Primes lying over/under [recap/cont'd]

For \mathfrak{O} integral over \mathfrak{o} and prime ideal \mathfrak{p} of \mathfrak{o}, there is at least one prime ideal \mathfrak{P} of \mathfrak{O} such that $\mathfrak{P} \cap \mathfrak{o}=\mathfrak{p}$. \mathfrak{P} is maximal if and only if \mathfrak{p} is maximal. $\mathfrak{p} \cdot \mathfrak{O} \neq \mathfrak{O}$.

For K / k finite Galois, the Galois group $G=\operatorname{Gal}(K / k)$ is transitive on primes lying over \mathfrak{p} in \mathfrak{O}.

Generally, there are only finitely-many prime ideals lying over a given prime of \mathfrak{o}.

For maximal \mathfrak{P} lying over \mathfrak{p} in \mathfrak{o}, the decomposition group $G_{\mathfrak{F}}$ is the stabilizer of \mathfrak{P}. The decomposition field $K^{\mathfrak{F}}$ of \mathfrak{P} is the subfield of K fixed by $G_{\mathfrak{F}}$.
\mathfrak{P} is the only prime of \mathfrak{O} lying above $\mathfrak{P} \cap K^{\mathfrak{P}}$.
Next: A less fussy/labor-intense version of localization...

Localization more generally: For non-integral-domains \mathfrak{o}, collapsing can occur in localizations $j: \mathfrak{o} \rightarrow \mathfrak{o}_{\mathfrak{p}}$.

Example: Localizing $\mathfrak{o}=\mathbb{Z} / 30$ at the prime ideal $\mathfrak{p}=3 \cdot \mathbb{Z} / 30$ requires that $10 \notin \mathfrak{p}$ become a unit in the image $j: \mathfrak{o} \rightarrow \mathfrak{o}_{\mathfrak{p}}$. Thus,

$$
j(3)=j(3) \cdot j(10) \cdot j(10)^{-1}=j(30) \cdot j(10)^{-1}=0 \cdot j(10)^{-1}
$$

Thus (!) $\mathfrak{o}_{\mathfrak{p}}=\mathbb{Z} / 3$, and $\mathbb{Z} / 30 \rightarrow \mathbb{Z} / 3$ is the quotient map. Generally, $j: \mathfrak{o} \rightarrow \mathfrak{o}_{\mathfrak{p}}$ sends zero-divisors $x \in \mathfrak{p}$ with $x y=0$ for $y \notin \mathfrak{p}$ to 0 :

$$
0=j(0) \cdot j(y)^{-1}=j(x y) j(y)^{-1}=j(x) j(y) j(y)^{-1}=j(x)
$$

This explains the more complicated equivalence relation in the more general proof-of-existence-by-construction of localization, via some sort of generalized fractions:

Claim: The localization $j: \mathfrak{o} \rightarrow \mathfrak{o}_{\mathfrak{p}}$ exists: it can be constructed as pairs $\{(a, b): x \in \mathfrak{o}, b \notin \mathfrak{p}\}$, identifying $(a, b),\left(a^{\prime}, b^{\prime}\right)$ when $c \cdot\left(a b^{\prime}-a^{\prime} b\right)=0$ for some $c \in \mathfrak{o}-\mathfrak{p}$, with addition and multiplication as usual. Given $\varphi: \mathfrak{o} \rightarrow R$, the corresponding $\Phi: \mathfrak{o}_{\mathfrak{p}} \rightarrow R$ is $\Phi\left(\frac{a}{b}\right)=\varphi(a) \varphi(b)^{-1}$.

Remark: Now it becomes interesting so check that $\mathfrak{o}_{\mathfrak{p}}$ is not accidentally the degenerate ring $\{0\}$! This would use the hypothesis that no product of elements of $S=\mathfrak{o}-\mathfrak{p}$ is 0 .

Remark: It would be reasonable to be impatient with, or even repelled by, the (tedious!) details involved in verification that things are well-defined, and that the construction really produces a ring, and that Φ is a ring homomorphism, etc.

What's the alternative?

First, we may as well formulate the most general case:
For an arbitrary subset S (not just the complement of a prime ideal) of a commutative ring with identity \mathfrak{o}, the localization $j: \mathfrak{o} \rightarrow S^{-1} \mathfrak{o}$ can be characterized by a universal property: for any ring hom $\varphi: \mathfrak{o} \rightarrow R$ with $\varphi(S) \subset R^{\times}$, there is a unique Φ giving a commutative diagram

Characterization by a universal property proves uniqueness..., when existence is proven, probably by a (hopefully graceful) construction.

Consider an expression as a quotient of a polynomial ring with indeterminates x_{s} for all $s \in S$:

$$
S^{-1} \mathfrak{o}=\mathfrak{o}\left[\left\{x_{s}: s \in S\right\}\right] /\left(\text { ideal generated by } s x_{s}-1, \forall s \in S\right)
$$

with $j: \mathfrak{o} \rightarrow S^{-1} \mathfrak{o}$ induced by the inclusion $\mathfrak{o} \rightarrow \mathfrak{o}\left[\ldots, x_{s}, \ldots\right]$.
This produces a ring, for any $S \subset \mathfrak{o}$. Given $\varphi: \mathfrak{o} \rightarrow R$ with $\varphi(S) \subset R^{\times}$, the universal mapping properties of polynomial rings give a unique $\widetilde{\varphi}$ extending φ to the polynomial ring by

$$
\widetilde{\varphi}\left(x_{s}\right)=\varphi(s)^{-1}
$$

Then $\widetilde{\varphi}$ factors uniquely through the quotient, since

$$
\widetilde{\varphi}\left(s x_{s}-1\right)=\varphi(s) \widetilde{\varphi}\left(x_{s}\right)-\varphi(1)=1-1=0
$$

The diagram of well-defined, uniquely-determined ring homs:

with $\widetilde{\varphi}$ uniquely induced by $\widetilde{\varphi}\left(x_{s}\right)=\varphi(s)^{-1}$, and Φ uniquely induced by $\widetilde{\varphi}$.

What more is needed? When the ring \mathfrak{o} has 0 -divisors, it is not clear that there are any such rings R (with $0 \neq 1!!!$) over which to quantify, and/or that $S^{-1} \mathfrak{o}$ is not the trivial ring $\{0\}$ with $0=1$. Indeed, if any product of elements of S is $0, S^{-1} \mathfrak{o}=\{0\}$, but the above construction seems to succeed without this hypothesis.

Claim: In $S^{-1} \mathfrak{o}, 0 \neq 1$ if and only if no product of elements of S is 0 .

Proof: The degeneration $1=0$ in the quotient is equivalent to existence of an expression

$$
\sum_{i=1}^{n} f_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot\left(s_{i} x_{i}-1\right)=1 \in \mathfrak{o}\left[x_{1}, \ldots, x_{n}\right]
$$

where $x_{i}=x_{s_{i}}$, for some finite subset $S_{o}=\left\{s_{1}, \ldots, s_{n}\right\}$ of S, where $f_{i}\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial with coefficients in \mathfrak{o}.

One direction is easy: if $s t=0$ for $s, t \in S$, then in the quotient

$$
S^{-1} \mathfrak{o}=\mathfrak{o}[x, y] /\langle s x-1, t y-1\rangle
$$

we compute

$$
\begin{equation*}
1=1 \cdot 1=s x \cdot t y=s t \cdot x y=0 \cdot x y=0 \tag{-1}
\end{equation*}
$$

That is, in $\mathfrak{o}[x, y]$ itself,

$$
\begin{gathered}
1=(1-s x+s x)(1-t y+t y) \\
=(1-s x)(1-t y)+s x(1-t y)+t y(1-s x)+s x t y \\
=(1-s x)(1-t y)+s x(1-t y)+t y(1-s x)+0
\end{gathered}
$$

which is in the ideal generated by $1-s x$ and $(1-t y)$.
For the other direction, for $S=\{s\}$ with a single element, a condition

$$
\left(c_{\ell} x^{\ell}+\ldots+c_{1} x+c_{o}\right) \cdot(s x-1)=1
$$

gives $c_{o}=-1$ and $c_{k}=-s^{k}$, and $s^{\ell+1}=0$.

Inductively, suppose we have the claim for $|S| \leq n-1$. Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$, and suppose $S^{-1} \mathfrak{o}=\{0\}$.

From the mapping characterization, it is immediate that localization can be done stepwise: there is a natural isomorphism

$$
\left(S_{1} \cup S_{2}\right)^{-1} \mathfrak{o} \approx S_{1}^{-1}\left(S_{2}^{-1} \mathfrak{o}\right)
$$

Let $\mathfrak{o}^{\prime}=\left\{s_{n}\right\}^{-1} \mathfrak{o}$ and $S^{\prime}=\left\{s_{1}, \ldots, s_{n-1}\right\}$. Then $0=1$ in $S^{\prime-1} \mathfrak{o}^{\prime}$ implies that $s_{1}^{\ell_{1}} \ldots s_{n-1}^{\ell_{n-1}}=0$ in \mathfrak{o}^{\prime}, for some non-negative integer exponents. Since $\mathfrak{o}^{\prime}=\mathfrak{o}[x] /\left\langle s_{n} x-1\right\rangle$, for some coefficients c_{i}

$$
s_{1}^{\ell_{1}} \ldots s_{n-1}^{\ell_{n-1}}=\left(c_{\ell} x^{\ell}+\ldots+c_{o}\right)\left(s_{n} x-1\right)
$$

Then $c_{o}=-s_{1}^{\ell_{1}} \ldots s_{n-1}^{\ell_{n-1}}$, and $s_{1}^{\ell_{1}} \ldots s_{n-1}^{\ell_{n-1}} \cdot s_{n}^{\ell+1}=0$.

Corresponding localization of modules and algebras:
Let $i: \mathfrak{o} \rightarrow \mathfrak{o}_{\mathfrak{p}}$ be the localization.
For an \mathfrak{o}-module M, it should not be surprising that the useful notion of localization of M creates an $\mathfrak{o}_{\mathfrak{p}}$-module $M_{\mathfrak{p}}$ by

$$
M_{\mathfrak{p}}=\mathfrak{o}_{\mathfrak{p}} \otimes_{\mathfrak{o}} M
$$

Similarly, for a (commutative) \mathfrak{o}-algebra A,

$$
A_{\mathfrak{p}}=\mathfrak{o}_{\mathfrak{p}} \otimes_{\mathfrak{o}} A
$$

Or, why not the other extension of scalars, $M_{\mathfrak{p}}=\operatorname{Hom}_{\mathfrak{o}}\left(\mathfrak{o}_{\mathfrak{p}}, M\right)$?

