Primes lying over/under [recap/cont'd]

Theorem: For \mathfrak{O} *integral* over \mathfrak{o} and prime ideal \mathfrak{p} of \mathfrak{o} , there is at least one prime ideal \mathfrak{P} of \mathfrak{O} such that $\mathfrak{P} \cap \mathfrak{o} = \mathfrak{p}$.

 \mathfrak{P} is said to *lie over* \mathfrak{p} . \mathfrak{P} is maximal if and only if \mathfrak{p} is maximal. $\mathfrak{p} \cdot \mathfrak{O} \neq \mathfrak{O}$. There a natural commutative diagram

$$egin{array}{cccc} \mathfrak{O} & \longrightarrow & \mathfrak{O}/\mathfrak{P} \ \uparrow & & \uparrow \ \mathfrak{o} & \longrightarrow & \mathfrak{o}/\mathfrak{p} \end{array}$$

Localization of \mathfrak{o} with respect to $S = \mathfrak{o} - \mathfrak{p}$ is extremely useful.

Galois action on primes lying over \mathfrak{p} , then recap and amplification of *localization*.

Proof of theorem: $S = \mathfrak{o} - \mathfrak{p}$ is multiplicative because \mathfrak{p} is prime. $S^{-1}\mathfrak{O}$ is integral over $S^{-1}\mathfrak{o}$, and $S^{-1}\mathfrak{o}$ has unique maximal ideal $\mathfrak{m} = \mathfrak{p} \cdot S^{-1}\mathfrak{o}$. [These features amplified below.]

To show $\mathfrak{p}\mathfrak{O}\neq\mathfrak{O}$, it suffices to consider the local version, because

$$\mathfrak{p} \cdot S^{-1} \mathfrak{O} = \mathfrak{p} \cdot S^{-1} \mathfrak{o} \cdot S^{-1} \mathfrak{O} = \mathfrak{m} \cdot S^{-1} \mathfrak{O}$$

That is, it suffices to prove $\mathfrak{m} \cdot \mathfrak{O} \neq \mathfrak{O}$, with \mathfrak{o} local.

For local \mathfrak{o} , if $\mathfrak{m} \cdot \mathfrak{O} = \mathfrak{O}$, then $1 \in \mathfrak{O}$ has an expression $1 = m_1 y_1 + \ldots + m_n y_n$, with $m_j \in \mathfrak{m}$ and $y_j \in \mathfrak{O}$. Let \mathfrak{O}_1 be the ring $\mathfrak{O}_1 = \mathfrak{o}[y_1, \ldots, y_n]$. It is a finitely-generated \mathfrak{o} -algebra, so by integrality is a finitely-generated \mathfrak{o} -module.

Nakayama's Lemma (simple useful case): for a local ring \mathfrak{o} with maximal ideal \mathfrak{m} , if $\mathfrak{m}X = X$ for a finitely-generated \mathfrak{o} -module X, then $X = \{0\}$.

Proof: (of Lemma) For X generated by x_1, \ldots, x_n , the hypothesis gives

$$x_1 = m_1 x_1 + \ldots + m_n x_n$$
 (for some $m_j \in \mathfrak{m}$)

$$(1-m_1)x_1 = m_2x_2 + \ldots + m_nx_n$$

Since $1 \notin \mathfrak{m}, 1 - m_1 \notin \mathfrak{m}$. Every element of a commutative ring with 1 is either a unit or is in a maximal ideal. Thus, $1 - m_1$ is a unit, we can divide through by it, and m_1 is expressible in terms of the other generators. Induction. ///

Applying this to \mathfrak{O}_1 gives $\mathfrak{O}_1 = \{0\}$, contradiction, and $\mathfrak{m} \cdot \mathfrak{O} \neq \mathfrak{O}$.

Reverting to not-necessarily-local o, in

$$\begin{array}{ccccccccc} \mathfrak{O} & \longrightarrow & S^{-1}\mathfrak{O} \\ \uparrow & & \uparrow \\ \mathfrak{o} & \longrightarrow & S^{-1}\mathfrak{o} \end{array}$$

 $\mathfrak{m} \cdot S^{-1}\mathfrak{O} \neq S^{-1}\mathfrak{O}$, so is in some maximal ideal \mathfrak{M} of $S^{-1}\mathfrak{O}$, and $\mathfrak{M} \cap S^{-1}\mathfrak{o} \supset \mathfrak{m}$. This cannot contain 1, since $\mathfrak{M} \not\supseteq 1$. By maximality of $\mathfrak{m}, \mathfrak{M} \cap S^{-1}\mathfrak{o} = \mathfrak{m}$.

 \mathfrak{M} is non-zero prime, so $\mathfrak{P} = \mathfrak{M} \cap \mathfrak{O}$ is prime, because intersecting a prime ideal with a subring gives a prime ideal. \mathfrak{P} is not $\{0\}$, because of integrality: $0 \neq m \in \mathfrak{M}$ satisfies $m^n + a_{n-1}m^{n-1} + \ldots + a_o = 0$ with $a_i \in \mathfrak{o}$ and $0 \neq a_o \in \mathfrak{o} \cap \mathfrak{M}$. Then

 $\mathfrak{o}\cap\mathfrak{P}\ =\ \mathfrak{o}\cap(\mathfrak{O}\cap\mathfrak{M})\ =\ \mathfrak{o}\cap\mathfrak{M}\ =\ \mathfrak{o}\cap(S^{-1}\mathfrak{o}\cap\mathfrak{M})\ =\ \mathfrak{o}\cap\mathfrak{m}\ =\ \mathfrak{p}$

[Discussion of \mathfrak{P} maximal $\iff \mathfrak{p}$ maximal not repeated.] ///

Sun-Ze's theorem: For ideals \mathfrak{a}_j in \mathfrak{o} such that $\mathfrak{a}_i + \mathfrak{a}_j = \mathfrak{o}$ for $i \neq j$, given x_j , there is $x \in \mathfrak{o}$ such that $x = x_j \mod \mathfrak{a}_j$ for all j.

Proof: The hypothesis gives $a_1 \in \mathfrak{a}_1, a_2 \in \mathfrak{a}_2$ such that $a_1 + a_2 = 1$. Then $x = x_2a_1 + x_1a_2$ solves the problem for two ideals.

Induction: for j > 1, let $b_j \in \mathfrak{a}_1$ and $c_j \in \mathfrak{a}_j$ such that $b_j + c_j = 1$. Then

$$1 = \prod_{j>1} (b_j + c_j) \in \mathfrak{a}_1 + \prod_{j>1} \mathfrak{a}_j$$

That is, $\mathfrak{a}_1 + \prod_{j>1} \mathfrak{a}_j = \mathfrak{o}$. Thus, there is $y_1 \in \mathfrak{o}$ such that $y_1 = 1 \mod \mathfrak{a}_1$ and $y_1 = 0 \mod \prod_{j>1} \mathfrak{a}_j$. Similarly, find $y_i = 1 \mod \mathfrak{a}_i$ and $y_i = 0 \mod \prod_{j \neq i} \mathfrak{a}_j$. Then $x = \sum_j x_j y_j$ is $x_i \mod \mathfrak{a}_i$.

Transitivity of Galois groups on primes lying over p

Let K/k be finite *Galois*, \mathfrak{o} integrally closed in k, \mathfrak{O} its integral closure in K. Let \mathfrak{p} be prime in \mathfrak{o} . The Galois group G = Gal(K/k) is *transitive* on primes lying over \mathfrak{p} in \mathfrak{O} .

Proof: Localize to assume \mathfrak{p} maximal. For two primes $\mathfrak{P}, \mathfrak{Q}$ over \mathfrak{p} , if no Galois image $\sigma \mathfrak{P}$ is \mathfrak{Q} , then there is a solution to

$$x = \begin{cases} 0 \mod \mathfrak{Q} \\ 1 \mod \sigma \mathfrak{P} \text{ for all } \sigma \in G \end{cases}$$

The norm $N_k^K(x)$ is in $k \cap \mathfrak{O} = \mathfrak{o}$, by integral closure of \mathfrak{o} , and then is in $\mathfrak{Q} \cap \mathfrak{o} = \mathfrak{p}$. On the other hand, $\sigma^{-1}x \notin \mathfrak{P}$, for all $\sigma \in G$, so $N_k^K(x) \notin \mathfrak{P}$, contradicting $N_k^K(x) \in \mathfrak{p} \subset \mathfrak{P}$. /// **Corollary:** In $\mathfrak{O}/\mathfrak{o}$ in K/k, there are only finitely-many prime ideals lying over a given prime of \mathfrak{o} .

Proof: If we can reduce to the Galois-extension case, we're done, by the previous.

Let K' be a Galois closure of K/k, with integral closure \mathfrak{O}' , and $\mathfrak{Q}_1, \mathfrak{Q}_2$ prime ideals in K' lying over $\mathfrak{P}_1, \mathfrak{P}_2$ in \mathfrak{O} lying over \mathfrak{p} in \mathfrak{o} . For $\mathfrak{P}_1 \neq \mathfrak{P}_2$, since (from above) $\mathfrak{Q}_j \cap \mathfrak{O} = \mathfrak{P}_j$, necessarily $\mathfrak{Q}_1 \neq \mathfrak{Q}_2$. Thus, the finitude of primes in \mathfrak{O}' lying over \mathfrak{p} implies that in \mathfrak{O} .

In Galois K/k, since \mathfrak{O} is integrally closed, it is stable under $\operatorname{Gal}(K/k)$.

For maximal \mathfrak{P} lying over \mathfrak{p} in \mathfrak{o} , the *decomposition group* [sic] $G_{\mathfrak{P}}$ is the *stabilizer* of \mathfrak{P} .

The *decomposition field* of \mathfrak{P} is

$$K^{\mathfrak{P}}$$
 = subfield of K fixed by $G_{\mathfrak{P}}$

Let

 $\mathfrak{o}' = ext{integral closure of } \mathfrak{o} ext{ in } K^{\mathfrak{P}} \qquad \mathfrak{q} = K^{\mathfrak{P}} \cap \mathfrak{P} = \mathfrak{o}' \cap \mathfrak{P}$

Corollary: \mathfrak{P} is the only prime of \mathfrak{O} lying above \mathfrak{q} .

Proof: $Gal(K/K^{\mathfrak{P}}) = G_{\mathfrak{P}}$ doesn't move \mathfrak{P} , but is transitive on primes lying over \mathfrak{q} .

Localization: important special cases.

Simplest case: field-of-fractions k of an integral domain \mathfrak{o} .

We know what is intended: \mathfrak{o} injects to k, every non-zero element of \mathfrak{o} becomes invertible, and there's nothing extra.

A mapping characterization proves uniqueness: for any ring hom $\varphi : \mathfrak{o} \to K$ to a field K, there is a unique $\Phi : k \to K$ giving a commutative diagram

Existence is proven by (the usual) construction: ...

The candidate for k is pairs $(a,b) = \frac{a}{b}$ with $b \neq 0$, modulo the equivalence derived from equality of fractions: $(a,b) \sim (a',b')$ when ab' - a'b = 0, and $j : \mathfrak{o} \to k$ by j(x) = (x,1).

Thus, the *value* of a fraction is unchanged when top and bottom are multiplied by the same (non-zero) element of \mathfrak{o} , or when the same (non-zero) factor is removed. However, for non-UFDs \mathfrak{o} the equivalence relation is more complicated.

Addition, multiplication, and inversion are defined as expected:

$$(a,b) + (c,d) = (ad,bd) + (bc,bd) = (ad+bc,bd)$$

 $(a,b) \cdot (c,d) = (ac,bd)$ $(a,b)^{-1} = (b,d)$

... but well-definedness, commutativity, associativity, and distributivity need proof.

For well-definedness of addition, suppose $(a, b) \sim (a', b')$ and $(c, d) \sim (c', d')$, and show $(ad + bc, bd) \sim (a'd' + b'c', b'd')$: b'd'(ad+bc) - bd(a'd'+b'c') = (ab')dd' + (cd')bb' - (a'b)dd' - (c'd)bb' $= (ab' - a'b)dd' + (cd' - c'd)bb' = 0 \cdot dd' + 0 \cdot bb' = 0$

Then, commutativity and associativity are as usual, by putting things over a common denominator. Commutativity follows from the formula and from commutativity of addition and multiplication in \mathfrak{o} :

$$\frac{a}{b} + \frac{a'}{b'} = \frac{ab'}{bb'} + \frac{a'b}{bb'} = \frac{ab' + a'b}{bb'}$$

Associativity of addition:

$$\frac{a}{b} + \left(\frac{a'}{b'} + \frac{a''}{b''}\right) = \frac{a}{b} + \left(\frac{a'b''}{b'b''} + \frac{a''b'}{b'b''}\right)$$
$$= \frac{a}{b} + \frac{a'b'' + a''b'}{b'b''} = \frac{ab'b''}{bb'b''} + \frac{ba'b'' + a''bb''}{bb'b''}$$
$$= \frac{ab'b'' + a'bb'' + a''bb''}{bb'b''} = \text{symmetrical}$$

Commutativity and associativity of multiplication are easier. Distributivity is similar.

If well-defined, $\Phi(a/b) = \varphi(a)\varphi(b)^{-1}$ fits into the diagram. For well-definedness, with ab' = a'b,

$$\varphi(a)\varphi(b)^{-1} - \varphi(a')\varphi(b')^{-1} = \left(\varphi(a)\varphi(b') - \varphi(a')\varphi(b)\right) \cdot \varphi(b)^{-1}\varphi(b')^{-1}$$
$$= \varphi(ab' - a'b) \cdot \varphi(b)^{-1}\varphi(b')^{-1} = \varphi(0) \cdot \varphi(b)^{-1}\varphi(b')^{-1} = 0$$

Finally, verify that the constructed $\Phi(a/b) = \varphi(a)\varphi(b)^{-1}$ truly is a ring hom.

For example, addition is respected:

$$\Phi(\frac{a}{b} + \frac{a'}{b'}) = \Phi(\frac{ab' + a'b}{bb'}) = \varphi(ab' + a'b)\varphi(bb')^{-1}$$
$$= \left(\varphi(a)\varphi(b') + \varphi(a')\varphi(b)\right)\varphi(b)^{-1}\varphi(b')^{-1}$$
$$= \varphi(a)\varphi(b)^{-1} + \varphi(a')\varphi(b')^{-1} = \Phi(\frac{a}{b}) + \Phi(\frac{a'}{b'})$$

Remark: The point is *not* the formulas for arithmetic of fractions, *nor* the checking that the construction succeeds, but that these formulas *succeed* in proving *existence*, by construction, of the field-of-fractions. Its *properties* are unequivocally determined by the mapping characterization.

Important special case: Localization at a prime.

For \mathfrak{o} be a commutative ring with 1, and \mathfrak{p} a prime ideal, we want to modify \mathfrak{o} so that it has a unique maximal ideal \mathfrak{m} coming from \mathfrak{p} , while all *other* ideals \mathfrak{a} *not* contained in \mathfrak{p} *disappear*.

More precisely, \mathfrak{o} -localized-at- \mathfrak{p} should be a ring $\mathfrak{o}_{\mathfrak{p}}$ (subscript does not denote completion here) with ring hom $i : \mathfrak{o} \to \mathfrak{o}_{\mathfrak{p}}$ such that $i(\mathfrak{q}) \cdot \mathfrak{o}_{\mathfrak{p}} = \mathfrak{o}_{\mathfrak{p}}$ for all primes \mathfrak{q} not contained in \mathfrak{p} , $i(\mathfrak{p}) \cdot \mathfrak{o}_{\mathfrak{p}}$ is the unique maximal ideal \mathfrak{m} of $\mathfrak{o}_{\mathfrak{p}}$, and $j^{-1}(j(\mathfrak{o}) \cap \mathfrak{m}) = \mathfrak{p}$. $\mathfrak{o}_{\mathfrak{p}}$ should be neither *needlessly big* nor *needlessly small*, so should be *characterized* by a *universal property*: for *any* ring hom $\varphi : \mathfrak{o} \to R$ with $\varphi(\mathfrak{a}) \cdot R = R$ for ideals \mathfrak{a} not contained in \mathfrak{p} , there is a unique Φ giving a commutative diagram

Characterization by a universal property proves uniqueness..., when *existence* is proven, probably by a *construction*.

The property $j^{-1}(j(\mathfrak{o}) \cap \mathfrak{m}) = \mathfrak{p}$ should follow.

Example: An *integral domain* \mathfrak{o} sits inside its *field of fractions* k, and localizing at \mathfrak{p} simply allows all denominators not in \mathfrak{p}

 $\mathfrak{o}_p = \left\{ \frac{x}{a} : a \notin \mathfrak{p}, \ x \in \mathfrak{o} \right\}$ (integral domain \mathfrak{o})

The requisite map $\mathfrak{o} \to \mathfrak{o}_{\mathfrak{p}}$ is just *inclusion*.

Proof: On one hand, any ideal \mathfrak{a} not contained in \mathfrak{p} contains an element s not in \mathfrak{p} , which therefore becomes a *unit* in the candidate $\mathfrak{o}_{\mathfrak{p}}$. That is, the ideal generated by \mathfrak{a} in the candidate $\mathfrak{o}_{\mathfrak{p}}$ is the whole ring. In particular, the ideal generated by \mathfrak{p} becomes the unique maximal ideal. On the other hand, let $\varphi : \mathfrak{o} \to R$ with $\varphi(\mathfrak{a}) \cdot R = R$ for \mathfrak{a} not contained in \mathfrak{p} . That is, $\varphi(\mathfrak{a})$ contains a unit in R. This hypothesis applied to principal ideals $\langle a \rangle$ shows that $\varphi(x)\varphi(a) = \varphi(xa) \in R^{\times}$ for some $x \in \mathfrak{o}$, and $\varphi(a)$ is a unit. That is, every $\varphi(a)$ for $a \notin \mathfrak{p}$ is a unit in R.

Try to define $\Phi(x/a) = \varphi(x) \cdot \varphi(a)^{-1}$ for $a \notin \mathfrak{p}$. Check well-definedness: x/a = x'/a' in k gives

$$\varphi(a)\varphi(a')\big(\varphi(x)\varphi(a)^{-1} - \varphi(x')\varphi(a')^{-1}\big)$$

= $\varphi(a'x) - \varphi(ax') = \varphi(a'x - ax') = \varphi(0) = 0$

Units $\varphi(a)$ and $\varphi(a')$ have inverses, giving well-definedness.

Multiplicativeness of Φ is easy.

Addition is preserved: via re-expression with a common denominator, as expected:

$$\Phi(\frac{x}{a} + \frac{x'}{a'}) = \Phi(\frac{xa' + x'a}{aa'}) = \Phi(xa' + x'a)\varphi(aa')^{-1}$$
$$= \left(\varphi(x)\varphi(a') + \varphi(x')\varphi(a)\right) \cdot \varphi(a)^{-1}\varphi(a')^{-1}$$
$$= \varphi(x)\varphi(a)^{-1} + \varphi(x')\varphi(a')^{-1} = \Phi(\frac{x}{a}) + \Phi(\frac{x'}{a'})$$

This proves that the usual construction succeeds for *integral domains*, proving *existence* of the localization.

Localization in general: For non-integral-domains \mathfrak{o} , *collapsing* can occur in localizations $j : \mathfrak{o} \to \mathfrak{o}_{\mathfrak{p}}$.

Example: Localizing $\mathfrak{o} = \mathbb{Z}/30$ at the prime ideal $\mathfrak{p} = 3 \cdot \mathbb{Z}/30$ requires that $10 \notin \mathfrak{p}$ become a unit in the image $j : \mathfrak{o} \to \mathfrak{o}_{\mathfrak{p}}$. Thus,

$$j(3) = j(3) \cdot j(10) \cdot j(10)^{-1} = j(30) \cdot j(10)^{-1} = 0 \cdot j(10)^{-1}$$

Thus (!) $\mathfrak{o}_{\mathfrak{p}} = \mathbb{Z}/3$, and $\mathbb{Z}/30 \to \mathbb{Z}/3$ is the quotient map. Generally, $j : \mathfrak{o} \to \mathfrak{o}_{\mathfrak{p}}$ sends zero-divisors $x \in \mathfrak{p}$ with xy = 0 for $y \notin \mathfrak{p}$ to 0:

$$0 = j(0) \cdot j(y)^{-1} = j(xy)j(y)^{-1} = j(x)j(y)j(y)^{-1} = j(x)$$

This explains the more complicated equivalence relation in the general proof-of-existence-by-construction of localization:

Claim: The localization $j : \mathfrak{o} \to \mathfrak{o}_{\mathfrak{p}}$ exists: it can be constructed as pairs $\{(a,b) : x \in \mathfrak{o}, b \notin \mathfrak{p}\}$, identifying (a.b), (a',b') when $c \cdot (ab'-a'b) = 0$ for some $c \in \mathfrak{o}-\mathfrak{p}$, with addition and multiplication as usual. Given $\varphi : \mathfrak{o} \to R$, the corresponding $\Phi : \mathfrak{o}_{\mathfrak{p}} \to R$ is $\Phi(\frac{a}{b}) = \varphi(a)\varphi(b)^{-1}$.

Proof: There is a slight novelty in the well-definedness of Φ : for $c \cdot (ab' - a'b) = 0$,

$$0 = \varphi(0) = \varphi(c) \cdot \left(\varphi(a)\varphi(b') - \varphi(a')\varphi(b)\right)$$

 $\varphi(c), \varphi(b), \varphi(b') \in \mathbb{R}^{\times}$. Divide by the product of their inverses: $0 = \varphi(a)\varphi(b)^{-1} - \varphi(a')\varphi(b')^{-1} = \Phi(\frac{a}{b}) - \Phi(\frac{a'}{b'}) / / /$