In his 1921 thesis, E. Artin considered hyperelliptic curves over a finite field (of odd characteristic, for simplicity):

$$
y^{2}=f(x) \quad\left(\text { with monic } f(x) \in \mathbb{F}_{q}[x]\right)
$$

These are the quadratic extensions K of $k=\mathbb{F}_{q}(x) \ldots$ other than constant field extensions going from $\mathbb{F}_{q}(x)$ to $\mathbb{F}_{q^{2}}(x)$. We saw that the integral closure of $\mathfrak{o}=\mathbb{F}_{p}[x]$ in K is $\mathbb{F}_{p}[x, y]$.

How do primes in $\mathfrak{o}=\mathbb{F}_{q}[X]$ behave in these extensions? The algebra computation can be applied: for P degree d monic prime in $\mathbb{F}_{q}[x]$, and for $\mathfrak{O}=\mathbb{F}_{q}[x, y]$, letting α be the image of x in $\mathbb{F}_{q}[x] / P \approx \mathbb{F}_{q^{d}}$,

$$
\mathfrak{O} /\langle P\rangle \approx \mathbb{F}_{q}[x, t] /\left\langle P, t^{2}-f\right\rangle \approx \mathbb{F}_{q^{d}}[t] /\left\langle t^{2}-f(\alpha)\right\rangle
$$

Thus, apart from the ramified prime $\langle f(x)\rangle \subset \mathbb{F}_{q}[x]$, which becomes a square, there are split primes and inert primes:

$$
\left\{\begin{array}{cll}
\mathfrak{O} /\langle P\rangle \approx \mathbb{F}_{q^{d}} \oplus \mathbb{F}_{q^{d}} & \text { and } P \mathfrak{O} \approx \mathfrak{P}_{1} \cap \mathfrak{P}_{2} & \left(\text { if } f(\alpha) \in\left(\mathbb{F}_{q^{d}}\right)^{\times 2}\right) \\
\mathfrak{O} /\langle P\rangle \approx \mathbb{F}_{q^{2 d}} & \text { and } P \mathfrak{O}=\text { prime in } \mathfrak{O} & \left(\text { if } f(\alpha) \notin\left(\mathbb{F}_{q^{d}}\right)^{\times 2}\right)
\end{array}\right.
$$

Example: for $y^{2}=x^{2}+1$ over \mathbb{F}_{3},
$\mathfrak{O} /\langle x\rangle \approx \mathbb{F}_{3}[x, t] /\left\langle x, t^{2}-x^{2}-1\right\rangle \approx \mathbb{F}_{3}[t] /\left\langle t^{2}-1\right\rangle \approx \mathbb{F}_{3} \oplus \mathbb{F}_{3}$
$\mathfrak{O} /\langle x+1\rangle \approx \mathbb{F}_{3}[x, t] /\left\langle x+1, t^{2}-x^{2}-1\right\rangle \approx \mathbb{F}_{3}[t] /\left\langle t^{2}-2\right\rangle \approx \mathbb{F}_{3^{2}}$
$\mathfrak{O} /\langle x-1\rangle \approx \mathbb{F}_{3}[x, t] /\left\langle x-1, t^{2}-x^{2}-1\right\rangle \approx \mathbb{F}_{3}[t] /\left\langle t^{2}-2\right\rangle \approx \mathbb{F}_{3^{2}}$
$\mathfrak{O} /\left\langle x^{2}+1\right\rangle \approx \mathbb{F}_{3}[x, t] /\left\langle x^{2}+1, t^{2}-x^{2}-1\right\rangle \approx \mathbb{F}_{3^{2}}[t] /\left\langle t^{2}\right\rangle \approx$ not product
That is, unsurprisingly, the prime $x^{2}+1$ is ramified. Ok.

$$
\begin{aligned}
\mathfrak{O} /\left\langle x^{2}+2 x+2\right\rangle & \approx \mathbb{F}_{3}[x, t] /\left\langle x^{2}+2 x+2, t^{2}-x^{2}-1\right\rangle \\
& \approx \mathbb{F}_{3}(\alpha)[t] /\left\langle t^{2}-\alpha^{2}-1\right\rangle
\end{aligned}
$$

Is $\alpha^{2}+1$ a square in $\mathbb{F}_{3}(\alpha) \approx \mathbb{F}_{3^{2}}$ where $\alpha^{2}+2 \alpha+2=0$? Some brute-force computation?

$$
\begin{aligned}
& \mathfrak{O} /\left\langle x^{3}-x+1\right\rangle \approx \mathbb{F}_{3}[x, t] /\left\langle x^{3}-x+1, t^{2}-x^{2}-1\right\rangle \\
\approx & \mathbb{F}_{3}(\alpha)[t] /\left\langle t^{2}-\alpha^{2}-1\right\rangle \quad\left(\text { with } \alpha^{3}-\alpha+1=0\right)
\end{aligned}
$$

Is $\alpha^{2}+1$ a square in $\mathbb{F}_{3}(\alpha) \approx \mathbb{F}_{3^{3}}$? More brute-force computation?
Or, \ldots a clear pattern of whether $f(\alpha)$ is a square in $\mathbb{F}_{p}(\alpha)$?
$\mathbb{F}_{p}(\alpha)^{\times}$is cyclic, and Euler's criterion applies:

$$
f(\alpha) \in \mathbb{F}_{p}(\alpha)^{\times 2} \Longleftrightarrow \quad \Longleftrightarrow(\alpha)^{\frac{q^{d-1}}{2}}=1
$$

What should quadratic reciprocity be here? Why should there be a quadratic reciprocity?

What about quadratic reciprocity over extensions of \mathbb{Q}, like $\mathbb{Q}(i)$, too!?!

A preview... and example of the way that more classical reciprocity laws are corollaries of fancier-looking things... :

Let k be a global field, that is, either a number field (=finite extension of \mathbb{Q}) or function field (=finite separable extension of $\mathbb{F}_{q}(X)$), with integers \mathfrak{o}.

Let v index the completions k_{v} of k.
Let K be a quadratic extension of k, and put

$$
K_{v}=K \otimes_{k} k_{v}
$$

K_{v} is two copies of k_{v} when the prime indexed by v splits or ramifies, and is a quadratic field extension of k_{v} otherwise:

$$
\begin{aligned}
& K \otimes_{k} k_{v} \approx k[x] /\langle f\rangle \otimes_{k} k_{v} \approx k_{v}[x] /\langle f\rangle \\
& \approx\left\{\begin{array}{c}
k_{v} \times k_{v} \quad\left(\text { when } f \text { has a zero in } k_{v}\right) \\
\text { a quadratic extension (when } f \text { has no zero in } k_{v} \text {) }
\end{array}\right.
\end{aligned}
$$

The Galois norm $N: K \rightarrow k$ certainly gives $N: K^{\times} \rightarrow k^{\times}$, and by extension of scalars $N: K_{v}^{\times} \rightarrow k_{v}^{\times}$.

Define the local norm residue symbol $\nu_{v}: k_{v}^{\times} \rightarrow\{ \pm 1\}$ by

$$
\nu_{v}(\alpha)= \begin{cases}+1 & \left(\text { for } \alpha \in N\left(K_{v}^{\times}\right)\right) \\ -1 & \left(\text { for } \alpha \notin N\left(K_{v}^{\times}\right)\right)\end{cases}
$$

Example: of the three quadratic extensions of \mathbb{Q}_{p} with p odd, the extension $\mathbb{Q}_{p}(\sqrt{\eta})$, obtained by adjoining a square root of a non-square local unit $\eta \in \mathbb{Z}_{p}^{\times}$, has the property that norm is a surjection on local units:

$$
N\left(\mathbb{Z}_{p}[\sqrt{\eta}]^{\times}\right)=\mathbb{Z}_{p}^{\times}
$$

Proof: Let D be an integer so that D is a non-square $\bmod p$, and $E=\mathbb{Q}_{p}(\sqrt{D})$. First, show that norm is a surjection $\mathbb{F}_{p^{2}}^{\times} \rightarrow \mathbb{F}_{p}^{\times}$. Indeed,

$$
N(x)=x \cdot x^{p}=x^{1+p} \quad\left(\text { for } \mathbb{F}_{p^{2}}^{\times} \rightarrow \mathbb{F}_{p}^{\times}\right)
$$

The multiplicative group $\mathbb{F}_{p^{2}}^{\times}$is cyclic of order $p^{2}-1$, so taking $(p+1)^{\text {th }}$ powers surjects to the unique cyclic subgroup of order $p-1$, which must be \mathbb{F}_{p}^{\times}.

Given $\alpha \in \mathbb{Z}_{p}^{\times}$, take $a \in \mathbb{Z}$ such that $a=\alpha \bmod p \mathbb{Z}_{p}$, so $a^{-1} \alpha=1 \bmod p \mathbb{Z}_{p}$. Norms are surjective $\bmod p$, so there is $\beta \in \mathbb{Z}_{p}[\sqrt{D}]$ such that $N \beta=a+p \mathbb{Z}_{p}$, and $N \beta^{-1} \cdot \alpha \in 1+p \mathbb{Z}_{p}$.

The p-adic exp and log show that for odd p the subgroup $1+p \mathbb{Z}_{p}$ of \mathbb{Z}_{p}^{\times}consists entirely of squares. Thus, there is $\gamma \in \mathbb{Z}_{p}^{\times}$such that $\gamma^{2}=N \beta^{-1} \cdot \alpha$, and then $\alpha=N(\beta \gamma)$.

A small local Theorem:

$$
\left[k_{v}^{\times}: N\left(K_{v}^{\times}\right)\right]= \begin{cases}2 & \left(\text { when } K_{v} \text { is a field }\right) \\ 1 & \left(\text { when } K_{v} \approx k_{v} \times k_{v}\right)\end{cases}
$$

About the proof: when K_{v} is $k_{v} \times k_{v}$, the extended local norm is just multiplication of the two components, so is certainly surjective. The interesting case is when K_{v} is a (separable) quadratic extension of k_{v}.

We call the assertion local because it only refers to completions, which, in fact, is much easier.

Let's postpone proof of this auxiliary result, but note a corollary, similar to Euler's criterion for things being squares:

Cor: ν_{v} is a group homomorphism $k_{v}^{\times} \rightarrow\{ \pm 1\}$.

An immediate, if opaque, definition of ideles:

$$
\begin{gathered}
\mathbb{J}=\mathbb{J}_{k}=(\text { ideles of } k) \\
=\left\{\left\{\alpha_{v}\right\} \in \prod_{v} k_{v}^{\times}: \alpha_{v} \in \mathfrak{o}_{v}^{\times} \text {for all but finitely-many } v\right\}
\end{gathered}
$$

Let

$$
\nu=\prod_{v} \nu_{v}: \mathbb{J} \longrightarrow\{ \pm 1\}
$$

A big global Theorem: ν is a k^{\times}-invariant function on \mathbb{J}. That is, it factors through \mathbb{J} / k^{\times}. Other nomenclature: ν is a Hecke character, and/or a grossencharakter.

Granting this perhaps-unexciting-sounding feature, we can make some interesting deductions: ...

Quadratic Hilbert symbols

For $a, b \in k_{v}$ the (quadratic) Hilbert symbol is
$(a, b)_{v}=\left\{\begin{aligned} 1 & \left(\text { if } a x^{2}+b y^{2}=z^{2} \text { has non-trivial solution in } k_{v}\right) \\ -1 & \text { (otherwise })\end{aligned}\right.$
Memorable theorem: For $a, b \in k^{\times}$

$$
\Pi_{v}(a, b)_{v}=1
$$

Proof: We prove this from the fact that the quadratic norm residue symbol is a Hecke character.

When b (or a) is a square in k^{\times}, the equation

$$
a x^{2}+b y^{2}=z^{2}
$$

has a solution over k. There is a solution over k_{v} for all v, so all the Hilbert symbols are 1, and reciprocity holds in this case.

For b not a square in k^{\times}, rewrite the equation

$$
a x^{2}=z^{2}-b y^{2}=N(z+y \sqrt{b})
$$

and $K=k(\sqrt{b})$ is a quadratic field extension of k.
At a prime v of k split (or ramified) in K, the local extension $K \otimes_{k} k_{v}$ is not a field, and the norm is a surjection, so $\nu_{v} \equiv 1$ in that case.

At a prime v of k not split in K, the local extension $K \otimes_{k} k_{v}$ is a field, so

$$
a x^{2}=z^{2}-b y^{2}
$$

can have no (non-trivial) solution x, y, z even in k_{v} unless $x \neq 0$. In that case, divide by x and find that a is a norm if and only if this equation has a solution.

That is, $(a, b)_{v}$ is $\nu_{v}(a)$ for the field extension $k(\sqrt{b})$, and the reciprocity law for the norm residue symbol gives the result for the Hilbert symbol.

Now obtain the most traditional quadratic reciprocity law from the reciprocity law for the quadratic Hilbert symbol. Define the quadratic symbol

$$
\left(\frac{x}{v}\right)_{2}=\left\{\begin{aligned}
1 & (\text { for } x \text { a non-zero square } \bmod v) \\
0 & (\text { for } x=0 \bmod v) \\
-1 & (\text { for } x \text { a non-square } \bmod v)
\end{aligned}\right.
$$

Quadratic Reciprocity ('main part'): For π and ϖ two elements of \mathfrak{o} generating distinct odd prime ideals,

$$
\left(\frac{\varpi}{\pi}\right)_{2}\left(\frac{\pi}{\varpi}\right)_{2}=\Pi_{v}(\pi, \varpi)_{v}
$$

where v runs over all even or infinite primes, and $(,)_{v}$ is the (quadratic) Hilbert symbol.

Proof (of main part) We claim that, since $\pi \mathfrak{o}$ and $\varpi \mathfrak{o}$ are odd primes,

$$
(\pi, \varpi)_{v}=\left\{\begin{array}{cl}
\left(\frac{\varpi}{\pi}\right)_{2} & \text { for } v=\pi \mathfrak{o} \\
\left(\frac{\pi}{\varpi}\right)_{2} & \text { for } v=\varpi \mathfrak{o} \\
1 & \text { for } v \text { odd and } v \neq \pi \mathfrak{o}, \varpi \mathfrak{o}
\end{array}\right.
$$

Let $v=\pi \mathfrak{o}$. Suppose that there is a solution x, y, z in k_{v} to

$$
\pi x^{2}+\varpi y^{2}=z^{2}
$$

Via the ultrametric property, $\operatorname{ord}_{v} y$ and $\operatorname{ord}_{v} z$ are identical, and less than $\operatorname{ord}_{v} x$, since ϖ is a v-unit and $\operatorname{ord}_{v} \pi x^{2}$ is odd. Multiply through by $\pi^{2 n}$ so that $\pi^{n} y$ and $\pi^{n} z$ are v-units. Then that ϖ must be a square modulo v.

On the other hand, when ϖ is a square modulo v, use Hensel's lemma to infer that ϖ is a square in k_{v}. Then

$$
\varpi y^{2}=z^{2}
$$

certainly has a non-trivial solution.
For v an odd prime distinct from $\pi \mathfrak{o}$ and $\varpi \mathfrak{o}, \pi$ and ϖ are v units. When ϖ is a square in $k_{v}, \varpi=z^{2}$ has a solution, so the Hilbert symbol is 1 . For ϖ not a square in $k_{v}, k_{v}(\sqrt{\varpi})$ is an unramified* field extension of k_{v}, since v is odd. Thus, the norm map is surjective to units in k_{v}. Thus, there are $y, z \in k_{v}$ so that

$$
\pi=N(z+y \sqrt{\varpi})=z^{2}-\varpi y^{2}
$$

Thus, all but even-prime and infinite-prime quadratic Hilbert symbols are quadratic symbols.

Simplest examples Let's recover quadratic reciprocity for two (positive) odd prime numbers p, q :

$$
\left(\frac{q}{p}\right)_{2}\left(\frac{p}{q}\right)_{2}=(-1)^{(p-1)(q-1) / 4}
$$

We have

$$
\left(\frac{q}{p}\right)_{2}\left(\frac{p}{q}\right)_{2}=(p, q)_{2}(p, q)_{\infty}
$$

Since both p, q are positive, the equation

$$
p x^{2}+q y^{2}=z^{2}
$$

has non-trivial real solutions x, y, z. That is, the 'real' Hilbert symbol $(p, q)_{\infty}$ for the archimedean completion of \mathbb{Q} has the value 1. Therefore, only the 2-adic Hilbert symbol contributes to the right-hand side of Gauss' formula:

$$
\left(\frac{q}{p}\right)_{2}\left(\frac{p}{q}\right)_{2}=(p, q)_{2}
$$

Hensel's lemma shows that the solvability of the equation above (for p, q both 2 -adic units) depends only upon their residue classes $\bmod 8$. The usual formula is but one way of interpolating the 2 adic Hilbert symbol by elementary-looking formulas.

For contrast, let us derive the analogue for $\mathbb{F}_{q}[T]$ with q odd: for distinct monic irreducible polynomials π, ϖ in $\mathbb{F}_{q}[T]$,

$$
\left(\frac{\varpi}{\pi}\right)_{2}\left(\frac{\pi}{\varpi}\right)_{2}=\left(\frac{-1}{\mathbb{F}_{q}}\right)_{2}^{(\operatorname{deg} \pi)(\operatorname{deg} \varpi)}
$$

Proof: From the general assertion above,

$$
\left(\frac{\varpi}{\pi}\right)_{2}\left(\frac{\pi}{\varpi}\right)_{2}=(\pi, \varpi)_{\infty}
$$

where ∞ is the prime (valuation)

$$
P \longrightarrow q^{\operatorname{deg} P}
$$

This norm has local ring consisting of rational functions in t writable as power series in the local parameter $t_{\infty}=t^{-1}$. Then

$$
\pi=t_{\infty}^{-\operatorname{deg} \pi}\left(1+t_{\infty}(\ldots)\right)
$$

where $\left(1+t_{\infty}(\ldots)\right)$ is a power series in t_{∞}. A similar assertion holds for ϖ. Thus, if either degree is even, then one of π, ϖ is a local square, so the Hilbert symbol is +1 .

When $t_{\infty}^{-\operatorname{deg} \pi}\left(1+t_{\infty}(\ldots)\right)$ is a non-square, $\operatorname{deg} \pi$ is odd. Nevertheless, any expression of the form

$$
1+t_{\infty}(\ldots)
$$

is a local square (by Hensel). Thus, without loss of generality, we are contemplating the equation

$$
t_{\infty}\left(x^{2}+y^{2}\right)=z^{2}
$$

The t_{∞}-order of the right-hand side is even.

If there is no $\sqrt{-1}$ in \mathbb{F}_{q}, then the left-hand side is t_{∞}-times a norm from the unramified extension

$$
\mathbb{F}_{q}(\sqrt{-1})(T)=\mathbb{F}_{q}(T)(\sqrt{-1})
$$

so has odd order. This is impossible. On the other hand if there is a $\sqrt{-1}$ in \mathbb{F}_{q} then the equation has non-trivial solutions.

Thus, if neither π nor ϖ is a local square (i.e., both are of odd degree), then the Hilbert symbol is 1 if and only if there is a $\sqrt{-1}$ in \mathbb{F}_{q}. The formula given above is an elementary interpolation of this assertion (as for the case $k=\mathbb{Q}$).

