Garrett 10-31-2011

Primes lying over /under [recap/cont’d]

Theorem: For O integral over o and prime ideal p of o, there is
at least one prime ideal B3 of O such that P No = p.

B is said to lie over p. ‘P is maximal if and only if p is maximal.

p-O # 9. There a natural commutative diagram

O — OB
T T

o — o/p

Localization of o with respect to S = 0 — p is extremely useful.

Galois action on primes lying over p, then recap and
amplification of localization.
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Proof of theorem: S = o — p is multiplicative because p is prime.
S~19 is integral over S~'o, and S~'o has unique maximal ideal
m = p- S lo. [These features amplified below.]

To show pO # 9, it suffices to consider the local version, because
p- SO =p- 5105710 =m- 57O

That is, it suffices to prove m - O # O, with o local.

For local 0, if m - © = O, then1l € ©O has an expression

1 = my1 + ... + MYy, with m; € mand y; € O. Let O; be
the ring O1 = o[y1,...,yn]. It is a finitely-generated o0-algebra, so
by integrality is a finitely-generated o-module.
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Nakayama’s Lemma (simple useful case): for a local ring
o with maximal ideal m, if mX = X for a finitely-generated o-
module X, then X = {0}.

Proof: (of Lemma) For X generated by z1,...,x,, the hypothesis
gives

1 = M1T1+ ... +mpTn (for some m,; € m)

(I —=my)rr = maoxa+ ...+ mpxy,

Since 1 € m, 1 — my; € m. Every element of a commutative ring
with 1 is either a unit or is in a maximal ideal. Thus, 1 — m is a
unit, we can divide through by it, and my is expressible in terms
of the other generators. Induction. ///

Applying this to O gives 91 ={0}, contradiction, and m - O # ©O.
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Reverting to not-necessarily-local o, in

O — SO
T T

o — S71o

m-S71O £ S719, so is in some maximal ideal 9t of S~19O,
and 9 N S~!'o O m. This cannot contain 1, since MM Z 1. By
maximality of m, N S~ 1o =m.

M is non-zero prime, so P = M N O is prime, because intersecting
a prime ideal with a subring gives a prime ideal. ¥ is not {0},
because of integrality: 0 % m € 90 satisfies

m"® 4+ ap_1m" 1+ ... +a, =0witha; € 0and 0 # a, € o N M.
Then

oNP = oN(ONM) = onNM = 0oN(S 0NM) = oNm = p

[Discussion of B maximal <= p maximal not repeated.] ///
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Sun-Ze’s theorem: For ideals a; in o such that a; +a; = o for
i # j, given x;, there is « € o such that z = x; mod a; for all j.

Proof: The hypothesis gives a1 € a1,a2 € as such that a; + as = 1.
Then x = x9a1 + x1a9 solves the problem for two ideals.

Induction: for j > 1, let b; € a; and ¢; € a; such that b; +¢; = 1.

Then
1 = H(bj+0j) c Cll—l—HClj
g>1 7j>1
That is, a; + Hj>1 a; = o. Thus, there is y; € o such that
y1 = lmoda; andy; = Omod [[,; a;. Similarly, find
yi = lmoda; and y; = Omod [],,;a;. Thenz = ) . x;y; is
x; mod a;. ///
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Transitivity of Galois groups on primes lying over p

Let K/k be finite Galois, o integrally closed in k, O its integral
closure in K. Let p be prime in 0. The Galois group G =
Gal(K/k) is transitive on primes lying over p in O.

Proof: Localize to assume p mazimal. For two primes B3, Q over p,
if no Galois image o*B3 is £Q, then there is a solution to

0 mod

1 mod 0B for all 0 € G

The norm N/ (z) is in kNO = o, by integral closure of o, and then
isin Q No = p. On the other hand, o=z & P, for all 0 € G, so
NE (z) ¢ B, contradicting N (z) € p C *B. ///
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Corollary: In O/0 in K/k, there are only finitely-many prime
ideals lying over a given prime of o.

Proof: If we can reduce to the Galois-extension case, we're done,
by the previous.

Let K’ be a Galois closure of K/k, with integral closure O’, and
Q1,05 prime ideals in K’ lying over B1,Bs in O lying over p in

0. For B; # Po, since (from above) Q; N O = P, necessarily
Q1 # Qs. Thus, the finitude of primes in O’ lying over p implies
that in ©O. ///

In Galois K/k, since O is integrally closed, it is stable under
Gal(K/k).

For maximal 9 lying over p in o, the decomposition group [sic] Gy
is the stabilizer of .
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The decomposition field of B is
K¥® = subfield of K fixed by Gy

Let

/

o/ = integral closure of o in K* g = KNP =dnP

Corollary: B is the only prime of O lying above q.

Proof: Gal(K/K?%) = G doesn’t move B, but is transitive on
primes lying over q. ///



Garrett 10-31-2011

Localization: important special cases.
Simplest case: field-of-fractions k£ of an integral domain o.

We know what is intended: o injects to k, every non-zero element
of 0 becomes invertible, and there’s nothing extra.

A mapping characterization proves uniqueness: for any ring hom
@ : 0 — K toa field K, there is a unique ® : £ — K giving a
commutative diagram

k
N
. N Jdo
L N
ch*
o— K

Existence is proven by (the usual) construction: ...
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The candidate for k is pairs (a,b) = “ % ” with b # 0, modulo

the equivalence derived from equality of fractions: (a,b) ~ (a’,b’)
when ab’ —a’b =0, and j: 0 — k by j(x) = (x,1).

Thus, the value of a fraction is unchanged when top and bottom
are multiplied by the same (non-zero) element of o, or when the

same (non-zero) factor is removed. However, for non-UFDs o the
equivalence relation is more complicated.

Addition, multiplication, and inversion are defined as expected:
(a,b) 4+ (¢,d) = (ad,bd) + (bc,bd) = (ad + be, bd)

(a,b) - (¢,d) = (ac,bd) (a,b)"' = (b,d)
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... but well-definedness, commutativity, associativity, and
distributivity need proof.

For well-definedness of addition, suppose (a,b) ~ (a’,b") and
(¢,d) ~ (d,d"), and show (ad + be,bd) ~ (a'd 4+ b, b'd’):

b'd (ad+bc)—bd(a'd +b'c") = (ab)dd' + (cd" )bb' — (a'b)dd’ — (' d)b

= (abl — a'b)dd + (cd — )bl = 0-dd +0-bY = 0

Then, commutativity and associativity are as usual, by putting
things over a common denominator. Commutativity follows
from the formula and from commutativity of addition and
multiplication in o:

a d abl  a'b ab’ + a’b

b Ty T T w T w
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Associativity of addition:

a a/ a// a a/b// a//b/

g+(y+ﬁ) = E—I_(b’b” + b/b//)

a a/b// +a//b/ ab/b// ba/b// _|_ a//bb//

=T T vy T wy T
ab/b// + a/bb// + a//bb// '
= AN = symmetrical

Commutativity and associativity of multiplication are easier.

Distributivity is similar.

If well-defined, ®(a/b) = (a)p(b)~! fits into the diagram. For

well-definedness, with ab’ = a’b,

12

p(a)p(b) "t —p(a)e) ™" = (pla)p(d)—p(a’)e(b))-p(b) e®) !
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Finally, verify that the constructed ®(a/b) = ¢(a)p(b)~! truly is a
ring hom.

For example, addition is respected:

a’ ab + a’'db

T = (D) = plab + ab)p(h) !

= (p(@)pt) + p(a)o(d) ) (b) ()

a’
)

a

= ¢(a)p(d) ™" +p(a)p(t) " = () + P

S

Remark: The point is not the formulas for arithmetic of
fractions, nor the checking that the construction succeeds, but
that these formulas succeed in proving existence, by construction,
of the field-of-fractions. Its properties are unequivocally
determined by the mapping characterization.
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Important special case: Localization at a prime.

For 0 be a commutative ring with 1, and p a prime ideal, we want
to modify o so that it has a unique maximal ideal m coming from
p, while all other ideals a not contained in p disappear.

More precisely, o-localized-at-p should be a ring o, (subscript does
not denote completion here) with ring hom ¢ : 0 — oy, such that
i(q) - 0, = oy for all primes ¢q not contained in p, i(p)- 0, is the
unique maximal ideal m of o,, and 77 (j(0) Nm) = p.
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o, should be neither needlessly big nor needlessly small, so should
be characterized by a universal property: for any ring hom

¢ : 0 — R with ¢(a) - R = R for ideals a not contained in p, there
is a unique ® giving a commutative diagram

Op

Characterization by a universal property proves uniqueness...,
when ezistence is proven, probably by a construction.

The property j~*(j(0) N m) = p should follow.
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Example: An integral domain o sits inside its field of fractions k,
and localizing at p simply allows all denominators not in p

0p = {g caép, x€E 0} (integral domain o)

The requisite map o — oy is just inclusion.

Proof: On one hand, any ideal a not contained in p contains

an element s not in p, which therefore becomes a unit in the
candidate oy,. That is, the ideal generated by a in the candidate
0y, is the whole ring. In particular, the ideal generated by p
becomes the unique maximal ideal.
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On the other hand, let ¢ : 0 — R with p(a) - R = R for

a not contained in p. That is, ¢(a) contains a unit in R. This
hypothesis applied to principal ideals (a) shows that ¢(z)p(a) =
p(xra) € R* for some z € o, and ¢(a) is a unit. That is, every
¢(a) for a ¢ p is a unit in R.

Try to define ®(z/a) = o(z) - p(a)™! for a & p. Check well-
definedness: x/a = z’/d’ in k gives

p(a)p(a’) (p(x)p(a) ™! = p(@')p(a) )

= ¢(d'z) —pl(az’) = p(a'z —az’) = ¢(0) =0

Units ¢(a) and ¢(a’) have inverses, giving well-definedness.



Garrett 10-31-2011

Multiplicativeness of ® is easy.

Addition is preserved: via re-expression with a common
denominator, as expected:

x x xa +x'a
-I-—/) = o(———

— — (I) / / N—1
e — ) (xa’ + z'a)p(aa’)

/

= (p(@)p(d') + p(a")p(a)) - p(a)  p(a’) !

= o)) + p)el@) " = oD+ ()

This proves that the usual construction succeeds for integral
domains, proving existence of the localization.
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Localization in general: For non-integral-domains o, collapsing
can occur in localizations j : 0 — o0y.
Example: Localizing 0 = Z/30 at the prime ideal p = 3 - Z/30
requires that 10 € p become a unit in the image j : 0 — 0,. Thus,

§(3) = j(3)-4(10)-4(10)~" = ;(30)-4(10)~" = 0-4(10)""

Thus (!) o, = Z/3, and Z/30 — Z/3 is the quotient map.
Generally, j : 0 — o0, sends zero-divisors x € p with zy = 0 for
y & pto0:
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This explains the more complicated equivalence relation in the
general proof-of-existence-by-construction of localization:

Claim: The localization j : 0 — 0, exists: it can be constructed
as pairs {(a,b) : = € 0, b &€ p}, identifying (a.b), (a’,b’) when
c-(ab’—a'b) = 0 for some ¢ € 0—p, with addition and multiplication
as usual. Given ¢ : 0 — R, the corresponding ® : o, — R is

() = p(a)p(b)~.

Proof: There is a slight novelty in the well-definedness of ®: for
c- (abl —a'b) =0,

0 = ¢(0) = () (p(@)p(®) — p(a)p(d))

©o(c), p(b), p(b') € R*. Divide by the product of their inverses:

a a’

0 = w(a)pd) ™" —p(a)pV)" = &(3)=2(7) ///
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