Primes lying over/under [recap/cont'd]

For \mathfrak{O} integral over \mathfrak{o} and prime ideal \mathfrak{p} of \mathfrak{o} , there is at least one prime ideal \mathfrak{P} of \mathfrak{O} such that $\mathfrak{P} \cap \mathfrak{o} = \mathfrak{p}$. \mathfrak{P} is maximal if and only if \mathfrak{p} is maximal. $\mathfrak{p} \cdot \mathfrak{O} \neq \mathfrak{O}$.

For K/k finite *Galois*, the Galois group G = Gal(K/k) is *transitive* on primes lying over \mathfrak{p} in \mathfrak{O} .

Generally, there are only finitely-many prime ideals lying over a given prime of $\mathfrak{o}.$

For maximal \mathfrak{P} lying over \mathfrak{p} in \mathfrak{o} , the decomposition group $G_{\mathfrak{P}}$ is the stabilizer of \mathfrak{P} . The decomposition field $K^{\mathfrak{P}}$ of \mathfrak{P} is the subfield of K fixed by $G_{\mathfrak{P}}$.

 \mathfrak{P} is the only prime of \mathfrak{O} lying above $\mathfrak{P} \cap K^{\mathfrak{P}}$.

Next: A less fussy/labor-intense version of localization...

Localization more generally: For non-integral-domains \mathfrak{o} , *collapsing* can occur in localizations $j : \mathfrak{o} \to \mathfrak{o}_{\mathfrak{p}}$.

Example: Localizing $\mathfrak{o} = \mathbb{Z}/30$ at the prime ideal $\mathfrak{p} = 3 \cdot \mathbb{Z}/30$ requires that $10 \notin \mathfrak{p}$ become a unit in the image $j : \mathfrak{o} \to \mathfrak{o}_{\mathfrak{p}}$. Thus,

$$j(3) = j(3) \cdot j(10) \cdot j(10)^{-1} = j(30) \cdot j(10)^{-1} = 0 \cdot j(10)^{-1}$$

Thus (!) $\mathfrak{o}_{\mathfrak{p}} = \mathbb{Z}/3$, and $\mathbb{Z}/30 \to \mathbb{Z}/3$ is the quotient map. Generally, $j : \mathfrak{o} \to \mathfrak{o}_{\mathfrak{p}}$ sends zero-divisors $x \in \mathfrak{p}$ with xy = 0 for $y \notin \mathfrak{p}$ to 0:

$$0 = j(0) \cdot j(y)^{-1} = j(xy)j(y)^{-1} = j(x)j(y)j(y)^{-1} = j(x)$$

This explains the more complicated equivalence relation in the more general proof-of-existence-by-construction of localization, via some sort of generalized *fractions*:

Claim: The localization $j : \mathfrak{o} \to \mathfrak{o}_{\mathfrak{p}}$ exists: it can be constructed as pairs $\{(a,b) : x \in \mathfrak{o}, b \notin \mathfrak{p}\}$, identifying (a,b), (a',b') when $c \cdot (ab'-a'b) = 0$ for some $c \in \mathfrak{o}-\mathfrak{p}$, with addition and multiplication as usual. Given $\varphi : \mathfrak{o} \to R$, the corresponding $\Phi : \mathfrak{o}_{\mathfrak{p}} \to R$ is $\Phi(\frac{a}{b}) = \varphi(a)\varphi(b)^{-1}$.

Remark: Now it becomes interesting so check that $\mathfrak{o}_{\mathfrak{p}}$ is not accidentally the degenerate ring $\{0\}$! This would use the hypothesis that no product of elements of $S = \mathfrak{o} - \mathfrak{p}$ is 0.

Remark: It would be reasonable to be impatient with, or even repelled by, the (tedious!) details involved in verification that things are well-defined, and that the construction really produces a *ring*, and that Φ is a ring homomorphism, etc.

What's the alternative?

First, we may as well formulate the most general case:

For an arbitrary subset S (not just the complement of a prime ideal) of a commutative ring with identity \mathfrak{o} , the localization $j: \mathfrak{o} \to S^{-1}\mathfrak{o}$ can be characterized by a *universal property*: for any ring hom $\varphi: \mathfrak{o} \to R$ with $\varphi(S) \subset R^{\times}$, there is a unique Φ giving a commutative diagram

Characterization by a universal property proves uniqueness..., when *existence* is proven, probably by a (hopefully graceful) *construction*. Consider an expression as a quotient of a polynomial ring with indeterminates x_s for all $s \in S$:

$$S^{-1}\mathfrak{o} = \mathfrak{o}[\{x_s : s \in S\}] / (\text{ideal generated by } sx_s - 1, \forall s \in S)$$

with $j: \mathfrak{o} \to S^{-1}\mathfrak{o}$ induced by the inclusion $\mathfrak{o} \to \mathfrak{o}[\ldots, x_s, \ldots]$.

This produces a *ring*, for any $S \subset \mathfrak{o}$. Given $\varphi : \mathfrak{o} \to R$ with $\varphi(S) \subset R^{\times}$, the universal mapping properties of polynomial rings give a unique $\tilde{\varphi}$ extending φ to the polynomial ring by

$$\widetilde{\varphi}(x_s) = \varphi(s)^{-1}$$

Then $\widetilde{\varphi}$ factors uniquely through the *quotient*, since

$$\widetilde{\varphi}(sx_s-1) = \varphi(s)\widetilde{\varphi}(x_s) - \varphi(1) = 1 - 1 = 0$$

The diagram of well-defined, uniquely-determined ring homs:

with $\widetilde{\varphi}$ uniquely induced by $\widetilde{\varphi}(x_s) = \varphi(s)^{-1}$, and Φ uniquely induced by $\widetilde{\varphi}$.

What more is needed? When the ring \mathfrak{o} has 0-divisors, it is not clear that there are any such rings R (with $0 \neq 1!!!$) over which to quantify, and/or that $S^{-1}\mathfrak{o}$ is not the trivial ring $\{0\}$ with 0 = 1.

Indeed, if any product of elements of S is 0, $S^{-1}\mathfrak{o} = \{0\}$, but the above construction seems to succeed without this hypothesis.

Claim: In $S^{-1}\mathfrak{o}, 0 \neq 1$ if and only if no product of elements of S is 0.

Proof: The degeneration 1 = 0 in the quotient is equivalent to existence of an expression

$$\sum_{i=1}^{n} f_i(x_1, \dots, x_n) \cdot (s_i x_i - 1) = 1 \in \mathfrak{o}[x_1, \dots, x_n]$$

where $x_i = x_{s_i}$, for some *finite* subset $S_o = \{s_1, \ldots, s_n\}$ of S, where $f_i(x_1, \ldots, x_n)$ is a polynomial with coefficients in \mathfrak{o} .

One direction is easy: if st = 0 for $s, t \in S$, then in the quotient

$$S^{-1}\mathfrak{o} = \mathfrak{o}[x,y]/\langle sx-1, ty-1 \rangle$$

we compute

$$1 = 1 \cdot 1 = sx \cdot ty = st \cdot xy = 0 \cdot xy = 0 \quad (\text{in } S^{-1}\mathfrak{o})$$

That is, in $\mathfrak{o}[x, y]$ itself,

$$1 = (1 - sx + sx)(1 - ty + ty)$$

= $(1 - sx)(1 - ty) + sx(1 - ty) + ty(1 - sx) + sxty$
= $(1 - sx)(1 - ty) + sx(1 - ty) + ty(1 - sx) + 0$

which is in the ideal generated by 1 - sx and (1 - ty).

For the other direction, for $S = \{s\}$ with a single element, a condition

$$(c_{\ell}x^{\ell} + \ldots + c_1x + c_o) \cdot (sx - 1) = 1$$

gives $c_o = -1$ and $c_k = -s^k$, and $s^{\ell+1} = 0$.

Inductively, suppose we have the claim for $|S| \leq n - 1$. Let $S = \{s_1, \ldots, s_n\}$, and suppose $S^{-1} \mathfrak{o} = \{0\}$.

From the mapping characterization, it is immediate that localization can be done stepwise: there is a natural isomorphism

$$(S_1 \cup S_2)^{-1} \mathfrak{o} \approx S_1^{-1} \Big(S_2^{-1} \mathfrak{o} \Big)$$

Let $\mathfrak{o}' = \{s_n\}^{-1}\mathfrak{o}$ and $S' = \{s_1, \ldots, s_{n-1}\}$. Then 0 = 1 in $S'^{-1}\mathfrak{o}'$ implies that $s_1^{\ell_1} \ldots s_{n-1}^{\ell_{n-1}} = 0$ in \mathfrak{o}' , for some non-negative integer exponents. Since $\mathfrak{o}' = \mathfrak{o}[x]/\langle s_n x - 1 \rangle$, for some coefficients c_i

$$s_1^{\ell_1} \dots s_{n-1}^{\ell_{n-1}} = (c_\ell x^\ell + \dots + c_o)(s_n x - 1)$$

Then $c_o = -s_1^{\ell_1} \dots s_{n-1}^{\ell_{n-1}}$, and $s_1^{\ell_1} \dots s_{n-1}^{\ell_{n-1}} \cdot s_n^{\ell+1} = 0.$ ///

Corresponding localization of modules and algebras:

Let $i: \mathfrak{o} \to \mathfrak{o}_{\mathfrak{p}}$ be the localization.

For an \mathfrak{o} -module M, it should not be surprising that the useful notion of *localization* of M creates an $\mathfrak{o}_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}$ by

$$M_{\mathfrak{p}} = \mathfrak{o}_{\mathfrak{p}} \otimes_{\mathfrak{o}} M$$

Similarly, for a (commutative) \mathfrak{o} -algebra A,

$$A_{\mathfrak{p}} = \mathfrak{o}_{\mathfrak{p}} \otimes_{\mathfrak{o}} A$$

Or, why not the *other* extension of scalars, $M_{\mathfrak{p}} = \operatorname{Hom}_{\mathfrak{o}}(\mathfrak{o}_{\mathfrak{p}}, M)$?