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In his 1921 thesis, E. Artin considered hyperelliptic curves over a
finite field (of odd characteristic, for simplicity):

2 = f(x) (with monic f(x) € Fy[z])

These are the quadratic extensions K of k = F,(z)... other than
constant field extensions going from F,(z) to F,2(x). We saw that
the integral closure of 0 = F,[z] in K is F, [z, y].

How do primes in o = F,[X] behave in these extensions? The
algebra computation can be applied: for P degree d monic prime
in F,[z] , and for © = F,[z,y], letting o be the image of x in

Fylz]/P ~ T,
O/(P) = Fylw, t]/(P,t* — f) =~ Fealt]/{t* — f(a))

Thus, apart from the ramified prime (f(z)) C F,[z], which
becomes a square, there are split primes and nert primes:

O/(P)~F,.a ®F, and PO ~ 1 NPe (if f() € (Fya)*?)

O/(P) = F 2a and PO = prime inO  (if f(a) & (F,a)*?)
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Example: for 32 = 22 + 1 over Fs,
O/(x) ~ Fylz,t]/(z,t* —2® = 1) ~ F3[t]/{t* = 1) ~ F3 ©F3

s[t]/(t* —2) =~ Fa
s[t]/(t* —2) ~ Fa

O/f{x+1) =~
Of{x—1) =~
O/(x*41) =~ Fslx, t]/{(x?+1,t* —2*—1) =~ Fs2[t]/(t* ) ~ not product

[z, t]/{x + 1,t* — 2% — 1)
)

Fg ~
Fslz,t]/{x —1,t* —2°> —1) =~ F

That is, unsurprisingly, the prime 2 + 1 is ramified. Ok.

O/(x? + 22 +2) ~ Fslz,t]/(x* + 2z + 2,1* — 2° — 1)

~ Fa(a)t]/{t* —a* —1)

Is a? + 1 a square in F3(a) ~ F32 where a? + 2o + 2 = 0? Some
brute-force computation?
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O/(x® —x+1) = F3lz, t]/(z° — 2+ 1,t* — 2% — 1)
~ Fa(a)[t]/{t* —a® — 1) (with a® —a +1 = 0)
Is o + 1 a square in F3(a) ~ F33? More brute-force computation?
Or, ... a clear pattern of whether f(«) is a square in Fj,(«)?
F,(a)* is cyclic, and Euler’s criterion applies:

qd—l

f(O‘)GIFp<O‘)X2 — fla) >

=1
What should quadratic reciprocity be here? Why should there be a

quadratic reciprocity?

What about quadratic reciprocity over extensions of Q, like Q(3),
too!?!

A preview... and example of the way that more classical
reciprocity laws are corollaries of fancier-looking things... :
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Let k be a global field, that is, either a number field (=finite
extension of Q) or function field (=finite separable extension of
F, (X)), with integers o.

Let v index the completions k, of k.

Let K be a quadratic extension of k, and put
K, = K®k,

K, is two copies of k, when the prime indexed by v splits or
ramifies, and is a quadratic field extension of k, otherwise:

K@ik, =~ E[z]/(f) @ kv =~ ko[z]/(f)

ky, X ky, (when f has a zero in k)

Q

a quadratic extension (when f has no zero in k,)
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The Galois norm N : K — k certainly gives N : K* — k*, and by
extension of scalars N : K — k.

Define the local norm residue symbol v, : kX — {£1} by

+1 (for a« € N(K)\))

vp(a) =
—1 (fora g N(K)))

Example: of the three quadratic extensions of Q, with p odd,
the extension Q,(,/7), obtained by adjoining a square root of a
non-square local unit n € Z;;, has the property that norm is a
surjection on local units:

N(Zy[vn)*) = Z,
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Proof: Let D be an integer so that D is a non-square mod p, and
E = Qp(vD). First, show that norm is a surjection F; — F.
Indeed,

N(z) = z-2P = 2P (for F;z —F))

The multiplicative group ]F;é is cyclic of order p? — 1, so taking

(p + 1) powers surjects to the unique cyclic subgroup of order
p — 1, which must be F.

Given a € Z], take a € Z such that a = a mod pZ,, so

a 'a = 1mod pZ,. Norms are surjective mod p, so there is

B € Zp[\/ﬁ] such that N8 = a + pZ,, and NG~ - a € 1+ pZ,.

The p-adic exp and log show that for odd p the subgroup 1 + pZ,
of Z; consists entirely of squares. Thus, there is v € Z, such that
72 = NB7 1., and then a = N (7). ///
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A small [ocal Theorem:

2 (when K, is a field)
[y« N(KJ)| =
1 (when K, ~ k, X k)

About the proof: when K, is k, x k,, the extended local norm
is just multiplication of the two components, so is certainly
surjective. The interesting case is when K, is a (separable)
quadratic extension of k,.

We call the assertion local because it only refers to completions,
which, in fact, is much easier.

Let’s postpone proof of this auxiliary result, but note a corollary,
similar to Fuler’s criterion for things being squares:

Cor: v, is a group homomorphism k¢ — {+1}. ///
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An immediate, if opaque, definition of ideles:
J = Jr = (ideles of k)

= {{a,} € H kX : «a, € o, for all but finitely-many v}

Let
V:HI/U : J — {£1}

A big global Theorem: v is a k*-invariant function on J. That
is, it factors through J/k*. Other nomenclature: v is a Hecke
character, and/or a grossencharakter.

Granting this perhaps-unexciting-sounding feature, we can make
some interesting deductions: ...

8
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Quadratic Hilbert symbols
For a,b € k, the (quadratic) Hilbert symbol is
1 (if ax? + by? = 22 has non-trivial solution in k)

(a,b), =

—1 (otherwise)
Memorable theorem: For a,b € k£~
I, (a,b), =1

Proof: We prove this from the fact that the quadratic norm
residue symbol is a Hecke character.

When b (or a) is a square in k™, the equation
az® +by* = 2°

has a solution over k. There is a solution over k, for all v, so all
the Hilbert symbols are 1, and reciprocity holds in this case.
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For b not a square in k™, rewrite the equation
ax? = 22 —by? = N(z+yVb)

and K = k(+/b) is a quadratic field extension of k.

At a prime v of k split (or ramified) in K, the local extension
K ® k, is not a field, and the norm is a surjection, so v, = 1
in that case.

At a prime v of k not split in K, the local extension K ®;, k, is a
field, so

ar®? = 2% —by?
can have no (non-trivial) solution z,y, z even in k, unless  # 0.
In that case, divide by x and find that a is a norm if and only if

this equation has a solution.

That is, (a,b), is v,(a) for the field extension k(+/b), and the
reciprocity law for the norm residue symbol gives the result for
the Hilbert symbol. ///
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Now obtain the most traditional quadratic reciprocity law from
the reciprocity law for the quadratic Hilbert symbol. Define the
quadratic symbol

(1 (for z a non-zero square mod v)

(§>2 = < 0 (for z =0 mod v)

{ —1 (for z a non-square mod v)

Quadratic Reciprocity (‘main part’): For 7 and @ two
elements of o generating distinct odd prime ideals,

(7)), = W=

where v runs over all even or infinite primes, and (, ), is the
(quadratic) Hilbert symbol.
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Proof (of main part) We claim that, since 7o and wo are odd

primes,

(m, )y =

\

( (%)2 for v = 7o

( )2 for v = wo

g

.1 for v odd and v # 7o, wo

Let v = wo. Suppose that there is a solution z,y, z in k, to

Via the ultrametric property, ord,y and ord,z are identical, and

T2 —|—wy2 = 22

12

less than ord,z, since w is a v-unit and ord,wz? is odd. Multiply

through by 72" so that 7"y and 7"z are v-units. Then that w

must be a square modulo v.
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On the other hand, when w is a square modulo v, use Hensel’s
lemma to infer that w is a square in k,. Then

wa — 22

certainly has a non-trivial solution.

For v an odd prime distinct from 7o and wo, 7 and @ are v-
units. When w is a square in k,, @w = 22 has a solution, so
the Hilbert symbol is 1. For w not a square in k,, k,(y/w@) is an
unramified® field extension of k,, since v is odd. Thus, the norm
map is surjective to units in k,. Thus, there are y, z € k, so that

T = Nz +yvw) = 2° — wy?

Thus, all but even-prime and infinite-prime quadratic Hilbert
symbols are quadratic symbols. ///
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Simplest examples Let’s recover quadratic reciprocity for two
(positive) odd prime numbers p, ¢:

(0,09, = o
(2%)2 (g)z = (0, 2)2(P: @)oo

Since both p, g are positive, the equation

We have

pr? 4+ qp? = 22
has non-trivial real solutions x,y, z. That is, the ‘real’ Hilbert
symbol (p, ¢)so for the archimedean completion of QQ has the value

1. Therefore, only the 2-adic Hilbert symbol contributes to the
right-hand side of Gauss’ formula:

(3),(5), = &
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Hensel’s lemma shows that the solvability of the equation above
(for p, ¢ both 2-adic units) depends only upon their residue classes
mod 8. The usual formula is but one way of interpolating the 2-
adic Hilbert symbol by elementary-looking formulas. ///

For contrast, let us derive the analogue for F,[T] with ¢ odd: for
distinct monic irreducible polynomials 7, @ in F,[T],

(5),(2), = (5,

Proof: From the general assertion above,

(7). (5), = =)

where oo is the prime (valuation)

) (deg m)(deg @)

2

P — qdegP
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This norm has local ring consisting of rational functions in ¢
writable as power series in the local parameter too = ¢~ '. Then

T o=t 98T (1 4+ t(...))

where (1 4 t(...)) is a power series in to,. A similar assertion
holds for . Thus, if either degree is even, then one of 7, w is a
local square, so the Hilbert symbol is +1.

When t 987 (1 + t,(...)) is a non-square, deg 7 is odd.
Nevertheless, any expression of the form

1+ tool..)

is a local square (by Hensel). Thus, without loss of generality, we
are contemplating the equation

too(:E2—|—y2) = 2*

The t,.-order of the right-hand side is even.
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If there is no /—1 in F,, then the left-hand side is t.-times a
norm from the unramified extension

so has odd order. This is impossible. On the other hand if there is
a v/—1 in F, then the equation has non-trivial solutions.

Thus, if neither 7 nor w is a local square (i.e., both are of odd
degree), then the Hilbert symbol is 1 if and only if there is a /—1
in F,. The formula given above is an elementary interpolation of
this assertion (as for the case k = Q). ///




