Examples (cont'd): Function fields in one variable... as algebraic parallels to \mathbb{Z} and \mathbb{Q}.

Theorem: All finite field extensions of $\mathbb{C}((X-z))$ are by adjoining solutions to $Y^{e}=X-z$ for $e=2,3,4, \ldots$ [Done]

Thus,

$$
\operatorname{Gal}(\overline{\mathbb{C}((X))} / \mathbb{C}((X)))=\lim _{d} \mathbb{Z} / d=\widehat{\mathbb{Z}} \approx \prod_{p} \mathbb{Z}_{p}
$$

Few explicit parametrizations of algebraic closures of fields are known: not $\overline{\mathbb{Q}}$, for sure. But we do also know

$$
\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{q}\right)=\lim _{d} \mathbb{Z} / d=\widehat{\mathbb{Z}} \approx \prod_{p} \mathbb{Z}_{p}
$$

In anticipation: Newton polygons over \mathbb{Q}_{p}
This is the assertion for $\mathbb{Z}_{p}[T]$ corresponding to $\mathbb{C}[[X]][T]$ above.
The Newton polygon of a polynomial $f(T)=T^{n}+a_{n-1} T^{n-1}+\ldots+a_{o} \in \mathbb{Z}_{p}[T]$
is the (downward) convex hull of the points

$$
(0,0),\left(1, \operatorname{ord}_{p} a_{n-1}\right),\left(2, \operatorname{ord}_{p} a_{n-2}\right), \ldots\left(n, \operatorname{ord}_{p} a_{o}\right)
$$

When we extend $\operatorname{ord}_{p}\left(p^{n} \cdot \frac{a}{b}\right)=n$ to algebraic extensions of \mathbb{Q}_{p}, we will prove that the slopes of the line segments on the Newton polygon are the ords, with multiplicities, of the zeros.

The extreme case that $\operatorname{ord}_{p} a_{0}=1$ is Eisenstein's criterion.
This device is one of few human-accessible computational means.
We will get to this...

Returning to finite scalars in place of $\mathbb{C} . .$. a key point is the finiteness of residue fields $\mathfrak{o} / \mathfrak{p}$.

Infinitude of primes: Because the algebraic closure of \mathbb{F}_{q} is of infinite degree over \mathbb{F}_{q}, by separability there are single elements α of arbitrarily large degree, whose minimal polynomials in $\mathbb{F}_{q}[X]$ give prime elements of arbitrarily large degree, thus, infinitelymany.

Also, we can mimic Euclid's proof. Use the fact that $\mathbb{F}_{q}[X]$ is a PID. Given any finite collection P_{1}, \ldots, P_{n} of monic irreducibles in $\mathbb{F}_{q}[X]$, the element $N=X \cdot P_{1} \ldots P_{n}+1$ is of positive degree, so has some irreducible factor, but is not divisible by any P_{j}.

One should contemplate what it would take to prove an analogue of Dirichlet's Theorem on primes in arithmetic progressions.

The finiteness of residue fields allows definition of the zeta function of $\mathfrak{o}=\mathbb{F}_{q}[X]$:

$$
\begin{aligned}
Z(s) & =\sum_{0 \neq \mathfrak{a} \text { ideal } \subset \mathbb{F}_{\mathrm{p}}[\mathrm{X}]} \frac{1}{(N \mathfrak{a})^{s}} \\
& =\sum_{0 \neq \mathfrak{a} \text { ideal } \subset \mathbb{F}_{\mathrm{p}}[\mathrm{X}]} \frac{1}{\left(\# \mathbb{F}_{p}[X] / \mathfrak{a}\right)^{s}} \\
& =\sum_{\operatorname{monic} f} \frac{1}{\left(\# \mathbb{F}_{p}[X] /\langle f\rangle\right)^{s}} \\
& =\sum_{\operatorname{monic} f} \frac{1}{\left(q^{\operatorname{deg} f)^{s}}\right.} \\
& =\sum_{\operatorname{degrees} d} \frac{\#\{\operatorname{monic} f: \operatorname{deg} f=d\}}{q^{d s}} \\
& =\sum_{\operatorname{degrees} d} \frac{q^{d}}{q^{d s}}=\frac{1}{1-\frac{1}{q^{s-1}}}
\end{aligned}
$$

Since $\mathbb{F}_{q}[X]$ is a PID, there is an Euler product

$$
\begin{aligned}
Z(s) & =\prod_{0 \neq \mathfrak{p} \text { prime }} \frac{1}{1-(N \mathfrak{p})^{-s}} \\
& =\prod_{\text {monic irred } f} \frac{1}{1-q^{-s \cdot \operatorname{deg} f}} \\
& =\prod_{d}\left(\frac{1}{1-q^{-s d}}\right)^{\# \text { monic irred } f \operatorname{deg}=d}
\end{aligned}
$$

convergent for $\Re(s)>1$. Observe that

$$
\begin{gathered}
\# \text { irred monics } \operatorname{deg} d=\frac{\# \text { elements degree } d \text { over } \mathbb{F}_{q}}{\# \text { each Galois conjugacy class }} \\
=\frac{1}{d}\left(q^{d}-\sum_{\text {prime } p \mid d} q^{d / p}+\sum_{\operatorname{distinct} p_{1}, p_{2} \mid d} q^{d / p_{1} p_{2}}-\sum_{\operatorname{distinct} p_{1}, p_{2}, p_{3} \mid d} q^{d / p_{1} p_{2} p_{3}}+\ldots\right)
\end{gathered}
$$

The fact that $Z(s)=1 /\left(1-q^{1-s}\right)$ is not obvious from the Euler factorization.

Example: in $\mathbb{F}_{3}[x]$, monic irreducibles of low degrees are
$x, x+1, x+2$
$x^{2}+1, \quad x^{2}+2 x+2$, $x^{2}-2 x+2$
$x^{3}-x+1, x^{3}-x+2, \ldots \quad\left(\frac{3^{3}-3}{3}=8\right.$ irred monic cubics $)$
(all $x^{3}-a$'s are reducible!?!)
$x^{4}-2 x+1, \ldots$
(all $x^{4}-a$'s are reducible!?!)
???
(all $x^{5}-a$'s are reducible!?!)
(3 (irred) monic linear)
$\left(\frac{3^{2}-3}{2}=3\right.$ irred monic quadratics $)$
$\left(\frac{3^{4}-3^{2}}{4}=18\right.$ irred monic quartics $)$
$\left(\frac{3^{5}-3}{5}=48\right.$ irred monic quintics $)$

No simple conceptual argument, but some reusable tricks... :

Since \mathbb{F}_{3}^{\times}is a cyclic 2-group, there is no $4^{t h}$ root of unity, so the $4^{t h}$ cyclotomic polynomial $x^{2}+1$ is irreducible.

Then $(x+j)^{2}+1$ is irreducible for $j=1,2$. This happens to give all 3 irreducible monic quadratics.

Since $x^{3}-a=(x-a)^{3}$ for $a \in \mathbb{F}_{3}$, none of these cubics is irreducible.

The two cubics $x^{3}-x+a$ with $a \neq 0$ are Artin-Schreier polynomials over \mathbb{F}_{3}. Since $\alpha^{3}-\alpha=0$ for $\alpha \in \mathbb{F}_{3}$, these have no linear factors, so are irreducible. With $j \in \mathbb{F}_{3}, x \rightarrow x+j$ leaves these unchanged!

No quartic $x^{4}-a \in \mathbb{F}_{3}[x]$ is irreducible: $\mathbb{F}_{3^{4}}$ is cyclic of order $3^{4}-1=80=2^{4} \cdot 5$, so every $a \in \mathbb{F}_{3}^{\times}$is an $8^{t h}$ power.

Since $\left(3^{2}-1\right) / 4=2$, fourth powers of $\alpha \in \mathbb{F}_{3^{2}}^{\times}$have order 2 , so are in \mathbb{F}_{3}^{\times}. Thus, $\alpha^{4} \neq a \alpha+b$ for non-zero $a, b \in \mathbb{F}_{3}$. Thus, the four polynomials $x^{4}-a x-b$ with non-zero $a, b \in \mathbb{F}_{3}$ are irreducible.

Artin-Schreier polynomials:

Taking $p^{t h}$ roots is problematical in characteristic $p \ldots$ Already the quadratic formula fails in characteristic 2 . A root of $x^{2}+x+1=0$ in $\mathbb{F}_{2^{2}}$ cannot be expressed in terms of square roots!

Over \mathbb{F}_{p} with prime p, the Artin-Schreier polynomials are $x^{p}-x+a$, with $a \in \mathbb{F}_{p}^{\times}$.

Claim: Artin-Schreier polynomials are irreducible, with Galois group cyclic of order p.

Proof: For a root $\alpha \in \overline{\mathbb{F}}_{p}$ of $x^{p}-x+a=0$,

$$
(\alpha+1)^{p}-(\alpha+1)+a=\alpha^{p}-\alpha+a=0
$$

Thus, any field extension containing one root contains all roots. That is, the splitting field is $\mathbb{F}_{p}(\alpha)$ for any root α. But the Frobenius automorphism $\alpha \rightarrow \alpha^{p}$ generates the Galois group, whatever it is, and $\alpha^{p}=\alpha-a$, which is of order p. Thus, the Galois group is cyclic of order p.

For $\mathfrak{o}=\mathbb{F}_{p}[x]$, completions are

$$
\begin{aligned}
& x \text {-adic completion of } \mathfrak{o}=\mathbb{F}_{p}[[x]] \\
&(x+1) \text {-adic completion of } \mathfrak{o}=\mathbb{F}_{p}[[x+1]] \\
&\left(x^{2}+1\right) \text {-adic completion of } \mathfrak{o}=\mathbb{F}_{p}\left[\left[x^{2}+1\right]\right][x] \\
&=\left\{\left(a_{o} x+b_{o}\right)+\left(x^{2}+1\right)\left(a_{1} x+b_{1}\right)+\left(x^{2}+1\right)^{2}\left(a_{2} x+b_{2}\right)+\ldots\right\}
\end{aligned}
$$

Generally, for P irreducible monic
P-adic completion of \mathfrak{o}

$$
=c_{o}(x)+c_{1}(x) \cdot P+c_{2}(x) \cdot P^{2}+\ldots \quad\left(\operatorname{deg} c_{j}<\operatorname{deg} P\right)
$$

Also, corresponding to the point at infinity and its local ring $\mathbb{F}_{p}[[1 / x]] \cap \mathbb{F}_{p}(x)$ inside $\mathbb{F}_{p}(x)$,

$$
\frac{1}{x}-\text { adic completion of } \mathfrak{o}=\mathbb{F}_{p}[[1 / x]]
$$

In his 1921 thesis, E. Artin considered hyperelliptic curves over a finite field (of odd characteristic, for simplicity):

$$
y^{2}=f(x) \quad\left(\text { with monic } f(x) \in \mathbb{F}_{q}[x]\right)
$$

These are the quadratic extensions K of $k=\mathbb{F}_{q}(x) \ldots$ other than constant field extensions going from $\mathbb{F}_{q}(x)$ to $\mathbb{F}_{q^{2}}(x)$. We saw that the integral closure of $\mathfrak{o}=\mathbb{F}_{p}[x]$ in K is $\mathbb{F}_{p}[x, y]$.

How do primes in $\mathfrak{o}=\mathbb{F}_{q}[X]$ behave in these extensions? The algebra computation can be applied: for P degree d monic prime in $\mathbb{F}_{q}[x]$, and for $\mathfrak{O}=\mathbb{F}_{q}[x, y]$, letting α be the image of x in $\mathbb{F}_{q}[x] / P \approx \mathbb{F}_{q^{d}}$,

$$
\mathfrak{O} /\langle P\rangle \approx \mathbb{F}_{q}[x, t] /\left\langle P, t^{2}-f\right\rangle \approx \mathbb{F}_{q^{d}}[t] /\left\langle t^{2}-f(\alpha)\right\rangle
$$

Thus, apart from the ramified prime $\langle f(x)\rangle \subset \mathbb{F}_{q}[x]$, which becomes a square, there are split primes and inert primes:

$$
\left\{\begin{array}{cll}
\mathfrak{O} /\langle P\rangle \approx \mathbb{F}_{q^{d}} \oplus \mathbb{F}_{q^{d}} & \text { and } P \mathfrak{O} \approx \mathfrak{P}_{1} \cap \mathfrak{P}_{2} & \left(\text { if } f(\alpha) \in\left(\mathbb{F}_{q^{d}}\right)^{\times 2}\right) \\
\mathfrak{O} /\langle P\rangle \approx \mathbb{F}_{q^{2 d}} & \text { and } P \mathfrak{O}=\text { prime in } \mathfrak{O} & \left(\text { if } f(\alpha) \notin\left(\mathbb{F}_{q^{d}}\right)^{\times 2}\right)
\end{array}\right.
$$

Example: for $y^{2}=x^{2}+1$ over \mathbb{F}_{3},
$\mathfrak{O} /\langle x\rangle \approx \mathbb{F}_{3}[x, t] /\left\langle x, t^{2}-x^{2}-1\right\rangle \approx \mathbb{F}_{3}[t] /\left\langle t^{2}-1\right\rangle \approx \mathbb{F}_{3} \oplus \mathbb{F}_{3}$
$\mathfrak{O} /\langle x+1\rangle \approx \mathbb{F}_{3}[x, t] /\left\langle x+1, t^{2}-x^{2}-1\right\rangle \approx \mathbb{F}_{3}[t] /\left\langle t^{2}-2\right\rangle \approx \mathbb{F}_{3^{2}}$
$\mathfrak{O} /\langle x-1\rangle \approx \mathbb{F}_{3}[x, t] /\left\langle x-1, t^{2}-x^{2}-1\right\rangle \approx \mathbb{F}_{3}[t] /\left\langle t^{2}-2\right\rangle \approx \mathbb{F}_{3^{2}}$
$\mathfrak{O} /\left\langle x^{2}+1\right\rangle \approx \mathbb{F}_{3}[x, t] /\left\langle x^{2}+1, t^{2}-x^{2}-1\right\rangle \approx \mathbb{F}_{3^{2}}[t] /\left\langle t^{2}\right\rangle \approx$ not product
That is, unsurprisingly, the prime $x^{2}+1$ is ramified. Ok.

$$
\begin{aligned}
\mathfrak{O} /\left\langle x^{2}+2 x+2\right\rangle & \approx \mathbb{F}_{3}[x, t] /\left\langle x^{2}+2 x+2, t^{2}-x^{2}-1\right\rangle \\
& \approx \mathbb{F}_{3}(\alpha)[t] /\left\langle t^{2}-\alpha^{2}-1\right\rangle
\end{aligned}
$$

Is $\alpha^{2}+1$ a square in $\mathbb{F}_{3}(\alpha) \approx \mathbb{F}_{3^{2}}$ where $\alpha^{2}+2 \alpha+2=0$? Some brute-force computation?

$$
\begin{aligned}
& \mathfrak{O} /\left\langle x^{3}-x+1\right\rangle \approx \mathbb{F}_{3}[x, t] /\left\langle x^{3}-x+1, t^{2}-x^{2}-1\right\rangle \\
\approx & \mathbb{F}_{3}(\alpha)[t] /\left\langle t^{2}-\alpha^{2}-1\right\rangle \quad\left(\text { with } \alpha^{3}-\alpha+1=0\right)
\end{aligned}
$$

Is $\alpha^{2}+1$ a square in $\mathbb{F}_{3}(\alpha) \approx \mathbb{F}_{3^{3}}$? More brute-force computation?
Or, \ldots a clear pattern of whether $f(\alpha)$ is a square in $\mathbb{F}_{p}(\alpha)$?
$\mathbb{F}_{p}(\alpha)^{\times}$is cyclic, and Euler's criterion applies:

$$
f(\alpha) \in \mathbb{F}_{p}(\alpha)^{\times 2} \Longleftrightarrow \quad \Longleftrightarrow(\alpha)^{\frac{q^{d-1}}{2}}=1
$$

What should quadratic reciprocity be here? Why should there be a quadratic reciprocity?

What about quadratic reciprocity over extensions of \mathbb{Q}, like $\mathbb{Q}(i)$, too!?!

A preview... and example of the way that more classical reciprocity laws are corollaries of fancier-looking things... :

