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More about primes lying over...

p splits completely in K when there are [K : k] distinct primes
lying over p in O.

Corollary: For an abelian K/k, the decomposition subfield KP

is the maximal subfield of K (containing k) in which p splits
completely.

Frobenius map/automorphism

Artin map/automorphism

... and Dedekind rings.
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So far, we know that in the Galois case G is transitive on primes
P lying over p.

And the decomposition subfield KP (=fixed field of
decomposition group GP) is the smallest subfield of K such that
P is the only prime lying over KP ∩ P.

Claim: The inclusion o/p → OP/q to the residue field attached
to the decomposition field of P is an isomorphism.

Proof: The induced map is indeed an inclusion, because

p = k ∩ P = k ∩ KP ∩ P

For surjectivity: for σ ∈ G but not in GP, σP 6= P, and the prime
ideal

qσ = KP ∩ σP

is not q, since P is the only prime lying over q.
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Thus, given x ∈ OP, Sun-Ze’s theorem gives y ∈ OP such that







y = x mod q

y = 1 mod qσ (for all σ not in GP)

Thus, certainly in the larger ring O







y = x mod P

y = 1 mod σP (for all σ not in GP)

That is, σy = 1 mod P for σ 6∈ GP. The Galois norm of y
from KP to k is a product of y with images σy with σ 6∈ GP.
Therefore,

NKP

k y = x mod P

The norm is in o, and the congruence holds mod q since x ∈ OP.
///
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Claim: κ̃ = O/P is normal over κ = o/p, and GP surjects to
Gal(κ̃/κ).

Proof: Let α ∈ O generate a separable subextension (mod P) of
κ̃ over κ. The minimal polynomial of α over k has coefficients in
o because α is integral over o. Since K/k is Galois, f splits into
linear factors x − αi in K[x]. Then f mod P factors into linear
factors x − ᾱi where ᾱi is αi mod P.

Thus, whatever the minimal polynomial of ᾱ over κ, it factors into
linear factors in κ̃[x]. That is, κ̃/κ is normal, and

[κ(ᾱ) : κ] ≤ [k(α) : k] ≤ [K : k]

By the theorem of the primitive element, the maximal separable
subextension is of finite degree, bounded by [K : k].
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To prove surjectivity of the Galois group map, it suffices to
consider the situation that P is the only prime over p, from the
discussion of the decomposition group and field above. Thus,
G = GP and K = KP.

By the theorem of the primitive element, there is α in O with
image ᾱ mod P generating the (maximal separable subextension
of the) residue field extension κ̃/κ. Let f be the minimal
polynomial of α over k, and f the reduction of f mod p.

Normality of K/k gives the factorization of f(x) into linear
factors x − αi in O[x], and this factorization reduces mod P to
a factorization into linear factors x − ᾱi in κ̃[x].

Automorphisms of κ̃/κ are determined by their effect on ᾱ, and
map ᾱ to other zeros ᾱi of f . Gal(K/k) is transitive on the αi, so
is transitive on the ᾱi. This proves surjectivity. ///
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The inertia subgroup is the kernel IP of GP → Gal(κ̃/κ), and
the inertia subfield is the fixed field of IP. (This is better called
the 0th ramification group...) For typical K/k, we’ll see later
that IP is trivial for most P.

Remark: For us, κ̃/κ will almost always be separable.

A prime p is inert in K/k (or in O/o) the degree of the residue
field extension (for any prime lying over p) is equal to the global
field extension degree: [κ̃ : κ] = [K : k].

Corollary: For finite residue field κ, existence of inert primes in
K/k implies Gal(K/k) is cyclic.

Proof: Galois groups of finite extensions of finite fields are
(separable and) cyclic. The degree equality requires that the map
GP → Gal(κ̃/κ) be an isomorphism, and that G = GP. ///
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Examples:

In quadratic Galois extensions K/k, there is no obvious obstacle

to primes being inert, since a group with 2 elements could easily
surject to a group with 2 elements.

Remark: Lack of an obstacle does not prove existence... Indeed,
in extensions of C(x) no prime stays prime, since the residue fields
are all C, which is already algebraically closed.

In non-abelian Galois extensions such as Q( 3
√

2, ω)/Q, with ω a
cube root of unity, no prime p ∈ o = Z can stay prime.

The Galois group of a cyclotomic extension Q(ω)/Q with ω an
nth root of unity is (Z/n)×, which is cyclic only for n of the form
n = pℓ, n = 2pℓ, for p an odd prime, and for n = 4 (from
elementary number theory).
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[Examples, cont’d]

We had already seen that p ∈ Z stays prime in Q(ω)/Q if and
only if the nth cyclotomic polynomial Φn is irreducible in Fp[x].
This irreducibility is equivalent to n not dividing pd − 1 for
any d < deg Φn. This is equivalent to p being a primitive root

(=generator) for (Z/n)×.

Again, a necessary condition for cyclic-ness of (Z/n)× is that n be
of the special forms pℓ, 2pℓ, 4.

But Dirichlet’s theorem on primes in arithmetic progression is
necessary to prove existence of primes equal mod n to a primitive
root.

Quadratic reciprocity gives a congruence condition for quadratic
extensions of Q, and Dirichlet’s theorem again gives existence.



Garrett 11-07-2011 10

p splits completely in K when there are [K : k] distinct primes
lying over p in O.

Examples:

In Q(
√

D)/Q with square-free D ∈ Z, odd p not dividing D with
D a square mod p split completely: with D = 2, 3 mod 4, for
simplicity, so that the ring of integers is really Z[

√
D], as earlier,

O/pO = Z[x]/〈p, x2 − D〉 = Fp[x]/〈x2 − D〉

In Q(ω)/Q with ω an nth root of unity, primes p = 1 mod n split

completely. As we will see, the integral closure O of Z in Q(ω)
really is Z[ω], and then, with Φn the nth cyclotomic polynomial,

O/pO = Z[x]/〈p, Φn〉 = Fp[x]/〈Φn〉
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The nth cyclotomic polynomial splits into linear factors over Fp

exactly when p = 1 mod n, because F×

p is cyclic.

Proof that there are infinitely-many primes p = 1 mod n is much
easier than the general case of Dirichlet’s theorem:

Given a list p1, . . . , pℓ of primes, consider N = Φn(tp1 . . . pℓ)
for integers t at our disposal. The cyclotomic Φn has integer
coefficients and constant coefficient ±1, so N is not divisible by
any pj . For sufficiently large t, N cannot be ±1, either. Thus, N
has prime factors p other than pj .

At the same time, p|Φn(j) for an integer j says that j is a
primitive nth root of unity mod p, so p = 1 mod n. ///
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Corollary: For abelian K/k, the decomposition subfield KP

is the maximal subfield of K (containing k) in which p splits
completely.

Proof: With σ1, . . . , σn representatives for G/GP, by transitivity,
σjP are distinct, and are all the primes over p. The abelian-ness
implies that the decomposition subfields KP for the σjP are all
the same.

Let q = P∩KP. From above, P is the only prime over q, and σjP

is the only prime over σjq, and the latter must be distinct. Since
[K : k] = |G| = |GP| · n, necessarily p splits completely in KP.

Conversely, with E an intermediate field in which p splits
completely, GP fixes P ∩ E. The hypothesis that p splits
completely in E implies that the decomposition subgroup of
P ∩ E in Gal(E/k) is trivial. That is, the restriction of GP to
E is trivial, so GP ⊂ Gal(K/E). ///


