Example of the way that more classical *reciprocity laws* are corollaries of fancier-looking things...

For global field k with completions k_v of k, for K a quadratic extension of k, put

$$K_v = K \otimes_k k_v$$

The local norm residue symbol $\nu_v: k_v^{\times} \to \{\pm 1\}$ is

$$\nu_v(\alpha) = \begin{cases} +1 & (\text{for } \alpha \in N(K_v^{\times})) \\ -1 & (\text{for } \alpha \notin N(K_v^{\times})) \end{cases}$$

A small local Theorem:

$$[k_v^{\times} : N(K_v^{\times})] = \begin{cases} 2 & \text{(when } K_v \text{ is a field)} \\ 1 & \text{(when } K_v \approx k_v \times k_v) \end{cases}$$

Cor: ν_v is a group homomorphism $k_v^{\times} \to \{\pm 1\}$. ///

Immediate, opaque, definition of *ideles*:

$$\mathbb{J} = \mathbb{J}_k = (\text{ideles of } k)$$

$$= \{\{\alpha_v\} \in \prod_v k_v^{\times} : \alpha_v \in \mathfrak{o}_v^{\times} \text{ for all but finitely-many } v\}$$

Let

$$\nu = \prod_{v} \nu_v : \mathbb{J} \longrightarrow \{\pm 1\}$$

A (memorable, if obscure) big global Theorem: ν is a k^{\times} -invariant function on \mathbb{J} : it factors through \mathbb{J}/k^{\times} .

Granting this, some interesting deductions follow...

Quadratic Hilbert symbols

For $a, b \in k_v$ the (quadratic) **Hilbert symbol** is

$$(a,b)_v = \begin{cases} 1 & \text{(if } ax^2 + by^2 = z^2 \text{ has non-trivial solution in } k_v) \\ -1 & \text{(otherwise)} \end{cases}$$

Memorable theorem: For $a, b \in k^{\times}$

$$\Pi_v (a,b)_v = 1$$

Proof: ... from the fact that the quadratic norm residue symbol is a Hecke character. Especially, for b a non-square in k^{\times} , $(a,b)_v$ is $\nu_v(a)$ for the field extension $k(\sqrt{b})$, and reciprocity for the norm residue symbol gives the result for the Hilbert symbol.

Traditional-looking quadratic reciprocity laws follow from that reciprocity for the quadratic Hilbert symbol. Define

$$\left(\frac{x}{v}\right)_2 = \begin{cases} 1 & \text{(for } x \text{ a non-zero square mod } v\text{)} \\ 0 & \text{(for } x = 0 \text{ mod } v\text{)} \\ -1 & \text{(for } x \text{ a non-square mod } v\text{)} \end{cases}$$

Quadratic Reciprocity ('main part'): For π and ϖ two elements of \mathfrak{o} generating distinct odd prime ideals,

$$\left(\frac{\overline{\omega}}{\pi}\right)_2 \left(\frac{\pi}{\overline{\omega}}\right)_2 = \Pi_v (\pi, \overline{\omega})_v$$

where v runs over all $even\ or\ infinite\ primes,\ and\ (,)_v$ is the (quadratic) Hilbert symbol.

Proof We claim that, since $\pi \mathfrak{o}$ and $\varpi \mathfrak{o}$ are odd primes,

$$(\pi, \varpi)_v \ = \ \begin{cases} \left(\frac{\varpi}{\pi}\right)_2 & \text{for } v = \pi \mathfrak{o} \\ \left(\frac{\pi}{\varpi}\right)_2 & \text{for } v = \varpi \mathfrak{o} \end{cases}$$

$$1 & \text{for } v \text{ odd and } v \neq \pi \mathfrak{o}, \varpi \mathfrak{o} \end{cases}$$

Let $v = \pi \mathfrak{o}$. Suppose that there is a solution x, y, z in k_v to

$$\pi x^2 + \varpi y^2 = z^2$$

Via the ultrametric property, $\operatorname{ord}_v y$ and $\operatorname{ord}_v z$ are identical, and less than $\operatorname{ord}_v x$, since ϖ is a v-unit and $\operatorname{ord}_v \pi x^2$ is odd. Multiply through by π^{2n} so that $\pi^n y$ and $\pi^n z$ are v-units. Then that ϖ must be a square modulo v.

On the other hand, when ϖ is a square modulo v, use Hensel's lemma to infer that ϖ is a square in k_v . Then

$$\varpi y^2 = z^2$$

certainly has a non-trivial solution.

For v an odd prime distinct from $\pi \mathfrak{o}$ and $\varpi \mathfrak{o}$, π and ϖ are vunits. When ϖ is a square in k_v , $\varpi = z^2$ has a solution, so the
Hilbert symbol is 1. For unit ϖ not a square in k_v , the quadratic
field extension $k_v(\sqrt{\varpi})$ has the property that the norm map is
surjective to units in k_v . Thus, there are $y, z \in k_v$ so that

$$\pi = N(z + y\sqrt{\varpi}) = z^2 - \varpi y^2$$

Thus, all but even-prime and infinite-prime quadratic Hilbert symbols are quadratic symbols.

///

Simplest examples Let's recover quadratic reciprocity for two (positive) odd prime numbers p, q:

$$\left(\frac{q}{p}\right)_2 \left(\frac{p}{q}\right)_2 = (-1)^{(p-1)(q-1)/4}$$

We have

$$\left(\frac{q}{p}\right)_2 \left(\frac{p}{q}\right)_2 = (p,q)_2 (p,q)_{\infty}$$

Since both p, q are positive, the equation

$$px^2 + qy^2 = z^2$$

has non-trivial real solutions x, y, z. That is, the 'real' Hilbert symbol $(p, q)_{\infty}$ for the archimedean completion of \mathbb{Q} has the value 1. Therefore, only the 2-adic Hilbert symbol contributes to the right-hand side of Gauss' formula:

$$\left(\frac{q}{p}\right)_2 \left(\frac{p}{q}\right)_2 = (p,q)_2$$

Hensel's lemma shows that the solvability of the equation above (for p, q both 2-adic units) depends only upon their residue classes mod 8. The usual formula is but one way of interpolating the 2-adic Hilbert symbol by elementary-looking formulas.

For contrast, let us derive the analogue for $\mathbb{F}_q[T]$ with q odd: for distinct monic irreducible polynomials π, ϖ in $\mathbb{F}_q[T]$,

$$\left(\frac{\varpi}{\pi}\right)_2 \left(\frac{\pi}{\varpi}\right)_2 = \left(\frac{-1}{\mathbb{F}_q}\right)_2^{(\deg \pi)(\deg \varpi)}$$

Proof: From the general assertion above,

$$\left(\frac{\varpi}{\pi}\right)_2 \left(\frac{\pi}{\varpi}\right)_2 = (\pi, \varpi)_{\infty}$$

where ∞ is the prime (valuation)

$$P \longrightarrow q^{\deg P}$$

This norm has local ring consisting of rational functions in t writable as power series in the local parameter $t_{\infty} = t^{-1}$. Then

$$\pi = t_{\infty}^{-\deg \pi} (1 + t_{\infty}(\ldots))$$

where $(1 + t_{\infty}(...))$ is a power series in t_{∞} . A similar assertion holds for ϖ . Thus, if either degree is *even*, then one of π, ϖ is a local square, so the Hilbert symbol is +1.

When $t_{\infty}^{-\deg \pi}(1 + t_{\infty}(...))$ is a non-square, $\deg \pi$ is odd. Nevertheless, any expression of the form

$$1+t_{\infty}(\ldots)$$

is a local square (by Hensel). Thus, without loss of generality, we are contemplating the equation

$$t_{\infty}(x^2 + y^2) = z^2$$

The t_{∞} -order of the right-hand side is even.

If there is no $\sqrt{-1}$ in \mathbb{F}_q , then the left-hand side is t_{∞} -times a norm from the unramified extension

$$\mathbb{F}_q(\sqrt{-1})(T) = \mathbb{F}_q(T)(\sqrt{-1})$$

so has odd order. This is impossible. On the other hand if there is a $\sqrt{-1}$ in \mathbb{F}_q then the equation has non-trivial solutions.

Thus, if neither π nor ϖ is a local square (i.e., both are of odd degree), then the Hilbert symbol is 1 if and only if there is a $\sqrt{-1}$ in \mathbb{F}_q . The formula given above is an elementary interpolation of this assertion (as for the case $k = \mathbb{Q}$).