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In his 1921 thesis, E. Artin considered hyperelliptic curves over a
finite field (of odd characteristic, for simplicity):

y2 = f(x) (with monic f(x) ∈ Fq[x])

These are the quadratic extensions K of k = Fq(x)... other than
constant field extensions going from Fq(x) to Fq2(x). We saw that
the integral closure of o = Fp[x] in K is Fp[x, y].

How do primes in o = Fq[X] behave in these extensions? The
algebra computation can be applied: for P degree d monic prime
in Fq[x] , and for O = Fq[x, y], letting α be the image of x in
Fq[x]/P ≈ Fqd ,

O/〈P 〉 ≈ Fq[x, t]/〈P, t2 − f〉 ≈ Fqd [t]/〈t2 − f(α) 〉

Thus, apart from the ramified prime 〈f(x)〉 ⊂ Fq[x], which
becomes a square, there are split primes and inert primes:O/〈P 〉 ≈ Fqd ⊕ Fqd and PO ≈ P1 ∩P2 (if f(α) ∈ (Fqd)×2)

O/〈P 〉 ≈ Fq2d and PO = prime inO (if f(α) 6∈ (Fqd)×2)
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Example: for y2 = x2 + 1 over F3,

O/〈x〉 ≈ F3[x, t]/〈x, t2 − x2 − 1〉 ≈ F3[t]/〈t2 − 1 〉 ≈ F3 ⊕ F3

O/〈x+ 1〉 ≈ F3[x, t]/〈x+ 1, t2 − x2 − 1〉 ≈ F3[t]/〈t2 − 2 〉 ≈ F32

O/〈x− 1〉 ≈ F3[x, t]/〈x− 1, t2 − x2 − 1〉 ≈ F3[t]/〈t2 − 2 〉 ≈ F32

O/〈x2+1〉 ≈ F3[x, t]/〈x2+1, t2−x2−1〉 ≈ F32 [t]/〈t2 〉 ≈ not product

That is, unsurprisingly, the prime x2 + 1 is ramified. Ok.

O/〈x2 + 2x+ 2〉 ≈ F3[x, t]/〈x2 + 2x+ 2, t2 − x2 − 1〉

≈ F3(α)[t]/〈t2 − α2 − 1 〉

Is α2 + 1 a square in F3(α) ≈ F32 where α2 + 2α + 2 = 0? Some
brute-force computation?
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O/〈x3 − x+ 1〉 ≈ F3[x, t]/〈x3 − x+ 1, t2 − x2 − 1〉

≈ F3(α)[t]/〈t2 − α2 − 1〉 (with α3 − α+ 1 = 0)

Is α2 + 1 a square in F3(α) ≈ F33? More brute-force computation?

Or, ... a clear pattern of whether f(α) is a square in Fp(α)?

Fp(α)× is cyclic, and Euler’s criterion applies:

f(α) ∈ Fp(α)×2 ⇐⇒ f(α)
qd−1

2 = 1

What should quadratic reciprocity be here? Why should there be a
quadratic reciprocity?

What about quadratic reciprocity over extensions of Q, like Q(i),
too!?!

A preview... and example of the way that more classical
reciprocity laws are corollaries of fancier-looking things... :
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Let k be a global field, that is, either a number field (=finite
extension of Q) or function field (=finite separable extension of
Fq(X)), with integers o.

Let v index the completions kv of k.

Let K be a quadratic extension of k, and put

Kv = K ⊗k kv

Kv is two copies of kv when the prime indexed by v splits or
ramifies, and is a quadratic field extension of kv otherwise:

K ⊗k kv ≈ k[x]/〈f〉 ⊗k kv ≈ kv[x]/〈f〉

≈

 kv × kv (when f has a zero in kv)

a quadratic extension (when f has no zero in kv)
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The Galois norm N : K → k certainly gives N : K× → k×, and by
extension of scalars N : K×v → k×v .

Define the local norm residue symbol νv : k×v → {±1} by

νv(α) =

+1 (for α ∈ N(K×v ))

−1 (for α 6∈ N(K×v ))

Example: of the three quadratic extensions of Qp with p odd,
the extension Qp(

√
η), obtained by adjoining a square root of a

non-square local unit η ∈ Z×p , has the property that norm is a
surjection on local units:

N(Zp[
√
η]×) = Z×p
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Proof: Let D be an integer so that D is a non-square mod p, and
E = Qp(

√
D). First, show that norm is a surjection F×p2 → F×p .

Indeed,

N(x) = x · xp = x1+p (for F×p2 → F×p )

The multiplicative group F×p2 is cyclic of order p2 − 1, so taking

(p + 1)th powers surjects to the unique cyclic subgroup of order
p− 1, which must be F×p .

Given α ∈ Z×p , take a ∈ Z such that a = α mod pZp, so
a−1α = 1 mod pZp. Norms are surjective mod p, so there is

β ∈ Zp[
√
D] such that Nβ = a+ pZp, and Nβ−1 · α ∈ 1 + pZp.

The p-adic exp and log show that for odd p the subgroup 1 + pZp
of Z×p consists entirely of squares. Thus, there is γ ∈ Z×p such that
γ2 = Nβ−1 · α, and then α = N(βγ). ///
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A small local Theorem:

[k×v : N(K×v )] =

 2 (when Kv is a field)

1 (when Kv ≈ kv × kv)

About the proof: when Kv is kv × kv, the extended local norm
is just multiplication of the two components, so is certainly
surjective. The interesting case is when Kv is a (separable)
quadratic extension of kv.

We call the assertion local because it only refers to completions,
which, in fact, is much easier.

Let’s postpone proof of this auxiliary result, but note a corollary,
similar to Euler’s criterion for things being squares:

Cor: νv is a group homomorphism k×v → {±1}. ///
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An immediate, if opaque, definition of ideles:

J = Jk = (ideles of k)

= {{αv} ∈
∏
v

k×v : αv ∈ o×v for all but finitely-many v}

Let
ν =

∏
v

νv : J −→ {±1}

A big global Theorem: ν is a k×-invariant function on J. That
is, it factors through J/k×. Other nomenclature: ν is a Hecke
character, and/or a grossencharakter.

Granting this perhaps-unexciting-sounding feature, we can make
some interesting deductions: ...
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Quadratic Hilbert symbols

For a, b ∈ kv the (quadratic) Hilbert symbol is

(a, b)v =

 1 (if ax2 + by2 = z2 has non-trivial solution in kv)

−1 (otherwise)

Memorable theorem: For a, b ∈ k×

Πv (a, b)v = 1

Proof: We prove this from the fact that the quadratic norm
residue symbol is a Hecke character.

When b (or a) is a square in k×, the equation

ax2 + by2 = z2

has a solution over k. There is a solution over kv for all v, so all
the Hilbert symbols are 1, and reciprocity holds in this case.
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For b not a square in k×, rewrite the equation

ax2 = z2 − by2 = N(z + y
√
b)

and K = k(
√
b) is a quadratic field extension of k.

At a prime v of k split (or ramified) in K, the local extension
K ⊗k kv is not a field, and the norm is a surjection, so νv ≡ 1
in that case.

At a prime v of k not split in K, the local extension K ⊗k kv is a
field, so

ax2 = z2 − by2

can have no (non-trivial) solution x, y, z even in kv unless x 6= 0.
In that case, divide by x and find that a is a norm if and only if
this equation has a solution.

That is, (a, b)v is νv(a) for the field extension k(
√
b), and the

reciprocity law for the norm residue symbol gives the result for
the Hilbert symbol. ///
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Now obtain the most traditional quadratic reciprocity law from
the reciprocity law for the quadratic Hilbert symbol. Define the
quadratic symbol

(x
v

)
2

=


1 (for x a non-zero square mod v)

0 (for x = 0 mod v)

−1 (for x a non-square mod v)

Quadratic Reciprocity (‘main part’): For π and $ two
elements of o generating distinct odd prime ideals,($

π

)
2

( π
$

)
2

= Πv (π,$)v

where v runs over all even or infinite primes, and (, )v is the
(quadratic) Hilbert symbol.
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Proof (of main part) We claim that, since πo and $o are odd
primes,

(π,$)v =



(
$
π

)
2

for v = πo(
π
$

)
2

for v = $o

1 for v odd and v 6= πo, $o

Let v = πo. Suppose that there is a solution x, y, z in kv to

πx2 +$y2 = z2

Via the ultrametric property, ordvy and ordvz are identical, and
less than ordvx, since $ is a v-unit and ordvπx

2 is odd. Multiply
through by π2n so that πny and πnz are v-units. Then that $
must be a square modulo v.



Garrett 10-24-2011 13

On the other hand, when $ is a square modulo v, use Hensel’s
lemma to infer that $ is a square in kv. Then

$y2 = z2

certainly has a non-trivial solution.

For v an odd prime distinct from πo and $o, π and $ are v-
units. When $ is a square in kv, $ = z2 has a solution, so
the Hilbert symbol is 1. For $ not a square in kv, kv(

√
$) is an

unramified* field extension of kv, since v is odd. Thus, the norm
map is surjective to units in kv. Thus, there are y, z ∈ kv so that

π = N(z + y
√
$) = z2 −$y2

Thus, all but even-prime and infinite-prime quadratic Hilbert
symbols are quadratic symbols. ///
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Simplest examples Let’s recover quadratic reciprocity for two
(positive) odd prime numbers p, q:(

q

p

)
2

(
p

q

)
2

= (−1)(p−1)(q−1)/4

We have (
q

p

)
2

(
p

q

)
2

= (p, q)2(p, q)∞

Since both p, q are positive, the equation

px2 + qy2 = z2

has non-trivial real solutions x, y, z. That is, the ‘real’ Hilbert
symbol (p, q)∞ for the archimedean completion of Q has the value
1. Therefore, only the 2-adic Hilbert symbol contributes to the
right-hand side of Gauss’ formula:(

q

p

)
2

(
p

q

)
2

= (p, q)2
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Hensel’s lemma shows that the solvability of the equation above
(for p, q both 2-adic units) depends only upon their residue classes
mod 8. The usual formula is but one way of interpolating the 2-
adic Hilbert symbol by elementary-looking formulas. ///

For contrast, let us derive the analogue for Fq[T ] with q odd: for
distinct monic irreducible polynomials π,$ in Fq[T ],

($
π

)
2

( π
$

)
2

=

(
−1

Fq

)(deg π)(deg$)

2

Proof: From the general assertion above,($
π

)
2

( π
$

)
2

= (π,$)∞

where ∞ is the prime (valuation)

P −→ qdegP
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This norm has local ring consisting of rational functions in t
writable as power series in the local parameter t∞ = t−1. Then

π = t− deg π
∞ (1 + t∞(. . .))

where (1 + t∞(. . .)) is a power series in t∞. A similar assertion
holds for $. Thus, if either degree is even, then one of π,$ is a
local square, so the Hilbert symbol is +1.

When t− deg π
∞ (1 + t∞(. . .)) is a non-square, deg π is odd.

Nevertheless, any expression of the form

1 + t∞(. . .)

is a local square (by Hensel). Thus, without loss of generality, we
are contemplating the equation

t∞(x2 + y2) = z2

The t∞-order of the right-hand side is even.
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If there is no
√
−1 in Fq, then the left-hand side is t∞-times a

norm from the unramified extension

Fq(
√
−1)(T ) = Fq(T )(

√
−1)

so has odd order. This is impossible. On the other hand if there is
a
√
−1 in Fq then the equation has non-trivial solutions.

Thus, if neither π nor $ is a local square (i.e., both are of odd
degree), then the Hilbert symbol is 1 if and only if there is a

√
−1

in Fq. The formula given above is an elementary interpolation of
this assertion (as for the case k = Q). ///


