More about primes lying over...
$\mathfrak{p}$ splits completely in $K$ when there are $[K: k]$ distinct primes lying over $\mathfrak{p}$ in $\mathfrak{O}$.

Corollary: For an abelian $K / k$, the decomposition subfield $K^{\mathfrak{P}}$ is the maximal subfield of $K$ (containing $k$ ) in which $\mathfrak{p}$ splits completely.

Frobenius map/automorphism
Artin map/automorphism
... and Dedekind rings.

The picture is


So far, we know that in the Galois case $G$ is transitive on primes $\mathfrak{P}$ lying over $\mathfrak{p}$.

And the decomposition subfield $K^{\mathfrak{P}}$ (=fixed field of decomposition group $G_{\mathfrak{P}}$ ) is the smallest subfield of $K$ such that $\mathfrak{P}$ is the only prime lying over $K^{\mathfrak{P}} \cap \mathfrak{P}$.

Claim: The inclusion $\mathfrak{o} / \mathfrak{p} \rightarrow \mathfrak{O}^{\mathfrak{P}} / \mathfrak{q}$ to the residue field attached to the decomposition field of $\mathfrak{P}$ is an isomorphism.

Proof: The induced map is indeed an inclusion, because

$$
\mathfrak{p}=k \cap \mathfrak{P}=k \cap K^{\mathfrak{P}} \cap \mathfrak{P}
$$

For surjectivity: for $\sigma \in G$ but not in $G_{\mathfrak{P}}, \sigma \mathfrak{P} \neq \mathfrak{P}$, and the prime ideal

$$
\mathfrak{q}_{\sigma}=K^{\mathfrak{P}} \cap \sigma \mathfrak{P}
$$

is not $\mathfrak{q}$, since $\mathfrak{P}$ is the only prime lying over $\mathfrak{q}$.

Thus, given $x \in \mathfrak{O}^{\mathfrak{P}}$, Sun-Ze's theorem gives $y \in \mathfrak{O}^{\mathfrak{P}}$ such that

$$
\left\{\begin{array}{l}
y=x \quad \bmod \mathfrak{q} \\
y=1 \quad \bmod \mathfrak{q}_{\sigma} \quad\left(\text { for all } \sigma \text { not in } G_{\mathfrak{P}}\right)
\end{array}\right.
$$

Thus, certainly in the larger ring $\mathfrak{O}$

$$
\left\{\begin{array}{l}
y=x \quad \bmod \mathfrak{P} \\
y=1 \quad \bmod \sigma \mathfrak{P} \quad\left(\text { for all } \sigma \text { not in } G_{\mathfrak{P}}\right)
\end{array}\right.
$$

That is, $\sigma y=1 \bmod \mathfrak{P}$ for $\sigma \notin G^{\mathfrak{P}}$. The Galois norm of $y$ from $K^{\mathfrak{P}}$ to $k$ is a product of $y$ with images $\sigma y$ with $\sigma \notin G^{\mathfrak{P}}$. Therefore,

$$
N_{k}^{K^{\mathfrak{P}}} y=x \bmod \mathfrak{P}
$$

The norm is in $\mathfrak{o}$, and the congruence holds $\bmod \mathfrak{q}$ since $x \in \mathfrak{O}^{\mathfrak{P}}$.

Claim: $\tilde{\kappa}=\mathfrak{O} / \mathfrak{P}$ is normal over $\kappa=\mathfrak{o} / \mathfrak{p}$, and $G_{\mathfrak{F}}$ surjects to $\operatorname{Gal}(\tilde{\kappa} / \kappa)$.

Proof: Let $\alpha \in \mathfrak{O}$ generate a separable subextension $(\bmod \mathfrak{P})$ of $\tilde{\kappa}$ over $\kappa$. The minimal polynomial of $\alpha$ over $k$ has coefficients in $\mathfrak{o}$ because $\alpha$ is integral over $\mathfrak{o}$. Since $K / k$ is Galois, $f$ splits into linear factors $x-\alpha_{i}$ in $K[x]$. Then $f$ mod $\mathfrak{P}$ factors into linear factors $x-\bar{\alpha}_{i}$ where $\bar{\alpha}_{i}$ is $\alpha_{i} \bmod \mathfrak{P}$.

Thus, whatever the minimal polynomial of $\bar{\alpha}$ over $\kappa$, it factors into linear factors in $\tilde{\kappa}[x]$. That is, $\tilde{\kappa} / \kappa$ is normal, and

$$
[\kappa(\bar{\alpha}): \kappa] \leq[k(\alpha): k] \leq[K: k]
$$

By the theorem of the primitive element, the maximal separable subextension is of finite degree, bounded by $[K: k]$.

To prove surjectivity of the Galois group map, it suffices to consider the situation that $\mathfrak{P}$ is the only prime over $\mathfrak{p}$, from the discussion of the decomposition group and field above. Thus, $G=G_{\mathfrak{P}}$ and $K=K^{\mathfrak{P}}$.

By the theorem of the primitive element, there is $\alpha$ in $\mathfrak{O}$ with image $\bar{\alpha} \bmod \mathfrak{P}$ generating the (maximal separable subextension of the) residue field extension $\tilde{\kappa} / \kappa$. Let $f$ be the minimal polynomial of $\alpha$ over $k$, and $\bar{f}$ the reduction of $f \bmod \mathfrak{p}$.

Normality of $K / k$ gives the factorization of $f(x)$ into linear factors $x-\alpha_{i}$ in $\mathfrak{O}[x]$, and this factorization reduces mod $\mathfrak{P}$ to a factorization into linear factors $x-\bar{\alpha}_{i}$ in $\tilde{\kappa}[x]$.

Automorphisms of $\tilde{\kappa} / \kappa$ are determined by their effect on $\bar{\alpha}$, and map $\bar{\alpha}$ to other zeros $\bar{\alpha}_{i}$ of $\bar{f} . \operatorname{Gal}(K / k)$ is transitive on the $\alpha_{i}$, so is transitive on the $\bar{\alpha}_{i}$. This proves surjectivity.

The inertia subgroup is the kernel $I_{\mathfrak{P}}$ of $G_{\mathfrak{P}} \rightarrow \operatorname{Gal}(\tilde{\kappa} / \kappa)$, and the inertia subfield is the fixed field of $I_{\mathfrak{P}}$. (This is better called the $0^{t h}$ ramification group...) For typical $K / k$, we'll see later that $I_{\mathfrak{P}}$ is trivial for most $\mathfrak{P}$.

Remark: For us, $\tilde{\kappa} / \kappa$ will almost always be separable.
A prime $\mathfrak{p}$ is inert in $K / k$ (or in $\mathfrak{O} / \mathfrak{o}$ ) the degree of the residue field extension (for any prime lying over $\mathfrak{p}$ ) is equal to the global field extension degree: $[\tilde{\kappa}: \kappa]=[K: k]$.

Corollary: For finite residue field $\kappa$, existence of inert primes in $K / k$ implies $\operatorname{Gal}(K / k)$ is cyclic.

Proof: Galois groups of finite extensions of finite fields are (separable and) cyclic. The degree equality requires that the map $G_{\mathfrak{P}} \rightarrow \operatorname{Gal}(\tilde{\kappa} / \kappa)$ be an isomorphism, and that $G=G_{\mathfrak{P}}$. $\quad / /$

## Examples:

In quadratic Galois extensions $K / k$, there is no obvious obstacle to primes being inert, since a group with 2 elements could easily surject to a group with 2 elements.

Remark: Lack of an obstacle does not prove existence... Indeed, in extensions of $\mathbb{C}(x)$ no prime stays prime, since the residue fields are all $\mathbb{C}$, which is already algebraically closed.

In non-abelian Galois extensions such as $\mathbb{Q}(\sqrt[3]{2}, \omega) / \mathbb{Q}$, with $\omega$ a cube root of unity, no prime $p \in \mathfrak{o}=\mathbb{Z}$ can stay prime.

The Galois group of a cyclotomic extension $\mathbb{Q}(\omega) / \mathbb{Q}$ with $\omega$ an $n^{\text {th }}$ root of unity is $(\mathbb{Z} / n)^{\times}$, which is cyclic only for $n$ of the form $n=p^{\ell}, n=2 p^{\ell}$, for $p$ an odd prime, and for $n=4$ (from elementary number theory).
[Examples, cont'd]
We had already seen that $p \in \mathbb{Z}$ stays prime in $\mathbb{Q}(\omega) / \mathbb{Q}$ if and only if the $n^{\text {th }}$ cyclotomic polynomial $\Phi_{n}$ is irreducible in $\mathbb{F}_{p}[x]$. This irreducibility is equivalent to $n$ not dividing $p^{d}-1$ for any $d<\operatorname{deg} \Phi_{n}$. This is equivalent to $p$ being a primitive root (=generator) for $(\mathbb{Z} / n)^{\times}$.

Again, a necessary condition for cyclic-ness of $(\mathbb{Z} / n)^{\times}$is that $n$ be of the special forms $p^{\ell}, 2 p^{\ell}, 4$.

But Dirichlet's theorem on primes in arithmetic progression is necessary to prove existence of primes equal $\bmod n$ to a primitive root.

Quadratic reciprocity gives a congruence condition for quadratic extensions of $\mathbb{Q}$, and Dirichlet's theorem again gives existence.
$\mathfrak{p}$ splits completely in $K$ when there are $[K: k]$ distinct primes lying over $\mathfrak{p}$ in $\mathfrak{O}$.

## Examples:

In $\mathbb{Q}(\sqrt{D}) / \mathbb{Q}$ with square-free $D \in \mathbb{Z}$, odd $p$ not dividing $D$ with $D$ a square $\bmod p$ split completely: with $D=2,3 \bmod 4$, for simplicity, so that the ring of integers is really $\mathbb{Z}[\sqrt{D}]$, as earlier,

$$
\mathfrak{O} / p \mathfrak{O}=\mathbb{Z}[x] /\left\langle p, x^{2}-D\right\rangle=\mathbb{F}_{p}[x] /\left\langle x^{2}-D\right\rangle
$$

In $\mathbb{Q}(\omega) / \mathbb{Q}$ with $\omega$ an $n^{t h}$ root of unity, primes $p=1 \bmod n$ split completely. As we will see, the integral closure $\mathfrak{O}$ of $\mathbb{Z}$ in $\mathbb{Q}(\omega)$ really is $\mathbb{Z}[\omega]$, and then, with $\Phi_{n}$ the $n^{t h}$ cyclotomic polynomial,

$$
\mathfrak{O} / p \mathfrak{O}=\mathbb{Z}[x] /\left\langle p, \Phi_{n}\right\rangle=\mathbb{F}_{p}[x] /\left\langle\Phi_{n}\right\rangle
$$

The $n^{\text {th }}$ cyclotomic polynomial splits into linear factors over $\mathbb{F}_{p}$ exactly when $p=1 \bmod n$, because $\mathbb{F}_{p}^{\times}$is cyclic.

Proof that there are infinitely-many primes $p=1 \bmod n$ is much easier than the general case of Dirichlet's theorem:

Given a list $p_{1}, \ldots, p_{\ell}$ of primes, consider $N=\Phi_{n}\left(t p_{1} \ldots p_{\ell}\right)$ for integers $t$ at our disposal. The cyclotomic $\Phi_{n}$ has integer coefficients and constant coefficient $\pm 1$, so $N$ is not divisible by any $p_{j}$. For sufficiently large $t, N$ cannot be $\pm 1$, either. Thus, $N$ has prime factors $p$ other than $p_{j}$.

At the same time, $p \mid \Phi_{n}(j)$ for an integer $j$ says that $j$ is a primitive $n^{\text {th }}$ root of unity $\bmod p$, so $p=1 \bmod n$.

Corollary: For abelian $K / k$, the decomposition subfield $K^{\mathfrak{P}}$ is the maximal subfield of $K$ (containing $k$ ) in which $\mathfrak{p}$ splits completely.

Proof: With $\sigma_{1}, \ldots, \sigma_{n}$ representatives for $G / G_{\mathfrak{P}}$, by transitivity, $\sigma_{j} \mathfrak{P}$ are distinct, and are all the primes over $\mathfrak{p}$. The abelian-ness implies that the decomposition subfields $K^{\mathfrak{P}}$ for the $\sigma_{j} \mathfrak{P}$ are all the same.

Let $\mathfrak{q}=\mathfrak{P} \cap K^{\mathfrak{P}}$. From above, $\mathfrak{P}$ is the only prime over $\mathfrak{q}$, and $\sigma_{j} \mathfrak{P}$ is the only prime over $\sigma_{j} \mathfrak{q}$, and the latter must be distinct. Since $[K: k]=|G|=\left|G_{\mathfrak{P}}\right| \cdot n$, necessarily $\mathfrak{p}$ splits completely in $K^{\mathfrak{P}}$.

Conversely, with $E$ an intermediate field in which $\mathfrak{p}$ splits completely, $G_{\mathfrak{P}}$ fixes $\mathfrak{P} \cap E$. The hypothesis that $\mathfrak{p}$ splits completely in $E$ implies that the decomposition subgroup of $\mathfrak{P} \cap E$ in $\operatorname{Gal}(E / k)$ is trivial. That is, the restriction of $G_{\mathfrak{P}}$ to $E$ is trivial, so $G_{\mathfrak{P}} \subset \operatorname{Gal}(K / E)$.

