Primes lying over/under [recap/cont'd]
Theorem: For \mathfrak{O} integral over \mathfrak{o} and prime ideal \mathfrak{p} of \mathfrak{o}, there is at least one prime ideal \mathfrak{P} of \mathfrak{O} such that $\mathfrak{P} \cap \mathfrak{o}=\mathfrak{p}$.
\mathfrak{P} is said to lie over $\mathfrak{p} . \mathfrak{P}$ is maximal if and only if \mathfrak{p} is maximal. $\mathfrak{p} \cdot \mathfrak{O} \neq \mathfrak{O}$. There a natural commutative diagram

Localization of \mathfrak{o} with respect to $S=\mathfrak{o}-\mathfrak{p}$ is extremely useful.
Galois action on primes lying over \mathfrak{p}, then recap and amplification of localization.

Proof of theorem: $S=\mathfrak{o}-\mathfrak{p}$ is multiplicative because \mathfrak{p} is prime. $S^{-1} \mathfrak{O}$ is integral over $S^{-1} \mathfrak{o}$, and $S^{-1} \mathfrak{o}$ has unique maximal ideal $\mathfrak{m}=\mathfrak{p} \cdot S^{-1} \mathfrak{o}$. [These features amplified below.]

To show $\mathfrak{p O} \neq \mathfrak{O}$, it suffices to consider the local version, because

$$
\mathfrak{p} \cdot S^{-1} \mathfrak{O}=\mathfrak{p} \cdot S^{-1} \mathfrak{o} \cdot S^{-1} \mathfrak{O}=\mathfrak{m} \cdot S^{-1} \mathfrak{O}
$$

That is, it suffices to prove $\mathfrak{m} \cdot \mathfrak{O} \neq \mathfrak{O}$, with \mathfrak{o} local.
For local \mathfrak{o}, if $\mathfrak{m} \cdot \mathfrak{O}=\mathfrak{O}$, then $1 \in \mathfrak{O}$ has an expression $1=m_{1} y_{1}+\ldots+m_{n} y_{n}$, with $m_{j} \in \mathfrak{m}$ and $y_{j} \in \mathfrak{O}$. Let \mathfrak{O}_{1} be the ring $\mathfrak{O}_{1}=\mathfrak{o}\left[y_{1}, \ldots, y_{n}\right]$. It is a finitely-generated \mathfrak{o}-algebra, so by integrality is a finitely-generated \mathfrak{o}-module.

Nakayama's Lemma (simple useful case): for a local ring \mathfrak{o} with maximal ideal \mathfrak{m}, if $\mathfrak{m} X=X$ for a finitely-generated \mathfrak{o} module X, then $X=\{0\}$.

Proof: (of Lemma) For X generated by x_{1}, \ldots, x_{n}, the hypothesis gives

$$
\begin{gathered}
x_{1}=m_{1} x_{1}+\ldots+m_{n} x_{n} \quad\left(\text { for some } m_{j} \in \mathfrak{m}\right) \\
\left(1-m_{1}\right) x_{1}=m_{2} x_{2}+\ldots+m_{n} x_{n}
\end{gathered}
$$

Since $1 \notin \mathfrak{m}, 1-m_{1} \notin \mathfrak{m}$. Every element of a commutative ring with 1 is either a unit or is in a maximal ideal. Thus, $1-m_{1}$ is a unit, we can divide through by it, and m_{1} is expressible in terms of the other generators. Induction.

Applying this to \mathfrak{O}_{1} gives $\mathfrak{O}_{1}=\{0\}$, contradiction, and $\mathfrak{m} \cdot \mathfrak{O} \neq \mathfrak{O}$.

Reverting to not-necessarily-local \mathfrak{o}, in

$\mathfrak{m} \cdot S^{-1} \mathfrak{O} \neq S^{-1} \mathfrak{O}$, so is in some maximal ideal \mathfrak{M} of $S^{-1} \mathfrak{O}$, and $\mathfrak{M} \cap S^{-1} \mathfrak{o} \supset \mathfrak{m}$. This cannot contain 1 , since $\mathfrak{M} \not \supset 1$. By maximality of $\mathfrak{m}, \mathfrak{M} \cap S^{-1} \mathfrak{o}=\mathfrak{m}$.
\mathfrak{M} is non-zero prime, so $\mathfrak{P}=\mathfrak{M} \cap \mathfrak{O}$ is prime, because intersecting a prime ideal with a subring gives a prime ideal. \mathfrak{P} is not $\{0\}$, because of integrality: $0 \neq m \in \mathfrak{M}$ satisfies $m^{n}+a_{n-1} m^{n-1}+\ldots+a_{o}=0$ with $a_{i} \in \mathfrak{o}$ and $0 \neq a_{o} \in \mathfrak{o} \cap \mathfrak{M}$. Then
$\mathfrak{o} \cap \mathfrak{P}=\mathfrak{o} \cap(\mathfrak{O} \cap \mathfrak{M})=\mathfrak{o} \cap \mathfrak{M}=\mathfrak{o} \cap\left(S^{-1} \mathfrak{o} \cap \mathfrak{M}\right)=\mathfrak{o} \cap \mathfrak{m}=\mathfrak{p}$
[Discussion of \mathfrak{P} maximal $\Longleftrightarrow \mathfrak{p}$ maximal not repeated.]

Sun-Ze's theorem: For ideals \mathfrak{a}_{j} in \mathfrak{o} such that $\mathfrak{a}_{i}+\mathfrak{a}_{j}=\mathfrak{o}$ for $i \neq j$, given x_{j}, there is $x \in \mathfrak{o}$ such that $x=x_{j} \bmod \mathfrak{a}_{j}$ for all j.

Proof: The hypothesis gives $a_{1} \in \mathfrak{a}_{1}, a_{2} \in \mathfrak{a}_{2}$ such that $a_{1}+a_{2}=1$. Then $x=x_{2} a_{1}+x_{1} a_{2}$ solves the problem for two ideals.

Induction: for $j>1$, let $b_{j} \in \mathfrak{a}_{1}$ and $c_{j} \in \mathfrak{a}_{j}$ such that $b_{j}+c_{j}=1$. Then

$$
1=\prod_{j>1}\left(b_{j}+c_{j}\right) \in \mathfrak{a}_{1}+\prod_{j>1} \mathfrak{a}_{j}
$$

That is, $\mathfrak{a}_{1}+\prod_{j>1} \mathfrak{a}_{j}=\mathfrak{o}$. Thus, there is $y_{1} \in \mathfrak{o}$ such that $y_{1}=1 \bmod \mathfrak{a}_{1}$ and $y_{1}=0 \bmod \prod_{j>1} \mathfrak{a}_{j}$. Similarly, find $y_{i}=1 \bmod \mathfrak{a}_{i}$ and $y_{i}=0 \bmod \prod_{j \neq i} \mathfrak{a}_{j}$. Then $x=\sum_{j} x_{j} y_{j}$ is $x_{i} \bmod \mathfrak{a}_{i}$.

Transitivity of Galois groups on primes lying over \mathfrak{p}

Let K / k be finite Galois, o integrally closed in k, \mathfrak{O} its integral closure in K. Let \mathfrak{p} be prime in \mathfrak{o}. The Galois group $G=$ $\operatorname{Gal}(K / k)$ is transitive on primes lying over \mathfrak{p} in \mathfrak{O}.

Proof: Localize to assume \mathfrak{p} maximal. For two primes $\mathfrak{P}, \mathfrak{Q}$ over \mathfrak{p}, if no Galois image $\sigma \mathfrak{P}$ is \mathfrak{Q}, then there is a solution to

$$
x=\left\{\begin{array}{l}
0 \bmod \mathfrak{Q} \\
1 \bmod \sigma \mathfrak{P} \text { for all } \sigma \in G
\end{array}\right.
$$

The norm $N_{k}^{K}(x)$ is in $k \cap \mathfrak{O}=\mathfrak{o}$, by integral closure of \mathfrak{o}, and then is in $\mathfrak{Q} \cap \mathfrak{o}=\mathfrak{p}$. On the other hand, $\sigma^{-1} x \notin \mathfrak{P}$, for all $\sigma \in G$, so $N_{k}^{K}(x) \notin \mathfrak{P}$, contradicting $N_{k}^{K}(x) \in \mathfrak{p} \subset \mathfrak{P}$.

Corollary: In $\mathfrak{O} / \mathfrak{o}$ in K / k, there are only finitely-many prime ideals lying over a given prime of \mathfrak{o}.

Proof: If we can reduce to the Galois-extension case, we're done, by the previous.

Let K^{\prime} be a Galois closure of K / k, with integral closure \mathfrak{O}^{\prime}, and $\mathfrak{Q}_{1}, \mathfrak{Q}_{2}$ prime ideals in K^{\prime} lying over $\mathfrak{P}_{1}, \mathfrak{P}_{2}$ in \mathfrak{O} lying over \mathfrak{p} in \mathfrak{o}. For $\mathfrak{P}_{1} \neq \mathfrak{P}_{2}$, since (from above) $\mathfrak{Q}_{j} \cap \mathfrak{O}=\mathfrak{P}_{j}$, necessarily $\mathfrak{Q}_{1} \neq \mathfrak{Q}_{2}$. Thus, the finitude of primes in \mathfrak{O}^{\prime} lying over \mathfrak{p} implies that in \mathfrak{O}.

In Galois K / k, since \mathfrak{O} is integrally closed, it is stable under $\operatorname{Gal}(K / k)$.

For maximal \mathfrak{P} lying over \mathfrak{p} in \mathfrak{o}, the decomposition group [sic] $G_{\mathfrak{P}}$ is the stabilizer of \mathfrak{P}.

The decomposition field of \mathfrak{P} is

$$
K^{\mathfrak{P}}=\text { subfield of } K \text { fixed by } G_{\mathfrak{P}}
$$

Let
$\mathfrak{o}^{\prime}=$ integral closure of \mathfrak{o} in $K^{\mathfrak{P}} \quad \mathfrak{q}=K^{\mathfrak{P}} \cap \mathfrak{P}=\mathfrak{o}^{\prime} \cap \mathfrak{P}$
Corollary: \mathfrak{P} is the only prime of \mathfrak{O} lying above \mathfrak{q}.
Proof: $\operatorname{Gal}\left(K / K^{\mathfrak{P}}\right)=G_{\mathfrak{P}}$ doesn't move \mathfrak{P}, but is transitive on primes lying over \mathfrak{q}.

Localization: important special cases.
Simplest case: field-of-fractions k of an integral domain \mathfrak{o}.
We know what is intended: \mathfrak{o} injects to k, every non-zero element of \mathfrak{o} becomes invertible, and there's nothing extra.

A mapping characterization proves uniqueness: for any ring hom $\varphi: \mathfrak{o} \rightarrow K$ to a field K, there is a unique $\Phi: k \rightarrow K$ giving a commutative diagram

Existence is proven by (the usual) construction: ...

The candidate for k is pairs $(a, b)=" \frac{a}{b}$ " with $b \neq 0$, modulo the equivalence derived from equality of fractions: $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ when $a b^{\prime}-a^{\prime} b=0$, and $j: \mathfrak{o} \rightarrow k$ by $j(x)=(x, 1)$.

Thus, the value of a fraction is unchanged when top and bottom are multiplied by the same (non-zero) element of \mathfrak{o}, or when the same (non-zero) factor is removed. However, for non-UFDs o the equivalence relation is more complicated.

Addition, multiplication, and inversion are defined as expected:

$$
\begin{array}{ll}
(a, b)+(c, d)=(a d, b d)+(b c, b d)=(a d+b c, b d) \\
(a, b) \cdot(c, d)=(a c, b d) & (a, b)^{-1}=(b, d)
\end{array}
$$

... but well-definedness, commutativity, associativity, and distributivity need proof.

For well-definedness of addition, suppose $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$, and show $(a d+b c, b d) \sim\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)$:

$$
\begin{gathered}
b^{\prime} d^{\prime}(a d+b c)-b d\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right)=\left(a b^{\prime}\right) d d^{\prime}+\left(c d^{\prime}\right) b b^{\prime}-\left(a^{\prime} b\right) d d^{\prime}-\left(c^{\prime} d\right) b b^{\prime} \\
=\left(a b^{\prime}-a^{\prime} b\right) d d^{\prime}+\left(c d^{\prime}-c^{\prime} d\right) b b^{\prime}=0 \cdot d d^{\prime}+0 \cdot b b^{\prime}=0
\end{gathered}
$$

Then, commutativity and associativity are as usual, by putting things over a common denominator. Commutativity follows from the formula and from commutativity of addition and multiplication in \mathfrak{o} :

$$
\frac{a}{b}+\frac{a^{\prime}}{b^{\prime}}=\frac{a b^{\prime}}{b b^{\prime}}+\frac{a^{\prime} b}{b b^{\prime}}=\frac{a b^{\prime}+a^{\prime} b}{b b^{\prime}}
$$

Associativity of addition:

$$
\begin{aligned}
& \frac{a}{b}+\left(\frac{a^{\prime}}{b^{\prime}}+\frac{a^{\prime \prime}}{b^{\prime \prime}}\right)=\frac{a}{b}+\left(\frac{a^{\prime} b^{\prime \prime}}{b^{\prime} b^{\prime \prime}}+\frac{a^{\prime \prime} b^{\prime}}{b^{\prime} b^{\prime \prime}}\right) \\
= & \frac{a}{b}+\frac{a^{\prime} b^{\prime \prime}+a^{\prime \prime} b^{\prime}}{b^{\prime} b^{\prime \prime}}=\frac{a b^{\prime} b^{\prime \prime}}{b b^{\prime} b^{\prime \prime}}+\frac{b a^{\prime} b^{\prime \prime}+a^{\prime \prime} b b^{\prime \prime}}{b b^{\prime} b^{\prime \prime}} \\
= & \frac{a b^{\prime} b^{\prime \prime}+a^{\prime} b b^{\prime \prime}+a^{\prime \prime} b b^{\prime \prime}}{b b^{\prime} b^{\prime \prime}}=\text { symmetrical }
\end{aligned}
$$

Commutativity and associativity of multiplication are easier. Distributivity is similar.

If well-defined, $\Phi(a / b)=\varphi(a) \varphi(b)^{-1}$ fits into the diagram. For well-definedness, with $a b^{\prime}=a^{\prime} b$,

$$
\begin{gathered}
\varphi(a) \varphi(b)^{-1}-\varphi\left(a^{\prime}\right) \varphi\left(b^{\prime}\right)^{-1}=\left(\varphi(a) \varphi\left(b^{\prime}\right)-\varphi\left(a^{\prime}\right) \varphi(b)\right) \cdot \varphi(b)^{-1} \varphi\left(b^{\prime}\right)^{-1} \\
=\varphi\left(a b^{\prime}-a^{\prime} b\right) \cdot \varphi(b)^{-1} \varphi\left(b^{\prime}\right)^{-1}=\varphi(0) \cdot \varphi(b)^{-1} \varphi\left(b^{\prime}\right)^{-1}=0
\end{gathered}
$$

Finally, verify that the constructed $\Phi(a / b)=\varphi(a) \varphi(b)^{-1}$ truly is a ring hom.

For example, addition is respected:

$$
\begin{gathered}
\Phi\left(\frac{a}{b}+\frac{a^{\prime}}{b^{\prime}}\right)=\Phi\left(\frac{a b^{\prime}+a^{\prime} b}{b b^{\prime}}\right)=\varphi\left(a b^{\prime}+a^{\prime} b\right) \varphi\left(b b^{\prime}\right)^{-1} \\
\quad=\left(\varphi(a) \varphi\left(b^{\prime}\right)+\varphi\left(a^{\prime}\right) \varphi(b)\right) \varphi(b)^{-1} \varphi\left(b^{\prime}\right)^{-1} \\
=\varphi(a) \varphi(b)^{-1}+\varphi\left(a^{\prime}\right) \varphi\left(b^{\prime}\right)^{-1}=\Phi\left(\frac{a}{b}\right)+\Phi\left(\frac{a^{\prime}}{b^{\prime}}\right)
\end{gathered}
$$

Remark: The point is not the formulas for arithmetic of fractions, nor the checking that the construction succeeds, but that these formulas succeed in proving existence, by construction, of the field-of-fractions. Its properties are unequivocally determined by the mapping characterization.

Important special case: Localization at a prime.
For \mathfrak{o} be a commutative ring with 1 , and \mathfrak{p} a prime ideal, we want to modify \mathfrak{o} so that it has a unique maximal ideal \mathfrak{m} coming from \mathfrak{p}, while all other ideals \mathfrak{a} not contained in \mathfrak{p} disappear.

More precisely, \mathfrak{o}-localized-at- \mathfrak{p} should be a ring $\mathfrak{o}_{\mathfrak{p}}$ (subscript does not denote completion here) with ring hom $i: \mathfrak{o} \rightarrow \mathfrak{o}_{\mathfrak{p}}$ such that $i(\mathfrak{q}) \cdot \mathfrak{o}_{\mathfrak{p}}=\mathfrak{o}_{\mathfrak{p}}$ for all primes \mathfrak{q} not contained in $\mathfrak{p}, i(\mathfrak{p}) \cdot \mathfrak{o}_{\mathfrak{p}}$ is the unique maximal ideal \mathfrak{m} of $\mathfrak{o}_{\mathfrak{p}}$, and $j^{-1}(j(\mathfrak{o}) \cap \mathfrak{m})=\mathfrak{p}$.
$\mathfrak{o}_{\mathfrak{p}}$ should be neither needlessly big nor needlessly small, so should be characterized by a universal property: for any ring hom $\varphi: \mathfrak{o} \rightarrow R$ with $\varphi(\mathfrak{a}) \cdot R=R$ for ideals \mathfrak{a} not contained in \mathfrak{p}, there is a unique Φ giving a commutative diagram

Characterization by a universal property proves uniqueness..., when existence is proven, probably by a construction.

The property $j^{-1}(j(\mathfrak{o}) \cap \mathfrak{m})=\mathfrak{p}$ should follow.

Example: An integral domain \mathfrak{o} sits inside its field of fractions k, and localizing at \mathfrak{p} simply allows all denominators not in \mathfrak{p}

$$
\mathfrak{o}_{p}=\left\{\frac{x}{a}: a \notin \mathfrak{p}, x \in \mathfrak{o}\right\} \quad \text { (integral domain } \mathfrak{o} \text {) }
$$

The requisite map $\mathfrak{o} \rightarrow \mathfrak{o}_{\mathfrak{p}}$ is just inclusion.
Proof: On one hand, any ideal \mathfrak{a} not contained in \mathfrak{p} contains an element s not in \mathfrak{p}, which therefore becomes a unit in the candidate $\mathfrak{o}_{\mathfrak{p}}$. That is, the ideal generated by \mathfrak{a} in the candidate $\mathfrak{o}_{\mathfrak{p}}$ is the whole ring. In particular, the ideal generated by \mathfrak{p} becomes the unique maximal ideal.

On the other hand, let $\varphi: \mathfrak{o} \rightarrow R$ with $\varphi(\mathfrak{a}) \cdot R=R$ for \mathfrak{a} not contained in \mathfrak{p}. That is, $\varphi(\mathfrak{a})$ contains a unit in R. This hypothesis applied to principal ideals $\langle a\rangle$ shows that $\varphi(x) \varphi(a)=$ $\varphi(x a) \in R^{\times}$for some $x \in \mathfrak{o}$, and $\varphi(a)$ is a unit. That is, every $\varphi(a)$ for $a \notin \mathfrak{p}$ is a unit in R.

Try to define $\Phi(x / a)=\varphi(x) \cdot \varphi(a)^{-1}$ for $a \notin \mathfrak{p}$. Check welldefinedness: $x / a=x^{\prime} / a^{\prime}$ in k gives

$$
\begin{gathered}
\varphi(a) \varphi\left(a^{\prime}\right)\left(\varphi(x) \varphi(a)^{-1}-\varphi\left(x^{\prime}\right) \varphi\left(a^{\prime}\right)^{-1}\right) \\
=\varphi\left(a^{\prime} x\right)-\varphi\left(a x^{\prime}\right)=\varphi\left(a^{\prime} x-a x^{\prime}\right)=\varphi(0)=0
\end{gathered}
$$

Units $\varphi(a)$ and $\varphi\left(a^{\prime}\right)$ have inverses, giving well-definedness.

Multiplicativeness of Φ is easy.
Addition is preserved: via re-expression with a common denominator, as expected:

$$
\begin{aligned}
\Phi\left(\frac{x}{a}\right. & \left.+\frac{x^{\prime}}{a^{\prime}}\right)=\Phi\left(\frac{x a^{\prime}+x^{\prime} a}{a a^{\prime}}\right)=\Phi\left(x a^{\prime}+x^{\prime} a\right) \varphi\left(a a^{\prime}\right)^{-1} \\
& =\left(\varphi(x) \varphi\left(a^{\prime}\right)+\varphi\left(x^{\prime}\right) \varphi(a)\right) \cdot \varphi(a)^{-1} \varphi\left(a^{\prime}\right)^{-1} \\
= & \varphi(x) \varphi(a)^{-1}+\varphi\left(x^{\prime}\right) \varphi\left(a^{\prime}\right)^{-1}=\Phi\left(\frac{x}{a}\right)+\Phi\left(\frac{x^{\prime}}{a^{\prime}}\right)
\end{aligned}
$$

This proves that the usual construction succeeds for integral domains, proving existence of the localization.

Localization in general: For non-integral-domains \mathfrak{o}, collapsing can occur in localizations $j: \mathfrak{o} \rightarrow \mathfrak{o}_{\mathfrak{p}}$.

Example: Localizing $\mathfrak{o}=\mathbb{Z} / 30$ at the prime ideal $\mathfrak{p}=3 \cdot \mathbb{Z} / 30$ requires that $10 \notin \mathfrak{p}$ become a unit in the image $j: \mathfrak{o} \rightarrow \mathfrak{o}_{\mathfrak{p}}$. Thus,

$$
j(3)=j(3) \cdot j(10) \cdot j(10)^{-1}=j(30) \cdot j(10)^{-1}=0 \cdot j(10)^{-1}
$$

Thus (!) $\mathfrak{o}_{\mathfrak{p}}=\mathbb{Z} / 3$, and $\mathbb{Z} / 30 \rightarrow \mathbb{Z} / 3$ is the quotient map. Generally, $j: \mathfrak{o} \rightarrow \mathfrak{o}_{\mathfrak{p}}$ sends zero-divisors $x \in \mathfrak{p}$ with $x y=0$ for $y \notin \mathfrak{p}$ to 0 :

$$
0=j(0) \cdot j(y)^{-1}=j(x y) j(y)^{-1}=j(x) j(y) j(y)^{-1}=j(x)
$$

This explains the more complicated equivalence relation in the general proof-of-existence-by-construction of localization:

Claim: The localization $j: \mathfrak{o} \rightarrow \mathfrak{o}_{\mathfrak{p}}$ exists: it can be constructed as pairs $\{(a, b): x \in \mathfrak{o}, b \notin \mathfrak{p}\}$, identifying $(a . b),\left(a^{\prime}, b^{\prime}\right)$ when $c \cdot\left(a b^{\prime}-a^{\prime} b\right)=0$ for some $c \in \mathfrak{o}-\mathfrak{p}$, with addition and multiplication as usual. Given $\varphi: \mathfrak{o} \rightarrow R$, the corresponding $\Phi: \mathfrak{o}_{\mathfrak{p}} \rightarrow R$ is $\Phi\left(\frac{a}{b}\right)=\varphi(a) \varphi(b)^{-1}$.
Proof: There is a slight novelty in the well-definedness of Φ : for $c \cdot\left(a b^{\prime}-a^{\prime} b\right)=0$,

$$
0=\varphi(0)=\varphi(c) \cdot\left(\varphi(a) \varphi\left(b^{\prime}\right)-\varphi\left(a^{\prime}\right) \varphi(b)\right)
$$

$\varphi(c), \varphi(b), \varphi\left(b^{\prime}\right) \in R^{\times}$. Divide by the product of their inverses:

$$
0=\varphi(a) \varphi(b)^{-1}-\varphi\left(a^{\prime}\right) \varphi\left(b^{\prime}\right)^{-1}=\Phi\left(\frac{a}{b}\right)-\Phi\left(\frac{a^{\prime}}{b^{\prime}}\right) \quad / / /
$$

