Frobenius map/automorphism

Artin map/automorphism

Dedekind rings.
The picture:

Corollary: For abelian K / k, the decomposition subfield $K^{\mathfrak{P}}$ is the maximal subfield of K (containing k) in which \mathfrak{p} splits completely.

Proof: With $\sigma_{1}, \ldots, \sigma_{n}$ representatives for $G / G_{\mathfrak{P}}$, by transitivity, $\sigma_{j} \mathfrak{P}$ are distinct, and are all the primes over \mathfrak{p}. The abelian-ness implies that the decomposition subfields $K^{\mathfrak{P}}$ for the $\sigma_{j} \mathfrak{P}$ are all the same.

Let $\mathfrak{q}=\mathfrak{P} \cap K^{\mathfrak{P}}$. From above, \mathfrak{P} is the only prime over \mathfrak{q}, and $\sigma_{j} \mathfrak{P}$ is the only prime over $\sigma_{j} \mathfrak{q}$, and the latter must be distinct. Since $[K: k]=|G|=\left|G_{\mathfrak{P}}\right| \cdot n$, necessarily \mathfrak{p} splits completely in $K^{\mathfrak{P}}$.

Conversely, with E an intermediate field in which \mathfrak{p} splits completely, $G_{\mathfrak{P}}$ fixes $\mathfrak{P} \cap E$. The hypothesis that \mathfrak{p} splits completely in E implies that the decomposition subgroup of $\mathfrak{P} \cap E$ in $\operatorname{Gal}(E / k)$ is trivial. That is, the restriction of $G_{\mathfrak{P}}$ to E is trivial, so $G_{\mathfrak{P}} \subset \operatorname{Gal}(K / E)$.

The distinguishing feature of number fields (finite extensions of \mathbb{Q}) and function fields (finite extensions of $\mathbb{F}_{p}(x)$), and their completions, is that their residue fields are finite.

All finite extensions of finite fields are cyclic (Galois).
There is a canonical generator, the Frobenius automorphism $x \rightarrow x^{q}$ of the Galois group of any extension of \mathbb{F}_{q}.

Given a prime \mathfrak{p} and \mathfrak{P} lying over it in a Galois extension K / k of number fields or functions fields, with residue field extension $\tilde{\kappa} / \kappa$, with $\kappa \approx \mathbb{F}_{q}$, the Frobenius map/automorphism in $G_{\mathfrak{P}}$ is anything that maps to $x \rightarrow x^{q}$.

Artin map/automorphism is Frobenius for abelian extensions.
The point is that, by transitivity of Galois on primes \mathfrak{P} lying over \mathfrak{p}, in an abelian extension all decomposition groups $G_{\mathfrak{P}}$ are the same subgroup, so the Frobenius element of $\operatorname{Gal}(K / k)$ does not depend on the choice of \mathfrak{P} over \mathfrak{p}.

A fractional ideal \mathfrak{a} of \mathfrak{o} in its fraction field k is an \mathfrak{o}-submodule of k such that there is $0 \neq c \in \mathfrak{o}$ such that $c \mathfrak{a} \subset \mathfrak{o}$.

Examples: Fractional ideals of \mathbb{Z} are $\mathbb{Z} \cdot r$ for $r \in \mathbb{Q}$.
\mathbb{Z}-submodules of \mathbb{Q} requiring infinitely-many generators are not fractional ideals. E.g., neither the localization $\mathbb{Z}_{(p)}$, nor the localization

$$
\bigcup_{\ell \geq 1} \frac{1}{p^{\ell}} \cdot \mathbb{Z} \quad \quad(\text { not a fractional ideal })
$$

Theorem: In a Noetherian, integrally closed integral domain \mathfrak{o} in which every non-zero prime ideal is maximal, every non-zero ideal is uniquely a product of prime ideals, and the non-zero fractional ideals form a group under multiplication. [Below...]

Dedekind domains are Noetherian, integrally-closed integral domains in which every non-zero prime ideal is maximal. The ideal class group $I_{k}=I_{\mathfrak{o}}$ is the group of non-zero fractional ideals modulo principal fractional ideals.

Also: Dedekind domains are characterized by the fact that their ideals are finitely-generated projective modules. [Proof later.] An R-module P is projective when any diagram

$$
B \longrightarrow 0 \quad \text { (with } B \rightarrow C \rightarrow 0 \text { exact) }
$$

admits at least one extension to a commutative diagram

Free modules are projective, but over non-PIDs there are more.

While we're here: an R-module I is injective when any diagram

admits at least one extension to a commutative diagram

Baer showed that, for example, divisible \mathbb{Z}-modules are injective.

The structure theorem for finitely-generated modules over PIDs, over Dedekind domains, is Steinitz' theorem:

A finitely-generated module M over a Dedekind domain \mathfrak{o} is

$$
M \approx \mathfrak{o} / \mathfrak{a}_{1} \oplus \ldots \oplus \mathfrak{o} / \mathfrak{a}_{n} \oplus \mathfrak{o}^{r} \oplus \mathfrak{a}
$$

where $\mathfrak{a}_{1}|\ldots| \mathfrak{a}_{n}$ are uniquely-determined non-zero ideals, the rank r of the free part \mathfrak{o}^{r} is uniquely determined, and the isomorphism class of the ideal \mathfrak{a} is uniquely determined.
[This is often omitted from algebraic number theory books. See Milnor's Algebraic K-theory, or Cartan-Eilenberg.]

That is, the ideal class group is the torsion part of the K-group $K_{0}(\mathfrak{o})=$ projective finitely-generated \mathfrak{o}-modules, with tensor product, modulo free.

Proof: [van der Waerden, Lang] Let \mathfrak{o} be a Noetherian integral domain, integrally closed in its field of fractions, and every nonzero prime ideal is maximal.

First: given non-zero ideal \mathfrak{a}, there is a product of non-zero prime ideals contained in \mathfrak{a}. If not, by Noetherian-ness there is a maximal ideal \mathfrak{a} failing to contain a product of primes, and \mathfrak{a} is not prime. Thus, there are $b, c \in \mathfrak{o}$ neither in \mathfrak{a} such that $b c \in \mathfrak{a}$. Thus, $\mathfrak{b}=\mathfrak{a}+\mathfrak{o} b$ and $\mathfrak{c}=\mathfrak{a}+\mathfrak{o} c$ are strictly larger than \mathfrak{a}, and $\mathfrak{b c} \subset \mathfrak{a}$.

Since \mathfrak{a} was maximal among ideals not containing a product of primes, both $\mathfrak{b}, \mathfrak{c}$ contain such products. But then their product $\mathfrak{b c} \subset \mathfrak{a}$ does, contradiction.

Second: for maximal \mathfrak{m}, the \mathfrak{o}-module $\mathfrak{m}^{-1}=\{x \in k: x \mathfrak{m} \subset \mathfrak{o}\}$ is strictly larger than \mathfrak{o}. Certainly $\mathfrak{m}^{-1} \supset \mathfrak{o}$, since \mathfrak{m} is an ideal. We claim that \mathfrak{m}^{-1} is strictly larger than \mathfrak{o}. Indeed, for $m \in \mathfrak{m}$ and a (smallest possible) product of primes \mathfrak{p}_{j} such that

$$
\mathfrak{p}_{1} \ldots \mathfrak{p}_{n} \subset m \mathfrak{o}
$$

Since $m \mathfrak{o} \subset \mathfrak{m}$ and \mathfrak{m} is prime, $\mathfrak{p}_{j} \subset \mathfrak{m}$ for at least one \mathfrak{p}_{j}, say \mathfrak{p}_{1}. Since every (non-zero) prime is maximal, $\mathfrak{p}_{1}=\mathfrak{m}$.

By minimality, $\mathfrak{p}_{2} \ldots \mathfrak{p}_{n} \not \subset m \mathfrak{o}$. That is, there is $y \in \mathfrak{p}_{2} \ldots \mathfrak{p}_{n}$ but $y \notin m \mathfrak{o}$, or $m^{-1} y \notin \mathfrak{o}$. But $y \mathfrak{m}=y \mathfrak{p}_{1} \subset m \mathfrak{o}$, so $m^{-1} y \mathfrak{m} \subset \mathfrak{o}$, and $m^{-1} y \in \mathfrak{m}^{-1}$ but not in \mathfrak{o}.

Third: maximal \mathfrak{m} in \mathfrak{o} is invertible. By this point, $\mathfrak{m} \subset \mathfrak{m}^{-1} \mathfrak{m} \subset$ \mathfrak{o}. By maximality of \mathfrak{m}, either $\mathfrak{m}^{-1} \mathfrak{m}=\mathfrak{m}$ or $\mathfrak{m}^{-1} \mathfrak{m}=\mathfrak{o}$.

The Noetherian-ness of \mathfrak{o} implies that \mathfrak{m} is finitely-generated. A relation $\mathfrak{m}^{-1} \mathfrak{m}=\mathfrak{m}$ would show that \mathfrak{m}^{-1} stabilizes a non-zero, finitely-generated \mathfrak{o}-module. Since \mathfrak{o} is integrally closed in k, this would give $\mathfrak{m}^{-1} \subset \mathfrak{o}$, but we have seen otherwise. Thus, we have the inversion relation $\mathfrak{m}^{-1} \mathfrak{m}=\mathfrak{o}$ for maximal \mathfrak{m}.

Fourth: every non-zero ideal \mathfrak{a} has inverse $\mathfrak{a}^{-1}=\{y \in k: y \mathfrak{a} \subset \mathfrak{o}\}$. If not, there is maximal \mathfrak{a} failing this, and \mathfrak{a} cannot be a maximal ideal, by the previous step. Thus, \mathfrak{a} is properly contained in some maximal ideal \mathfrak{m}. Certainly $\mathfrak{a} \subset \mathfrak{m}^{-1} \mathfrak{a} \subset \mathfrak{a}^{-1} \mathfrak{a} \subset \mathfrak{o}$. Integralclosedness of \mathfrak{o} and $\mathfrak{m}^{-1} \neq \mathfrak{o}, \mathfrak{m} \supset \mathfrak{o}$ show that $\mathfrak{m}^{-1} \mathfrak{a} \not \subset \mathfrak{a}$.

Thus, $\mathfrak{m}^{-1} \mathfrak{a}$ is strictly larger than \mathfrak{a}, so has an inverse \mathfrak{f}. Thus, $\left(\mathfrak{f m}{ }^{-1}\right) \cdot \mathfrak{a}=\mathfrak{f} \cdot\left(\mathfrak{m}^{-1} \mathfrak{a}\right)=\mathfrak{o}$. That is, $\mathfrak{f m}{ }^{-1}$ is an inverse for \mathfrak{a}, contradiction.
[cont'd]

