More about primes lying over...

 \mathfrak{p} splits completely in K when there are [K : k] distinct primes lying over \mathfrak{p} in \mathfrak{O} .

Corollary: For an *abelian* K/k, the decomposition subfield $K^{\mathfrak{P}}$ is the maximal subfield of K (containing k) in which \mathfrak{p} splits completely.

Frobenius map/automorphism

Artin map/automorphism

... and **Dedekind rings**.

2

The picture is

So far, we know that in the Galois case G is *transitive* on primes \mathfrak{P} lying over \mathfrak{p} .

And the decomposition subfield $K^{\mathfrak{P}}$ (=fixed field of decomposition group $G_{\mathfrak{P}}$) is the smallest subfield of K such that \mathfrak{P} is the only prime lying over $K^{\mathfrak{P}} \cap \mathfrak{P}$.

Claim: The inclusion $\mathfrak{o}/\mathfrak{p} \to \mathfrak{O}^{\mathfrak{P}}/\mathfrak{q}$ to the residue field attached to the decomposition field of \mathfrak{P} is an *isomorphism*.

Proof: The induced map is indeed an *inclusion*, because

$$\mathfrak{p} = k \cap \mathfrak{P} = k \cap K^{\mathfrak{P}} \cap \mathfrak{P}$$

For surjectivity: for $\sigma \in G$ but not in $G_{\mathfrak{P}}, \sigma \mathfrak{P} \neq \mathfrak{P}$, and the prime ideal

$$\mathfrak{q}_{\sigma} = K^{\mathfrak{P}} \cap \sigma \mathfrak{P}$$

is not \mathfrak{q} , since \mathfrak{P} is the only prime lying over \mathfrak{q} .

Thus, given $x \in \mathfrak{O}^{\mathfrak{P}}$, Sun-Ze's theorem gives $y \in \mathfrak{O}^{\mathfrak{P}}$ such that

$$\begin{cases} y = x \mod \mathfrak{q} \\ y = 1 \mod \mathfrak{q}_{\sigma} \quad \text{(for all } \sigma \text{ not in } G_{\mathfrak{P}}) \end{cases}$$

Thus, certainly in the larger ring \mathfrak{O}

$$\begin{cases} y = x \mod \mathfrak{P} \\ y = 1 \mod \sigma \mathfrak{P} \quad \text{(for all } \sigma \text{ not in } G_{\mathfrak{P}}) \end{cases}$$

That is, $\sigma y = 1 \mod \mathfrak{P}$ for $\sigma \notin G^{\mathfrak{P}}$. The Galois norm of y from $K^{\mathfrak{P}}$ to k is a product of y with images σy with $\sigma \notin G^{\mathfrak{P}}$. Therefore,

$$N_k^{K^{\mathfrak{P}}}y = x \mod \mathfrak{P}$$

The norm is in \mathfrak{o} , and the congruence holds mod \mathfrak{q} since $x \in \mathfrak{O}^{\mathfrak{P}}$.

Claim: $\tilde{\kappa} = \mathfrak{O}/\mathfrak{P}$ is normal over $\kappa = \mathfrak{o}/\mathfrak{p}$, and $G_{\mathfrak{P}}$ surjects to $\operatorname{Gal}(\tilde{\kappa}/\kappa)$.

Proof: Let $\alpha \in \mathfrak{O}$ generate a separable subextension (mod \mathfrak{P}) of $\tilde{\kappa}$ over κ . The minimal polynomial of α over k has coefficients in \mathfrak{o} because α is integral over \mathfrak{o} . Since K/k is Galois, f splits into linear factors $x - \alpha_i$ in K[x]. Then $f \mod \mathfrak{P}$ factors into linear factors $x - \bar{\alpha}_i$ where $\bar{\alpha}_i$ is $\alpha_i \mod \mathfrak{P}$.

Thus, whatever the minimal polynomial of $\bar{\alpha}$ over κ , it factors into linear factors in $\tilde{\kappa}[x]$. That is, $\tilde{\kappa}/\kappa$ is normal, and

$$[\kappa(\bar{\alpha}):\kappa] \leq [k(\alpha):k] \leq [K:k]$$

By the theorem of the primitive element, the maximal separable subextension is of finite degree, bounded by [K:k].

To prove surjectivity of the Galois group map, it suffices to consider the situation that \mathfrak{P} is the only prime over \mathfrak{p} , from the discussion of the decomposition group and field above. Thus, $G = G_{\mathfrak{P}}$ and $K = K^{\mathfrak{P}}$.

By the theorem of the primitive element, there is α in \mathfrak{O} with image $\bar{\alpha} \mod \mathfrak{P}$ generating the (maximal separable subextension of the) residue field extension $\tilde{\kappa}/\kappa$. Let f be the minimal polynomial of α over k, and \overline{f} the reduction of $f \mod \mathfrak{p}$.

Normality of K/k gives the factorization of f(x) into linear factors $x - \alpha_i$ in $\mathfrak{O}[x]$, and this factorization reduces mod \mathfrak{P} to a factorization into linear factors $x - \overline{\alpha}_i$ in $\tilde{\kappa}[x]$.

Automorphisms of $\tilde{\kappa}/\kappa$ are determined by their effect on $\bar{\alpha}$, and map $\bar{\alpha}$ to other zeros $\bar{\alpha}_i$ of \overline{f} . Gal(K/k) is *transitive* on the α_i , so is transitive on the $\bar{\alpha}_i$. This proves surjectivity. /// The **inertia subgroup** is the kernel $I_{\mathfrak{P}}$ of $G_{\mathfrak{P}} \to \operatorname{Gal}(\tilde{\kappa}/\kappa)$, and the **inertia subfield** is the fixed field of $I_{\mathfrak{P}}$. (This is better called the 0^{th} ramification group...) For typical K/k, we'll see later that $I_{\mathfrak{P}}$ is *trivial* for most \mathfrak{P} .

Remark: For us, $\tilde{\kappa}/\kappa$ will almost always be *separable*.

A prime \mathfrak{p} is **inert** in K/k (or in $\mathfrak{O}/\mathfrak{o}$) the degree of the residue field extension (for any prime lying over \mathfrak{p}) is equal to the global field extension degree: $[\tilde{\kappa} : \kappa] = [K : k].$

Corollary: For *finite* residue field κ , existence of inert primes in K/k implies Gal(K/k) is *cyclic*.

Proof: Galois groups of finite extensions of finite fields are (separable and) cyclic. The degree equality requires that the map $G_{\mathfrak{P}} \to \operatorname{Gal}(\tilde{\kappa}/\kappa)$ be an *isomorphism*, and that $G = G_{\mathfrak{P}}$. ///

Examples:

In quadratic Galois extensions K/k, there is no obvious *obstacle* to primes being *inert*, since a group with 2 elements could easily surject to a group with 2 elements.

Remark: Lack of an obstacle does not prove *existence*... Indeed, in extensions of $\mathbb{C}(x)$ no prime stays prime, since the residue fields are all \mathbb{C} , which is already algebraically closed.

In non-abelian Galois extensions such as $\mathbb{Q}(\sqrt[3]{2}, \omega)/\mathbb{Q}$, with ω a cube root of unity, *no* prime $p \in \mathfrak{o} = \mathbb{Z}$ can stay prime.

The Galois group of a cyclotomic extension $\mathbb{Q}(\omega)/\mathbb{Q}$ with ω an n^{th} root of unity is $(\mathbb{Z}/n)^{\times}$, which is *cyclic* only for n of the form $n = p^{\ell}, n = 2p^{\ell}$, for p an odd prime, and for n = 4 (from elementary number theory).

[*Examples*, cont'd]

We had already seen that $p \in \mathbb{Z}$ stays prime in $\mathbb{Q}(\omega)/\mathbb{Q}$ if and only if the n^{th} cyclotomic polynomial Φ_n is irreducible in $\mathbb{F}_p[x]$. This irreducibility is equivalent to n not dividing $p^d - 1$ for any $d < \deg \Phi_n$. This is equivalent to p being a primitive root (=generator) for $(\mathbb{Z}/n)^{\times}$.

Again, a *necessary* condition for cyclic-ness of $(\mathbb{Z}/n)^{\times}$ is that n be of the special forms $p^{\ell}, 2p^{\ell}, 4$.

But *Dirichlet's theorem* on primes in arithmetic progression is necessary to prove existence of *primes* equal mod n to a primitive root.

Quadratic reciprocity gives a congruence condition for quadratic extensions of \mathbb{Q} , and Dirichlet's theorem again gives *existence*.

 \mathfrak{p} splits completely in K when there are [K : k] distinct primes lying over \mathfrak{p} in \mathfrak{O} .

Examples:

In $\mathbb{Q}(\sqrt{D})/\mathbb{Q}$ with square-free $D \in \mathbb{Z}$, odd p not dividing D with D a square mod p split completely: with $D = 2, 3 \mod 4$, for simplicity, so that the ring of integers is really $\mathbb{Z}[\sqrt{D}]$, as earlier,

$$\mathfrak{O}/p\mathfrak{O} = \mathbb{Z}[x]/\langle p, x^2 - D \rangle = \mathbb{F}_p[x]/\langle x^2 - D \rangle$$

In $\mathbb{Q}(\omega)/\mathbb{Q}$ with ω an n^{th} root of unity, primes $p = 1 \mod n$ split completely. As we will see, the integral closure \mathfrak{O} of \mathbb{Z} in $\mathbb{Q}(\omega)$ really is $\mathbb{Z}[\omega]$, and then, with Φ_n the n^{th} cyclotomic polynomial,

$$\mathfrak{O}/p\mathfrak{O} = \mathbb{Z}[x]/\langle p, \Phi_n \rangle = \mathbb{F}_p[x]/\langle \Phi_n \rangle$$

The n^{th} cyclotomic polynomial splits into linear factors over \mathbb{F}_p exactly when $p = 1 \mod n$, because \mathbb{F}_p^{\times} is *cyclic*.

Proof that there are infinitely-many primes $p = 1 \mod n$ is much easier than the general case of Dirichlet's theorem:

Given a list p_1, \ldots, p_ℓ of primes, consider $N = \Phi_n(tp_1 \ldots p_\ell)$ for integers t at our disposal. The cyclotomic Φ_n has integer coefficients and constant coefficient ± 1 , so N is not divisible by any p_j . For sufficiently large t, N cannot be ± 1 , either. Thus, Nhas prime factors p other than p_j .

At the same time, $p|\Phi_n(j)$ for an integer j says that j is a primitive n^{th} root of unity mod p, so $p = 1 \mod n$. ///

Corollary: For *abelian* K/k, the decomposition subfield $K^{\mathfrak{P}}$ is the maximal subfield of K (containing k) in which \mathfrak{p} splits completely.

Proof: With $\sigma_1, \ldots, \sigma_n$ representatives for $G/G_{\mathfrak{P}}$, by transitivity, $\sigma_j \mathfrak{P}$ are distinct, and are all the primes over \mathfrak{p} . The abelian-ness implies that the decomposition subfields $K^{\mathfrak{P}}$ for the $\sigma_j \mathfrak{P}$ are all the same.

Let $\mathbf{q} = \mathfrak{P} \cap K^{\mathfrak{P}}$. From above, \mathfrak{P} is the only prime over \mathbf{q} , and $\sigma_j \mathfrak{P}$ is the only prime over $\sigma_j \mathbf{q}$, and the latter must be *distinct*. Since $[K:k] = |G| = |G_{\mathfrak{P}}| \cdot n$, necessarily \mathfrak{p} splits completely in $K^{\mathfrak{P}}$.

Conversely, with E an intermediate field in which \mathfrak{p} splits completely, $G_{\mathfrak{P}}$ fixes $\mathfrak{P} \cap E$. The hypothesis that \mathfrak{p} splits completely in E implies that the decomposition subgroup of $\mathfrak{P} \cap E$ in $\operatorname{Gal}(E/k)$ is *trivial*. That is, the restriction of $G_{\mathfrak{P}}$ to E is trivial, so $G_{\mathfrak{P}} \subset \operatorname{Gal}(K/E)$.