free part \mathfrak{o}^r is uniquely determined, and the isomorphism class of the ideal \mathfrak{a} is uniquely determined.

[This is often omitted from algebraic number theory books. See Milnor's *Algebraic K-theory*, or Cartan-Eilenberg.]

That is, the ideal class group is the torsion part of the K-group $K_0(\mathfrak{o})$ = projective finitely-generated \mathfrak{o} -modules, with tensor product, modulo free.

Proof: [van der Waerden, Lang] Let \mathfrak{o} be a Noetherian integral domain, integrally closed in its field of fractions, and every non-zero prime ideal is maximal.

First: given non-zero ideal \mathfrak{a} , there is a product of non-zero prime ideals *contained in* \mathfrak{a} . If not, by Noetherian-ness there is a *maximal* ideal \mathfrak{a} failing to contain a product of primes, and \mathfrak{a} is not prime. Thus, there are $b, c \in \mathfrak{o}$ neither in \mathfrak{a} such that $bc \in \mathfrak{a}$. Thus, $\mathfrak{b} = \mathfrak{a} + \mathfrak{o}b$ and $\mathfrak{c} = \mathfrak{a} + \mathfrak{o}c$ are strictly larger than \mathfrak{a} , and $\mathfrak{bc} \subset \mathfrak{a}$.

Since \mathfrak{a} was maximal among ideals not containing a product of primes, both $\mathfrak{b}, \mathfrak{c}$ contain such products. But then their product $\mathfrak{bc} \subset \mathfrak{a}$ does, contradiction.

Second: for maximal \mathfrak{m} , the \mathfrak{o} -module $\mathfrak{m}^{-1} = \{x \in k : x\mathfrak{m} \subset \mathfrak{o}\}$ is strictly larger than \mathfrak{o} . Certainly $\mathfrak{m}^{-1} \supset \mathfrak{o}$, since \mathfrak{m} is an ideal. We claim that \mathfrak{m}^{-1} is strictly larger than \mathfrak{o} . Indeed, for $m \in \mathfrak{m}$ and a (smallest possible) product of primes \mathfrak{p}_i such that

$$\mathfrak{p}_1 \ldots \mathfrak{p}_n \subset m\mathfrak{o}$$

Since $m\mathfrak{o} \subset \mathfrak{m}$ and \mathfrak{m} is prime, $\mathfrak{p}_j \subset \mathfrak{m}$ for at least one \mathfrak{p}_j , say \mathfrak{p}_1 . Since every (non-zero) prime is maximal, $\mathfrak{p}_1 = \mathfrak{m}$.

By minimality, $\mathfrak{p}_2 \ldots \mathfrak{p}_n \not\subset m\mathfrak{o}$. That is, there is $y \in \mathfrak{p}_2 \ldots \mathfrak{p}_n$ but $y \notin m\mathfrak{o}$, or $m^{-1}y \notin \mathfrak{o}$. But $y\mathfrak{m} = y\mathfrak{p}_1 \subset m\mathfrak{o}$, so $m^{-1}y\mathfrak{m} \subset \mathfrak{o}$, and $m^{-1}y \in \mathfrak{m}^{-1}$ but not in \mathfrak{o} .

Third: maximal \mathfrak{m} in \mathfrak{o} is invertible. By this point, $\mathfrak{m} \subset \mathfrak{m}^{-1}\mathfrak{m} \subset \mathfrak{o}$. By maximality of \mathfrak{m} , either $\mathfrak{m}^{-1}\mathfrak{m} = \mathfrak{m}$ or $\mathfrak{m}^{-1}\mathfrak{m} = \mathfrak{o}$.

The Noetherian-ness of \mathfrak{o} implies that \mathfrak{m} is finitely-generated. A relation $\mathfrak{m}^{-1}\mathfrak{m} = \mathfrak{m}$ would show that \mathfrak{m}^{-1} stabilizes a non-zero, finitely-generated \mathfrak{o} -module. Since \mathfrak{o} is integrally closed in k, this would give $\mathfrak{m}^{-1} \subset \mathfrak{o}$, but we have seen otherwise. Thus, we have the inversion relation $\mathfrak{m}^{-1}\mathfrak{m} = \mathfrak{o}$ for maximal \mathfrak{m} .

Fourth: every non-zero ideal \mathfrak{a} has inverse $\mathfrak{a}^{-1} = \{y \in k : y\mathfrak{a} \subset \mathfrak{o}\}$. If not, there is maximal \mathfrak{a} failing this, and \mathfrak{a} cannot be a maximal ideal, by the previous step. Thus, \mathfrak{a} is properly contained in some maximal ideal \mathfrak{m} . Certainly $\mathfrak{a} \subset \mathfrak{m}^{-1}\mathfrak{a} \subset \mathfrak{a}^{-1}\mathfrak{a} \subset \mathfrak{o}$. Integralclosedness of \mathfrak{o} and $\mathfrak{m}^{-1} \neq \mathfrak{o}$, $\mathfrak{m} \supset \mathfrak{o}$ show that $\mathfrak{m}^{-1}\mathfrak{a} \not\subset \mathfrak{a}$.

Thus, $\mathfrak{m}^{-1}\mathfrak{a}$ is strictly larger than \mathfrak{a} , so has an inverse \mathfrak{f} . Thus, $(\mathfrak{fm}^{-1}) \cdot \mathfrak{a} = \mathfrak{f} \cdot (\mathfrak{m}^{-1}\mathfrak{a}) = \mathfrak{o}$. That is, \mathfrak{fm}^{-1} is an inverse for \mathfrak{a} , contradiction.

[cont'd]