(memorable, if obscure) big global Theorem: The global norm residue symbol, the product of all local ones, ν, is a k^{\times}invariant function on \mathbb{J} : it factors through \mathbb{J} / k^{\times}.

Memorable theorem: For $a, b \in k^{\times}$, Hilbert reciprocity is

$$
\Pi_{v}(a, b)_{v}=1
$$

\Downarrow
Quadratic Reciprocity ('main part'): For π and ϖ two elements of \mathfrak{o} generating distinct odd prime ideals,

$$
\left(\frac{\varpi}{\pi}\right)_{2}\left(\frac{\pi}{\varpi}\right)_{2}=\Pi_{v}(\pi, \varpi)_{v}
$$

where v runs over all even or infinite primes, and $(,)_{v}$ is the (quadratic) Hilbert symbol.

Next!!!

Primes lying over/under

Theorem: For \mathfrak{O} integral over \mathfrak{o} and prime ideal \mathfrak{p} of \mathfrak{o}, there is at least one prime ideal \mathfrak{P} of \mathfrak{O} such that $\mathfrak{P} \cap \mathfrak{o}=\mathfrak{p}$.

That is, \mathfrak{P} lies over \mathfrak{p}. \mathfrak{P} is maximal if and only if \mathfrak{p} is maximal.
Further, $\mathfrak{p} \cdot \mathfrak{O} \neq \mathfrak{O}$, keeping in mind that

$$
\mathfrak{p} \cdot \mathfrak{O}=\left\{\sum_{j} p_{j} \cdot y_{j}: p_{j} \in \mathfrak{p}, y_{j} \in \mathfrak{O}\right\}
$$

There a natural commutative diagram

We do not necessarily assume \mathfrak{o} or \mathfrak{O} is a domain.

Proof: This is easiest reduced to local questions.
The set $S=\mathfrak{o}-\mathfrak{p}$ is multiplicative because \mathfrak{p} is prime. It is easy that $S^{-1} \mathfrak{O}$ is integral over $S^{-1} \mathfrak{o}$, and that $S^{-1} \mathfrak{o}$ has the unique maximal ideal $\mathfrak{m}=\mathfrak{p} \cdot S^{-1} \mathfrak{o}$.

To show $\mathfrak{p O} \neq \mathfrak{O}$, it suffices to consider the local version, and show $\mathfrak{m} \cdot S^{-1} \mathfrak{O} \neq S^{-1} \mathfrak{O}$, because

$$
\mathfrak{p} \cdot S^{-1} \mathfrak{O}=\mathfrak{p} \cdot S^{-1} \mathfrak{o} \cdot S^{-1} \mathfrak{O}=\mathfrak{m} \cdot S^{-1} \mathfrak{O}
$$

That is, it suffices to prove $\mathfrak{m} \cdot \mathfrak{O} \neq \mathfrak{O}$, with \mathfrak{o} local.
For local \mathfrak{o}, if $\mathfrak{m} \cdot \mathfrak{O}=\mathfrak{O}$, then $1 \in \mathfrak{O}$ has an expression $1=m_{1} y_{1}+\ldots+m_{n} y_{n}$, with $m_{j} \in \mathfrak{m}$ and $y_{j} \in \mathfrak{O}$. Let \mathfrak{O}_{1} be the ring $\mathfrak{O}_{1}=\mathfrak{o}\left[y_{1}, \ldots, y_{n}\right]$. It is a finitely-generated \mathfrak{o}-algebra, so by integrality is a finitely-generated \mathfrak{o}-module.

Nakayama's Lemma says that if $\mathfrak{a} M=M$ for an ideal contained in all maximal ideals of \mathfrak{o}, and M a finitely-generated \mathfrak{o}-module, then $M=\{0\}$.

Proof: (of Lemma) For M generated by m_{1}, \ldots, m_{n}, the hypothesis gives

$$
\begin{gathered}
m_{1}=a_{1} m_{1}+\ldots+a_{n} m_{n} \quad\left(\text { for some } a_{j} \in \mathfrak{a}\right) \\
\left(1-a_{1}\right) m_{1}=a_{2} m_{2}+\ldots+a_{n} m_{n}
\end{gathered}
$$

Either $1-a_{1}$ is a unit, or it is contained in some maximal ideal. But \mathfrak{a} is contained in all maximal ideals, so $1-a_{1}$ is a unit. Thus, m_{1} is expressible in terms of the other generators. Induction proves the lemma.

Applying this to \mathfrak{O}_{1} gives $\mathfrak{O}_{1}=\{0\}$, contradiction. Thus, $\mathfrak{m} \cdot \mathfrak{O} \neq \mathfrak{O}$.

Reverting to not-necessarily-local \mathfrak{o}, in

$\mathfrak{m} \cdot S^{-1} \mathfrak{O} \neq S^{-1} \mathfrak{O}$, so is in some maximal ideal \mathfrak{M} of $S^{-1} \mathfrak{O}$, and $\mathfrak{M} \cap S^{-1} \mathfrak{o} \supset \mathfrak{m}$. By maximality of $\mathfrak{m}, \mathfrak{M} \cap S^{-1} \mathfrak{o}=\mathfrak{m}$.
\mathfrak{M} is non-zero prime, so $\mathfrak{P}=\mathfrak{M} \cap \mathfrak{O}$ is prime, because intersecting a prime ideal with a subring gives a prime ideal. \mathfrak{P} is not $\{0\}$, because of integrality: $0 \neq m \in \mathfrak{M}$ satisfies $m^{n}+a_{n-1} m^{n-1}+\ldots+a_{o}=0$ with $a_{i} \in \mathfrak{o}$ and $0 \neq a_{o} \in \mathfrak{o} \cap \mathfrak{M}$. Then
$\mathfrak{o} \cap \mathfrak{P}=\mathfrak{o} \cap(\mathfrak{O} \cap \mathfrak{M})=\mathfrak{o} \cap \mathfrak{M}=\mathfrak{o} \cap\left(S^{-1} \mathfrak{o} \cap \mathfrak{M}\right)=\mathfrak{o} \cap \mathfrak{m}=\mathfrak{p}$

Finally, prove \mathfrak{P} maximal if and only if \mathfrak{p} is.
For \mathfrak{p} maximal, $\mathfrak{o} / \mathfrak{p}$ is a field, and $\mathfrak{O} / \mathfrak{P}$ is an integral domain, in any case. Show that an integral domain R integral over a field k is a field. Indeed, for $f(y)=0$ minimal, with $a_{i} \in k$ and $0 \neq y \in R$, $k[y]$ is the field $k[Y] /\langle f(Y)\rangle$. In particular, y is invertible.

On the other hand, for \mathfrak{P} maximal, the field $\mathfrak{O} / \mathfrak{P}$ is integral over $\mathfrak{o} / \mathfrak{p}$. If $\mathfrak{o} / \mathfrak{p}$ were not a field, it would have a maximal ideal \mathfrak{m}, which would be prime. By lying-over, there would be a prime of $\mathfrak{O} / \mathfrak{P}$ lying over \mathfrak{m}, impossible. Thus, \mathfrak{p} is maximal.

Opportunistic calculation device: If $\mathfrak{O}=\mathfrak{o}[y]$, with y satisfying minimal (monic) $f(y)=0$, have a bijection
$\{$ irreducible factors of $f \bmod \mathfrak{p}\} \longleftrightarrow$ \{primes over $\mathfrak{p}\}$
by

$$
\text { factor } \bar{f}_{j} \text { of } f(Y) \bmod \mathfrak{p} \quad \longrightarrow \quad \operatorname{ker}\left(\mathfrak{O} \rightarrow \mathfrak{o} / \mathfrak{p}[Y] /\left\langle\bar{f}_{j}(Y)\right\rangle\right)
$$

Remark: For \mathfrak{o} the ring of algebraic integers in a number field k (=integral closure of \mathbb{Z} in k), it is not generally true that the integral closure \mathfrak{O} of \mathfrak{o} in a further finite extension K is of the form $\mathfrak{o}[y]$, although this is true for cyclotomic fields and some other examples.

Nevertheless, the local rings $S^{-1} \mathfrak{o}$ for $S=\mathfrak{o}-\mathfrak{p}$ do have the form $S^{-1} \mathfrak{O}=S^{-1} \mathfrak{o}[y]$ for almost all \mathfrak{o}, so the calculational device applies almost everywhere locally.

Proof: Localizing, reduce to \mathfrak{p} maximal. As earlier,

$$
\begin{aligned}
\mathfrak{O} \longrightarrow \mathfrak{O} / \mathfrak{p} \approx \mathfrak{o}[y] / \mathfrak{p} & \approx \mathfrak{o}[Y] /\langle f(Y), \mathfrak{p}\rangle \\
\approx \mathfrak{o} / \mathfrak{p}[Y] /\langle f(Y) \bmod \mathfrak{p}\rangle & \approx \bigoplus_{j} \mathfrak{o} / \mathfrak{p}[Y] / \bar{f}_{j}(Y)^{e_{j}}
\end{aligned}
$$

where \bar{f}_{j} are the distinct irreducible factors. Typically, the exponents e_{j} will be 1 . In any case, this maps to $\mathfrak{o} / \mathfrak{p}[Y] / \bar{f}_{j}(Y)$, which is a field. Thus, the kernel is a maximal, hence prime, ideal \mathfrak{P} containing \mathfrak{p}.

On the other hand, $\mathfrak{o}[y]=\mathfrak{O} \rightarrow \mathfrak{O} / \mathfrak{P}$ sends y to a root of some irreducible factor \bar{f}_{j} of $f \bmod \mathfrak{p}$. Two roots of \bar{f} are Galoisconjugate over $\mathfrak{o} / \mathfrak{p}$ if and only if they are roots of the same irreducible $\bmod \mathfrak{p}$.

Sun-Ze's theorem: For ideals \mathfrak{a}_{j} in \mathfrak{o} such that $\mathfrak{a}_{i}+\mathfrak{a}_{j}=\mathfrak{o}$ for $i \neq j$, given x_{j}, there is $x \in \mathfrak{o}$ such that $x=x_{j} \bmod \mathfrak{a}_{j}$ for all j.

Proof: The hypothesis gives $a_{1} \in \mathfrak{a}_{1}, a_{2} \in \mathfrak{a}_{2}$ such that $a_{1}+a_{2}=1$. Then $x=x_{2} a_{1}+x_{1} a_{2}$ solves the problem for two ideals.

Induction: for $j>1$, let $b_{j} \in \mathfrak{a}_{1}$ and $c_{j} \in \mathfrak{a}_{j}$ such that $b_{j}+c_{j}=1$. Then

$$
1=\prod_{j>1}\left(b_{j}+c_{j}\right) \in \mathfrak{a}_{1}+\prod_{j>1} \mathfrak{a}_{j}
$$

That is, $\mathfrak{a}_{1}+\prod_{j>1} \mathfrak{a}_{j}=\mathfrak{o}$. Thus, there is $y_{1} \in \mathfrak{o}$ such that $y_{1}=1 \bmod \mathfrak{a}_{1}$ and $y_{1}=0 \bmod \prod_{j>1} \mathfrak{a}_{j}$. Similarly, find $y_{i}=1 \bmod \mathfrak{a}_{i}$ and $y_{i}=0 \bmod \prod_{j \neq i} \mathfrak{a}_{j}$. Then $x=\sum_{j} x_{j} y_{j}$ is $x_{i} \bmod \mathfrak{a}_{i}$.
next:

Transitivity of Galois groups on primes lying over \mathfrak{p}

Let K / k be finite Galois, \mathfrak{o} integrally closed in k, \mathfrak{O} its integral closure in K. Let \mathfrak{p} be prime in \mathfrak{o}. The Galois group $G=$ $\operatorname{Gal}(K / k)$ is transitive on primes lying over \mathfrak{p} in \mathfrak{O}.

