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(memorable, if obscure) big global Theorem: The global
norm residue symbol, the product of all local ones, ν, is a k×-
invariant function on J: it factors through J/k×.

⇓

Memorable theorem: For a, b ∈ k×, Hilbert reciprocity is

Πv (a, b)v = 1

⇓
Quadratic Reciprocity (‘main part’): For π and $ two
elements of o generating distinct odd prime ideals,($

π

)
2

( π
$

)
2

= Πv (π,$)v

where v runs over all even or infinite primes, and (, )v is the
(quadratic) Hilbert symbol.
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Next!!!

Primes lying over/under

Theorem: For O integral over o and prime ideal p of o, there is
at least one prime ideal P of O such that P ∩ o = p.

That is, P lies over p. P is maximal if and only if p is maximal.

Further, p ·O 6= O, keeping in mind that

p ·O = {
∑
j

pj · yj : pj ∈ p, yj ∈ O}

There a natural commutative diagram

O −→ O/P
inj ↑ ↑ inj

o −→ o/p

We do not necessarily assume o or O is a domain.
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Proof: This is easiest reduced to local questions.

The set S = o − p is multiplicative because p is prime. It is easy
that S−1O is integral over S−1o, and that S−1o has the unique
maximal ideal m = p · S−1o.

To show pO 6= O, it suffices to consider the local version, and
show m · S−1O 6= S−1O, because

p · S−1O = p · S−1o · S−1O = m · S−1O

That is, it suffices to prove m ·O 6= O, with o local.

For local o, if m · O = O, then 1 ∈ O has an expression
1 = m1y1 + . . . + mnyn, with mj ∈ m and yj ∈ O. Let O1 be
the ring O1 = o[y1, . . . , yn]. It is a finitely-generated o-algebra, so
by integrality is a finitely-generated o-module.
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Nakayama’s Lemma says that if aM = M for an ideal contained
in all maximal ideals of o, and M a finitely-generated o-module,
then M = {0}.

Proof: (of Lemma) For M generated by m1, . . . ,mn, the
hypothesis gives

m1 = a1m1 + . . .+ anmn (for some aj ∈ a)

(1− a1)m1 = a2m2 + . . .+ anmn

Either 1 − a1 is a unit, or it is contained in some maximal ideal.
But a is contained in all maximal ideals, so 1− a1 is a unit. Thus,
m1 is expressible in terms of the other generators. Induction
proves the lemma. ///

Applying this to O1 gives O1 = {0}, contradiction. Thus,
m ·O 6= O.
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Reverting to not-necessarily-local o, in

O −→ S−1O
↑ ↑
o −→ S−1o

m · S−1O 6= S−1O, so is in some maximal ideal M of S−1O, and
M ∩ S−1o ⊃ m. By maximality of m, M ∩ S−1o = m.

M is non-zero prime, so P = M ∩O is prime, because intersecting
a prime ideal with a subring gives a prime ideal. P is not {0},
because of integrality: 0 6= m ∈M satisfies
mn + an−1m

n−1 + . . . + ao = 0 with ai ∈ o and 0 6= ao ∈ o ∩M.
Then

o ∩P = o ∩ (O ∩M) = o ∩M = o ∩ (S−1o ∩M) = o ∩m = p
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Finally, prove P maximal if and only if p is.

For p maximal, o/p is a field, and O/P is an integral domain, in
any case. Show that an integral domain R integral over a field k is
a field. Indeed, for f(y) = 0 minimal, with ai ∈ k and 0 6= y ∈ R,
k[y] is the field k[Y ]/〈f(Y )〉. In particular, y is invertible.

On the other hand, for P maximal, the field O/P is integral over
o/p. If o/p were not a field, it would have a maximal ideal m,
which would be prime. By lying-over, there would be a prime of
O/P lying over m, impossible. Thus, p is maximal. ///
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Opportunistic calculation device: If O = o[y], with y
satisfying minimal (monic) f(y) = 0, have a bijection

{irreducible factors of f mod p} ←→ {primes over p}

by

factor f j of f(Y ) mod p −→ ker
(
O → o/p[Y ] / 〈f j(Y )〉

)
Remark: For o the ring of algebraic integers in a number field
k (=integral closure of Z in k), it is not generally true that the
integral closure O of o in a further finite extension K is of the
form o[y], although this is true for cyclotomic fields and some
other examples.

Nevertheless, the local rings S−1o for S = o − p do have the
form S−1O = S−1o[y] for almost all o, so the calculational device
applies almost everywhere locally.
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Proof: Localizing, reduce to p maximal. As earlier,

O −→ O/p ≈ o[y]/p ≈ o[Y ]
/
〈f(Y ), p〉

≈ o/p[Y ]
/
〈f(Y ) mod p〉 ≈

⊕
j

o/p[Y ]
/
f j(Y )ej

where f j are the distinct irreducible factors. Typically, the

exponents ej will be 1. In any case, this maps to o/p[Y ]/f j(Y ),
which is a field. Thus, the kernel is a maximal, hence prime, ideal
P containing p.

On the other hand, o[y] = O → O/P sends y to a root of
some irreducible factor f j of f mod p. Two roots of f are Galois-
conjugate over o/p if and only if they are roots of the same
irreducible mod p. ///
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Sun-Ze’s theorem: For ideals aj in o such that ai + aj = o for
i 6= j, given xj , there is x ∈ o such that x = xj mod aj for all j.

Proof: The hypothesis gives a1 ∈ a1, a2 ∈ a2 such that a1 + a2 = 1.
Then x = x2a1 + x1a2 solves the problem for two ideals.

Induction: for j > 1, let bj ∈ a1 and cj ∈ aj such that bj + cj = 1.
Then

1 =
∏
j>1

(bj + cj) ∈ a1 +
∏
j>1

aj

That is, a1 +
∏

j>1 aj = o. Thus, there is y1 ∈ o such that
y1 = 1 mod a1 and y1 = 0 mod

∏
j>1 aj . Similarly, find

yi = 1 mod ai and yi = 0 mod
∏

j 6=i aj . Then x =
∑

j xjyj is
xi mod ai. ///
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next:

Transitivity of Galois groups on primes lying over p

Let K/k be finite Galois, o integrally closed in k, O its integral
closure in K. Let p be prime in o. The Galois group G =
Gal(K/k) is transitive on primes lying over p in O.

...


