(memorable, if obscure) big global Theorem: The global norm residue symbol, the product of all local ones, ν , is a k^{\times} -invariant function on \mathbb{J} : it factors through \mathbb{J}/k^{\times} .

Memorable theorem: For $a, b \in k^{\times}$, Hilbert reciprocity is

$$\Pi_v \ (a,b)_v = 1$$

 \Downarrow

 \Downarrow

Quadratic Reciprocity ('main part'): For π and ϖ two elements of \mathfrak{o} generating distinct odd prime ideals,

$$\left(\frac{\varpi}{\pi}\right)_2 \left(\frac{\pi}{\varpi}\right)_2 = \Pi_v (\pi, \varpi)_v$$

where v runs over all even or infinite primes, and $(,)_v$ is the (quadratic) Hilbert symbol.

Next!!!

Primes lying over/under

Theorem: For \mathfrak{O} *integral* over \mathfrak{o} and prime ideal \mathfrak{p} of \mathfrak{o} , there is at least one prime ideal \mathfrak{P} of \mathfrak{O} such that $\mathfrak{P} \cap \mathfrak{o} = \mathfrak{p}$.

That is, \mathfrak{P} lies over \mathfrak{p} . \mathfrak{P} is maximal if and only if \mathfrak{p} is maximal.

Further, $\mathfrak{p} \cdot \mathfrak{O} \neq \mathfrak{O}$, keeping in mind that

$$\mathfrak{p} \cdot \mathfrak{O} = \{ \sum_{j} p_{j} \cdot y_{j} : p_{j} \in \mathfrak{p}, y_{j} \in \mathfrak{O} \}$$

There a natural commutative diagram

$$\begin{array}{cccc} \mathfrak{O} & \longrightarrow & \mathfrak{O}/\mathfrak{P} \\ _{\mathrm{inj}}\uparrow & & \uparrow _{\mathrm{inj}} \\ \mathfrak{o} & \longrightarrow & \mathfrak{o}/\mathfrak{p} \end{array}$$

We do not necessarily assume $\mathfrak o$ or $\mathfrak O$ is a domain.

Proof: This is easiest reduced to *local* questions.

The set $S = \mathfrak{o} - \mathfrak{p}$ is *multiplicative* because \mathfrak{p} is prime. It is easy that $S^{-1}\mathfrak{O}$ is integral over $S^{-1}\mathfrak{o}$, and that $S^{-1}\mathfrak{o}$ has the unique maximal ideal $\mathfrak{m} = \mathfrak{p} \cdot S^{-1}\mathfrak{o}$.

To show $\mathfrak{p}\mathfrak{O} \neq \mathfrak{O}$, it suffices to consider the local version, and show $\mathfrak{m} \cdot S^{-1}\mathfrak{O} \neq S^{-1}\mathfrak{O}$, because

$$\mathfrak{p} \cdot S^{-1} \mathfrak{O} = \mathfrak{p} \cdot S^{-1} \mathfrak{o} \cdot S^{-1} \mathfrak{O} = \mathfrak{m} \cdot S^{-1} \mathfrak{O}$$

That is, it suffices to prove $\mathfrak{m} \cdot \mathfrak{O} \neq \mathfrak{O}$, with \mathfrak{o} local.

For local \mathfrak{o} , if $\mathfrak{m} \cdot \mathfrak{O} = \mathfrak{O}$, then $1 \in \mathfrak{O}$ has an expression $1 = m_1 y_1 + \ldots + m_n y_n$, with $m_j \in \mathfrak{m}$ and $y_j \in \mathfrak{O}$. Let \mathfrak{O}_1 be the ring $\mathfrak{O}_1 = \mathfrak{o}[y_1, \ldots, y_n]$. It is a finitely-generated \mathfrak{o} -algebra, so by integrality is a finitely-generated \mathfrak{o} -module.

Nakayama's Lemma says that if $\mathfrak{a}M = M$ for an ideal contained in all maximal ideals of \mathfrak{o} , and M a finitely-generated \mathfrak{o} -module, then $M = \{0\}$.

Proof: (of Lemma) For M generated by m_1, \ldots, m_n , the hypothesis gives

$$m_1 = a_1 m_1 + \ldots + a_n m_n$$
 (for some $a_j \in \mathfrak{a}$)

$$(1-a_1)m_1 = a_2m_2 + \ldots + a_nm_n$$

Either $1 - a_1$ is a unit, or it is contained in some maximal ideal. But \mathfrak{a} is contained in *all* maximal ideals, so $1 - a_1$ is a unit. Thus, m_1 is expressible in terms of the other generators. Induction proves the lemma. ///

Applying this to \mathfrak{O}_1 gives $\mathfrak{O}_1 = \{0\}$, contradiction. Thus, $\mathfrak{m} \cdot \mathfrak{O} \neq \mathfrak{O}$.

Reverting to not-necessarily-local o, in

$$\begin{array}{cccccccc} \mathfrak{O} & \longrightarrow & S^{-1}\mathfrak{O} \\ \uparrow & & \uparrow \\ \mathfrak{o} & \longrightarrow & S^{-1}\mathfrak{o} \end{array}$$

 $\mathfrak{m} \cdot S^{-1}\mathfrak{O} \neq S^{-1}\mathfrak{O}$, so is in some maximal ideal \mathfrak{M} of $S^{-1}\mathfrak{O}$, and $\mathfrak{M} \cap S^{-1}\mathfrak{o} \supset \mathfrak{m}$. By maximality of \mathfrak{m} , $\mathfrak{M} \cap S^{-1}\mathfrak{o} = \mathfrak{m}$.

 \mathfrak{M} is non-zero prime, so $\mathfrak{P} = \mathfrak{M} \cap \mathfrak{O}$ is prime, because intersecting a prime ideal with a subring gives a prime ideal. \mathfrak{P} is not $\{0\}$, because of integrality: $0 \neq m \in \mathfrak{M}$ satisfies $m^n + a_{n-1}m^{n-1} + \ldots + a_o = 0$ with $a_i \in \mathfrak{o}$ and $0 \neq a_o \in \mathfrak{o} \cap \mathfrak{M}$. Then

$$\mathfrak{o}\cap\mathfrak{P}\ =\ \mathfrak{o}\cap(\mathfrak{O}\cap\mathfrak{M})\ =\ \mathfrak{o}\cap\mathfrak{M}\ =\ \mathfrak{o}\cap(S^{-1}\mathfrak{o}\cap\mathfrak{M})\ =\ \mathfrak{o}\cap\mathfrak{m}\ =\ \mathfrak{p}$$

Finally, prove \mathfrak{P} maximal if and only if \mathfrak{p} is.

For \mathfrak{p} maximal, $\mathfrak{o}/\mathfrak{p}$ is a field, and $\mathfrak{O}/\mathfrak{P}$ is an integral domain, in any case. Show that an integral domain R integral over a field k is a field. Indeed, for f(y) = 0 minimal, with $a_i \in k$ and $0 \neq y \in R$, k[y] is the field $k[Y]/\langle f(Y) \rangle$. In particular, y is invertible.

On the other hand, for \mathfrak{P} maximal, the field $\mathfrak{O}/\mathfrak{P}$ is integral over $\mathfrak{o}/\mathfrak{p}$. If $\mathfrak{o}/\mathfrak{p}$ were not a field, it would have a maximal ideal \mathfrak{m} , which would be prime. By lying-over, there would be a prime of $\mathfrak{O}/\mathfrak{P}$ lying over \mathfrak{m} , impossible. Thus, \mathfrak{p} is maximal. ///

Opportunistic calculation device: If $\mathfrak{O} = \mathfrak{o}[y]$, with y satisfying minimal (monic) f(y) = 0, have a bijection

 $\{\text{irreducible factors of } f \mod \mathfrak{p}\} \longleftrightarrow \{\text{primes over } \mathfrak{p}\}$

by

 $\text{factor } \overline{f}_j \text{ of } f(Y) \bmod \mathfrak{p} \quad \longrightarrow \quad \ker \left(\mathfrak{O} \ \rightarrow \ \mathfrak{o}/\mathfrak{p}[Y] \ / \ \langle \overline{f}_j(Y) \rangle \right)$

Remark: For \mathfrak{o} the ring of algebraic integers in a number field k (=integral closure of \mathbb{Z} in k), it is *not* generally true that the integral closure \mathfrak{O} of \mathfrak{o} in a further finite extension K is of the form $\mathfrak{o}[y]$, although this *is true* for cyclotomic fields and some other examples.

Nevertheless, the *local* rings $S^{-1}\mathfrak{o}$ for $S = \mathfrak{o} - \mathfrak{p}$ do have the form $S^{-1}\mathfrak{O} = S^{-1}\mathfrak{o}[y]$ for almost all \mathfrak{o} , so the calculational device applies almost everywhere locally.

Proof: Localizing, reduce to \mathfrak{p} maximal. As earlier,

$$\begin{split} \mathfrak{O} &\longrightarrow \mathfrak{O}/\mathfrak{p} \,\approx \, \mathfrak{o}[y]/\mathfrak{p} \,\approx \, \mathfrak{o}[Y] \Big/ \langle f(Y), \mathfrak{p} \rangle \\ &\approx \, \mathfrak{o}/\mathfrak{p}[Y] \Big/ \langle f(Y) \bmod \mathfrak{p} \rangle \,\approx \, \bigoplus_j \mathfrak{o}/\mathfrak{p}[Y] \, \Big/ \, \overline{f}_j(Y)^{e_j} \end{split}$$

where \overline{f}_j are the distinct irreducible factors. Typically, the exponents e_j will be 1. In any case, this maps to $\mathfrak{o}/\mathfrak{p}[Y]/\overline{f}_j(Y)$, which is a *field*. Thus, the kernel is a maximal, hence prime, ideal \mathfrak{P} containing \mathfrak{p} .

On the other hand, $\mathfrak{o}[y] = \mathfrak{O} \to \mathfrak{O}/\mathfrak{P}$ sends y to a root of some irreducible factor \overline{f}_j of $f \mod \mathfrak{p}$. Two roots of \overline{f} are Galoisconjugate over $\mathfrak{o}/\mathfrak{p}$ if and only if they are roots of the same irreducible mod \mathfrak{p} . /// **Sun-Ze's theorem:** For ideals \mathfrak{a}_j in \mathfrak{o} such that $\mathfrak{a}_i + \mathfrak{a}_j = \mathfrak{o}$ for $i \neq j$, given x_j , there is $x \in \mathfrak{o}$ such that $x = x_j \mod \mathfrak{a}_j$ for all j.

Proof: The hypothesis gives $a_1 \in \mathfrak{a}_1, a_2 \in \mathfrak{a}_2$ such that $a_1 + a_2 = 1$. Then $x = x_2a_1 + x_1a_2$ solves the problem for two ideals.

Induction: for j > 1, let $b_j \in \mathfrak{a}_1$ and $c_j \in \mathfrak{a}_j$ such that $b_j + c_j = 1$. Then

$$1 = \prod_{j>1} (b_j + c_j) \in \mathfrak{a}_1 + \prod_{j>1} \mathfrak{a}_j$$

That is, $\mathfrak{a}_1 + \prod_{j>1} \mathfrak{a}_j = \mathfrak{o}$. Thus, there is $y_1 \in \mathfrak{o}$ such that $y_1 = 1 \mod \mathfrak{a}_1$ and $y_1 = 0 \mod \prod_{j>1} \mathfrak{a}_j$. Similarly, find $y_i = 1 \mod \mathfrak{a}_i$ and $y_i = 0 \mod \prod_{j \neq i} \mathfrak{a}_j$. Then $x = \sum_j x_j y_j$ is $x_i \mod \mathfrak{a}_i$.

next:

Transitivity of Galois groups on primes lying over ${\mathfrak p}$

Let K/k be finite *Galois*, \mathfrak{o} integrally closed in k, \mathfrak{O} its integral closure in K. Let \mathfrak{p} be prime in \mathfrak{o} . The Galois group G = Gal(K/k) is *transitive* on primes lying over \mathfrak{p} in \mathfrak{O} .

•••