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Examples (cont’d): Function fields in one variable... as algebraic
parallels to Z and Q.

Theorem: All finite field extensions of C((X − z)) are by
adjoining solutions to Y e = X − z for e = 2, 3, 4, . . .. [Done]

Thus,

Gal
(
C((X))/C((X))

)
= lim

d
Z/d = Ẑ ≈

∏
p

Zp

Few explicit parametrizations of algebraic closures of fields are
known: not Q, for sure. But we do also know

Gal(Fq/Fq) = lim
d

Z/d = Ẑ ≈
∏
p

Zp
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In anticipation: Newton polygons over Qp

This is the assertion for Zp[T ] corresponding to C[[X]][T ] above.

The Newton polygon of a polynomial
f(T ) = Tn + an−1T

n−1 + . . .+ ao ∈ Zp[T ]
is the (downward) convex hull of the points

(0, 0), (1, ordp an−1), (2, ordp an−2), . . . (n, ordp ao)

When we extend ordp(pn · ab ) = n to algebraic extensions of Qp,
we will prove that the slopes of the line segments on the Newton
polygon are the ords, with multiplicities, of the zeros.

The extreme case that ordp a0 = 1 is Eisenstein’s criterion.

This device is one of few human-accessible computational means.

We will get to this...
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Returning to finite scalars in place of C... a key point is the
finiteness of residue fields o/p.

Infinitude of primes: Because the algebraic closure of Fq is of
infinite degree over Fq, by separability there are single elements α
of arbitrarily large degree, whose minimal polynomials in Fq[X]
give prime elements of arbitrarily large degree, thus, infinitely-
many.

Also, we can mimic Euclid’s proof. Use the fact that Fq[X] is a
PID. Given any finite collection P1, . . . , Pn of monic irreducibles in
Fq[X], the element N = X · P1 . . . Pn + 1 is of positive degree, so
has some irreducible factor, but is not divisible by any Pj . ///

One should contemplate what it would take to prove an analogue
of Dirichlet’s Theorem on primes in arithmetic progressions.
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The finiteness of residue fields allows definition of the zeta
function of o = Fq[X]:

Z(s) =
∑

06=a ideal⊂Fp[X]

1

(Na)s

=
∑

06=a ideal⊂Fp[X]

1

(#Fp[X]/a)s

=
∑

monic f

1

(#Fp[X]/〈f〉)s

=
∑

monic f

1

(qdeg f )s

=
∑

degrees d

#{monic f : deg f = d}
qds

=
∑

degrees d

qd

qds
=

1

1 − 1

qs−1
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Since Fq[X] is a PID, there is an Euler product

Z(s) =
∏

0 6=p prime

1

1 − (Np)−s

=
∏

monic irred f

1

1 − q−s·deg f

=
∏
d

( 1

1 − q−sd

)#monic irred f deg=d

convergent for <(s) > 1. Observe that

#irred monics deg d =
# elements degree d over Fq

#each Galois conjugacy class

=
1

d

(
qd −

∑
prime p|d

qd/p +
∑

distinct p1,p2|d

qd/p1p2 −
∑

distinct p1,p2,p3|d

qd/p1p2p3 + . . .
)

The fact that Z(s) = 1/(1 − q1−s) is not obvious from the Euler
factorization.



Garrett 10-21-2011 6

Example: in F3[x], monic irreducibles of low degrees are

x, x+ 1, x+ 2 (3 (irred) monic linear)

x2 + 1, x2 + 2x+ 2, ( 32−3
2 = 3 irred monic quadratics)

x2 − 2x+ 2

x3 − x+ 1, x3 − x+ 2, . . . ( 33−3
3 = 8 irred monic cubics)

(all x3 − a’s are reducible!?!)

x4 − 2x+ 1, . . . ( 34−32
4 = 18 irred monic quartics)

(all x4 − a’s are reducible!?!)

??? ( 35−3
5 = 48 irred monic quintics)

(all x5 − a’s are reducible!?!)

No simple conceptual argument, but some reusable tricks... :
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Since F×3 is a cyclic 2-group, there is no 4th root of unity, so the
4th cyclotomic polynomial x2 + 1 is irreducible.

Then (x + j)2 + 1 is irreducible for j = 1, 2. This happens to give
all 3 irreducible monic quadratics.

Since x3 − a = (x − a)3 for a ∈ F3, none of these cubics is
irreducible.

The two cubics x3 − x + a with a 6= 0 are Artin-Schreier
polynomials over F3. Since α3 − α = 0 for α ∈ F3, these have
no linear factors, so are irreducible. With j ∈ F3, x→ x+ j leaves
these unchanged!

No quartic x4 − a ∈ F3[x] is irreducible: F×34 is cyclic of order
34 − 1 = 80 = 24 · 5, so every a ∈ F×3 is an 8th power.

Since (32 − 1)/4 = 2, fourth powers of α ∈ F×32 have order 2, so are
in F×3 . Thus, α4 6= aα + b for non-zero a, b ∈ F3. Thus, the four
polynomials x4 − ax− b with non-zero a, b ∈ F3 are irreducible.
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Artin-Schreier polynomials:

Taking pth roots is problematical in characteristic p... Already the
quadratic formula fails in characteristic 2. A root of x2 + x+ 1 = 0
in F22 cannot be expressed in terms of square roots!

Over Fp with prime p, the Artin-Schreier polynomials are
xp − x+ a, with a ∈ F×p .

Claim: Artin-Schreier polynomials are irreducible, with Galois
group cyclic of order p.

Proof: For a root α ∈ Fp of xp − x+ a = 0,

(α+ 1)p − (α+ 1) + a = αp − α+ a = 0

Thus, any field extension containing one root contains all roots.
That is, the splitting field is Fp(α) for any root α. But the
Frobenius automorphism α → αp generates the Galois group,
whatever it is, and αp = α − a, which is of order p. Thus, the
Galois group is cyclic of order p. ///
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For o = Fp[x], completions are

x-adic completion of o = Fp[[x]]

(x+ 1)-adic completion of o = Fp[[x+ 1]]

(x2 + 1)-adic completion of o = Fp[[x2 + 1]][x]

= {(aox+ bo) + (x2 + 1)(a1x+ b1) + (x2 + 1)2(a2x+ b2) + . . .}

Generally, for P irreducible monic

P -adic completion of o
= co(x) + c1(x) · P + c2(x) · P 2 + . . . (deg cj < degP )

Also, corresponding to the point at infinity and its local ring
Fp[[1/x]] ∩ Fp(x) inside Fp(x),

1

x
− adic completion of o = Fp[[1/x]]
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In his 1921 thesis, E. Artin considered hyperelliptic curves over a
finite field (of odd characteristic, for simplicity):

y2 = f(x) (with monic f(x) ∈ Fq[x])

These are the quadratic extensions K of k = Fq(x)... other than
constant field extensions going from Fq(x) to Fq2(x). We saw that
the integral closure of o = Fp[x] in K is Fp[x, y].

How do primes in o = Fq[X] behave in these extensions? The
algebra computation can be applied: for P degree d monic prime
in Fq[x] , and for O = Fq[x, y], letting α be the image of x in
Fq[x]/P ≈ Fqd ,

O/〈P 〉 ≈ Fq[x, t]/〈P, t2 − f〉 ≈ Fqd [t]/〈t2 − f(α) 〉

Thus, apart from the ramified prime 〈f(x)〉 ⊂ Fq[x], which
becomes a square, there are split primes and inert primes:O/〈P 〉 ≈ Fqd ⊕ Fqd and PO ≈ P1 ∩P2 (if f(α) ∈ (Fqd)×2)

O/〈P 〉 ≈ Fq2d and PO = prime inO (if f(α) 6∈ (Fqd)×2)
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Example: for y2 = x2 + 1 over F3,

O/〈x〉 ≈ F3[x, t]/〈x, t2 − x2 − 1〉 ≈ F3[t]/〈t2 − 1 〉 ≈ F3 ⊕ F3

O/〈x+ 1〉 ≈ F3[x, t]/〈x+ 1, t2 − x2 − 1〉 ≈ F3[t]/〈t2 − 2 〉 ≈ F32

O/〈x− 1〉 ≈ F3[x, t]/〈x− 1, t2 − x2 − 1〉 ≈ F3[t]/〈t2 − 2 〉 ≈ F32

O/〈x2+1〉 ≈ F3[x, t]/〈x2+1, t2−x2−1〉 ≈ F32 [t]/〈t2 〉 ≈ not product

That is, unsurprisingly, the prime x2 + 1 is ramified. Ok.

O/〈x2 + 2x+ 2〉 ≈ F3[x, t]/〈x2 + 2x+ 2, t2 − x2 − 1〉

≈ F3(α)[t]/〈t2 − α2 − 1 〉

Is α2 + 1 a square in F3(α) ≈ F32 where α2 + 2α + 2 = 0? Some
brute-force computation?
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O/〈x3 − x+ 1〉 ≈ F3[x, t]/〈x3 − x+ 1, t2 − x2 − 1〉

≈ F3(α)[t]/〈t2 − α2 − 1〉 (with α3 − α+ 1 = 0)

Is α2 + 1 a square in F3(α) ≈ F33? More brute-force computation?

Or, ... a clear pattern of whether f(α) is a square in Fp(α)?

Fp(α)× is cyclic, and Euler’s criterion applies:

f(α) ∈ Fp(α)×2 ⇐⇒ f(α)
qd−1

2 = 1

What should quadratic reciprocity be here? Why should there be a
quadratic reciprocity?

What about quadratic reciprocity over extensions of Q, like Q(i),
too!?!

A preview... and example of the way that more classical
reciprocity laws are corollaries of fancier-looking things... :


