Example (cont'd): Function fields in one variable...

Practice: consider K a finite extension of $k = \mathbb{C}(X)$, and \mathfrak{O} the integral closure in K of $\mathfrak{o} = \mathbb{C}[X]$.

 $K=\mathbb{C}(X,Y)$ for some Y, and can renormalize so $Y\in\mathfrak{O},$ so $\mathbb{C}[X,Y]\subset\mathfrak{O}.$

For example, for hyperelliptic curves $Y^2 = P(X)$ with $P(X) \in \mathbb{C}[X]$ square-free, have $\mathfrak{O} = \mathbb{C}[X,Y]$ exactly.

Puiseux expansions and field extensions of $\mathbb{C}((X-z))$. Introduction to Newton polygons.

Hensel's lemma: With monic $F(T) \in \mathbb{C}[[X]][T]$, given $\alpha_1 \in \mathbb{C}[[X-z]]$ with $F(\alpha_1) = 0 \mod X - z$, $F'(\alpha_1) \neq 0 \mod X - z$, the recursion

$$\alpha_{n+1} = \alpha_n - \frac{F(\alpha_n)}{F'(\alpha_n)} \mod (X-z)^{n+1}$$

gives $\alpha_{\infty} = \lim_{n} \alpha_{n} \in \mathbb{C}[[X - z]]$ with $F(\alpha_{\infty}) = 0$ in $\mathbb{C}[[X - z]]$, and α_{∞} is the *unique* solution congruent to $\alpha_{1} \mod X - z$.

Theorem: All finite field extensions of $\mathbb{C}((X-z))$ are by adjoining solutions to $Y^e = X - z$ for $e = 2, 3, 4, \dots$ [Proof below.]

This approximates the assertion that, *locally*, Riemann surfaces are combinations of *coverings* of the z-plane and power maps $w^e = z$.

The proof invites extending Hensel's lemma to cover factorization.

Hensel's Lemma II: Let R be a UFD, and π a prime element in R. Given $a \in R$, suppose $b_1, c_1 \in R$ such that

$$a = b_1 \cdot c_1 \mod \pi$$
 and $Rb_1 + Rc_1 + R\pi = R$

Then there are b, c in the π -adic completion $R_{\pi} = \lim_{n} R/\pi^{n}$ such that $b = b_{1} \mod \pi$, $c = c_{1} \mod \pi$, and

$$a = b \cdot c$$
 (in $\lim_n R/\pi^n = R_\pi$)

Remark: Apply this to $R = \mathbb{C}[[X-z]][T]$ or $R = \mathbb{C}[X,T]$ and $\pi = X-z$ to talk about field extensions of $\mathbb{C}((X-z))$.

Proof: With $a = b_1 \cdot c_1 \mod \pi$, try to adjust b_1, c_1 by multiples of π to make the equation hold mod π^2 : require

$$a = (b_1 + x\pi) \cdot (c_1 + y\pi) \mod \pi^2$$

Simplify: the π^2 term $\pi^2 xy$ disappears, and

$$\frac{a - b_1 c_1}{\pi} = x c_1 + y b_1 \mod \pi$$

By hypothesis, expressions $xc_1 + yb_1 + z\pi$ with $x, y, z \in R$ give R, so there exist (non-unique!) x, y to make the equation hold.

Thus, the genuine induction step involves $a = b_n c_n \mod \pi^n$, and trying to solve for x, y in

$$a = (b_n + x\pi^n) \cdot (c_n + y\pi^n) \mod \pi^{n+1}$$

which gives

$$\frac{a - b_n c_n}{\pi^n} = x c_n + y b_n \mod \pi$$

Inductively, $c_n = c_1 \mod \pi$ and $b_n = b_1 \mod \pi$, so

$$Rb_n + Rc_n + R\pi = Rc_1 + Rb_1 + R\pi = R$$

and there are x, y satisfying the condition. Induction succeeds.

///

Caution: By Gauss' lemma, polynomial rings $\mathfrak{o}[X]$ over UFDs \mathfrak{o} are UFDs, but what about $\mathfrak{o}[[X]]$?

We don't really need the more general case, since we only care about $\mathbb{C}[[X]] = \lim_n \mathbb{C}[X]/X^n$, which is completely analogous to \mathbb{Z}_p , where we recall that the ideals in \mathbb{Z}_p are just $p^{\ell} \cdot \mathbb{Z}_p$. Many fewer than in \mathbb{Z} , and all *coming from* \mathbb{Z} .

Thus, $\mathbb{C}[[X]]$ is a PID, with a unique non-zero prime ideal $X \cdot \mathbb{C}[[X]]$, and all ideals are of the form $X^n \cdot \mathbb{C}[[X]]$.

Even though $\mathfrak{o}[[X]]$ is much bigger than $\mathfrak{o}[X]$, it has many more units, for example.

At the same time, UFDs like $\mathbb{Z}[x,y]$ are not PIDs, so we have to be careful what we imagine...

Maybe proving $\mathbb{Z}[[X]]$ and $\mathbb{C}[[X]][T]$ are UFDs is a good exercise.

Corollary: (Now z = 0 and X - z = X.) Consider

$$f(X,T) = T^{n} + a_{n-1}(X)T^{n-1} + \ldots + a_{1}(X)T + a_{0}(X)$$

with $a_j(X) \in \mathbb{C}[[X]]$ and such that the equation

$$f(0,Y) = (Y-w_1)^{\nu_1}(Y-w_2)^{\nu_2}\dots(Y-w_m)^{\nu_m}$$

with $w_i \neq w_j$ for $i \neq j$. Then f(X,T) factors in $\mathbb{C}[[X]][T]$ into m monic-in-T factors, of degrees ν_j in T:

$$T^{n} + a_{n-1}(X)T^{n-1} + \ldots + a_{o}(X) = f_{1}(X,T) \ldots f_{m}(X,T)$$

with

$$f_j(0,T) = (T - w_j)^{\nu_j}$$

That is,

$$f_i(X,T) = (T - w_i)^{\nu_j} \mod X$$

Proof: In Hensel II, take $R = \mathbb{C}[[X]][T]$, $\pi = X$, and

$$b_1 = (T - w_1)^{\nu_1}$$
 $c_1 = (T - w_2)^{\nu_2} \dots (T - w_m)^{\nu_m}$

An equality of polynomials $g(X) = h(X) \mod X$ is equality of complex numbers g(0) = h(0). Since w_1 is distinct from w_2, \ldots, w_m , there are r_1, r_2 in the PID $\mathbb{C}[T]$ such that $r_1b_1 + r_2c_1 = 1$, so certainly $Rb_1 + Rc_1 + R\pi = R$. By Hensel II,

$$f(X,T) = g(X,T) \cdot h(T,X) \qquad (\text{in } \mathbb{C}[[X]][T])$$

and

$$g(X,T) = (T - w_1)^{\nu_1} \mod X$$

$$h(X,T) = (T - w_2)^{\nu_2} \dots (T - w_m)^{\nu_m} \mod X$$

Since $1 + c_1 X + \ldots \in \mathbb{C}[[X]]^{\times}$, we can make g, h monic in T. Induction on m. **Corollary:** Unless f(0, w) = 0 has just a single (distinct) root in \mathbb{C} , f(X,T) has a proper factor in $\mathbb{C}[[X]][T]$.

That is, over scalars $\mathbb{C}[[X]]$, the irreducible factors of f(X,T) are (factors of) the groupings-by-distinct-factors mod X.

Now consider $w_1 = 0$, and $f(X,T) = T^n \mod X$. That is, f(X,T) is of the form

$$f(X,T) = T^n + X \cdot a_{n-1}(X) \cdot T^{n-1} + \dots + X \cdot a_o(X)$$

In the simplest case $a_o(0) \neq 0$, Eisenstein's criterion in $\mathbb{C}[[X]][T]$ gives *irreducibility* of f(X,T). Let's consider this case.

Extend $\mathbb{C}[[X]]$ by adjoining $X^{1/n}$. Replacing T by $X^{1/n} \cdot T$, the polynomial becomes

$$X \cdot T^n + X^{1 + \frac{n-1}{n}} a_{n-1}(X) \cdot T^{n-1} + \dots + X^{1 + \frac{1}{n}} a_1(X) \cdot T + X a_o(X)$$

Taking out the common factor of X gives

$$T^{n} + (X^{1/n})^{n-1}a_{n-1}(X) \cdot T^{n-1} + \ldots + X^{1/n}a_{1}(X) \cdot T + a_{0}(X)$$

Mod $X^{1/n}$, this is

$$T^{n} + 0 + \ldots + 0 + a_{o}(0) = T^{n} + a_{o}(0) \mod X^{1/n}$$

For $a_o(0) \neq 0$, $w^n + a_o(0) = 0$ has distinct linear factors in \mathbb{C} . By the Hensel paraphrase, $f(X, X^{1/n}T)$ factors into linear factors in $\mathbb{C}[[X^{1/n}]][T]$. We're done in this case: the field extension is

$$\mathbb{C}((X))(Y) = \mathbb{C}((X^{1/n}))$$

Example: To warm up to Newton polygons and the general case, consider $(T - X^{1/3})^3 (T - X^{1/2})^2$. Write $\operatorname{ord}(X^{a/b}) = a/b$. The symmetric functions of roots have ords

ord
$$\sigma_1 = \operatorname{ord}(3X^{1/3} + 2X^{1/2}) = \frac{1}{3}$$

ord $\sigma_2 = \operatorname{ord}(3X^{\frac{1}{3} + \frac{1}{3}} + 6X^{\frac{1}{3} + \frac{1}{2}} + X^{\frac{1}{2} + \frac{1}{2}}) = \frac{2}{3}$
ord $\sigma_3 = \operatorname{ord}(X^{3 \cdot \frac{1}{3}} + 6X^{2 \cdot \frac{1}{3} + \frac{1}{2}} + 3X^{\frac{1}{3} + 2 \cdot \frac{1}{2}}) = 1$
ord $\sigma_4 = \operatorname{ord}(2X^{3 \cdot \frac{1}{3} + \frac{1}{2}} + 3X^{2 \cdot \frac{1}{3} + 2 \cdot \frac{1}{2}}) = \frac{3}{2}$
ord $\sigma_5 = \operatorname{ord}(X^{3 \cdot \frac{1}{3} + 2 \cdot \frac{1}{2}}) = 2$

That is, the *increments* in ord σ_{ℓ} are $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}$.

Variant: Varying the example, take

$$f(X,T) = (T - z_1 X^{\frac{1}{3}})(T - z_2 X^{\frac{1}{3}}(T - z_3 X^{\frac{1}{3}}(T - z_4 X^{\frac{1}{2}})(T - z_5 X^{\frac{1}{2}})$$

with non-zero $z_i \in \mathbb{C}$. Now we mostly have *inequalities* for ords:

ord
$$\sigma_1 = \operatorname{ord}((z_1 + z_2 + z_3)X^{1/3} + (z_4 + z_5)X^{1/2})$$
 $\geq \frac{1}{3}$

ord
$$\sigma_2 = \operatorname{ord}((z_1 z_2 + \ldots) X^{\frac{1}{3} + \frac{1}{3}} + (\ldots) X^{\frac{1}{3} + \frac{1}{2}} + z_4 z_5 X^{\frac{1}{2} + \frac{1}{2}}) \ge \frac{2}{3}$$

ord
$$\sigma_3 = \operatorname{ord}(z_1 z_2 z_3 X^{3 \cdot \frac{1}{3}} + (\dots) X^{2 \cdot \frac{1}{3} + \frac{1}{2}} + 3X^{\frac{1}{3} + 2 \cdot \frac{1}{2}}) = 1$$

ord
$$\sigma_4 = \operatorname{ord}(z_1 z_2 z_3 (z_4 + z_5) X^{3 \cdot \frac{1}{3} + \frac{1}{2}} + (\dots) X^{2 \cdot \frac{1}{3} + 2 \cdot \frac{1}{2}}) \ge \frac{3}{2}$$

ord
$$\sigma_5 = \operatorname{ord}(z_1 z_2 z_3 z_4 z_5 X^{3 \cdot \frac{1}{3} + 2 \cdot \frac{1}{2}})$$
 = 2

A stark example of the latter is

$$f(X,T) = T^5 - XT^2 + X^2$$

The crucial mechanism is that the *smallest* ord is 1/3, and replacing T by $X^{1/3} \cdot T$ will distinguish the two sizes of roots:

$$f(X, X^{1/3} \cdot T) = X^{\frac{5}{3}}T^5 - X^{\frac{5}{3}}T^2 + X^2$$

Dividing through by $X^{5/3}$ gives

$$T^5 - T^2 + X^{\frac{1}{3}}$$

Mod $X^{\frac{1}{3}}$, this has 3 non-zero factors, and 2 zero factors, so by Hensel II factors properly into cubic and quadratic.

More generally, consider

$$f(X,T) = (T - X^{1/e_1})^{\nu_1} \dots (T - X^{1/e_m})^{\nu_m} \quad \text{(with } \frac{1}{e_1} \le \dots \le \frac{1}{e_m})$$

By the ultrametric inequality,

 $\operatorname{ord}(\sigma_{\ell}) \geq \operatorname{ord}(\operatorname{sum of ords of the } \ell \operatorname{ smallest-ord zeros})$

$$\geq \begin{cases}
\ell \cdot \frac{1}{e_1} & \text{for } 1 \leq \ell \leq \nu_1 \\
\frac{\nu_1}{e_1} + (\ell - \nu_1) \cdot \frac{1}{e_2} & \text{for } \nu_1 \leq \ell \leq \nu_1 + \nu_2 \\
\frac{\nu_1}{e_1} + \frac{\nu_2}{e_2} + (\ell - \nu_1 - \nu_2) \cdot \frac{1}{e_3} & \text{for } \nu_1 + \nu_2 \leq \ell \leq \nu_1 + \nu_2 + \nu_3 \\
\dots & \dots
\end{cases}$$

with equality at $\ell = 0, \nu_1, \nu_1 + \nu_2, \dots, \nu_1 + \dots + \nu_m$.

Since $\frac{1}{e_1} \leq \ldots \leq \frac{1}{e_m}$, the *convex hull* (downward) of the points $(\ell, \operatorname{ord} \sigma_{\ell})$ has boundary the polygon of lines connecting the points in \mathbb{R}^2

$$(\nu_1, \tfrac{\nu_1}{e_1}) = (\nu_1, \operatorname{ord} \sigma_{\nu_1})$$

$$(\nu_1 + \nu_2, \frac{\nu_1}{e_1} + \frac{\nu_2}{e_2}) = (\nu_1 + \nu_2, \operatorname{ord} \sigma_{\nu_1 + \nu_2})$$

. . .

$$(\nu_1 + \ldots + \nu_m, \frac{\nu_1}{e_1} + \ldots + \frac{\nu_m}{e_m}) = (\nu_1 + \ldots + \nu_m, \operatorname{ord} \sigma_{\nu_1 + \ldots \nu_m})$$

This convex hull is the *Newton polygon* of the polynomial. For $f(X,T) \in \mathbb{C}[[X]][T]$, the ords are in \mathbb{Z} . Eisenstein's criterion is the case $\nu_1 = n$, and ord $\sigma_n = 1$, and all the exponents are 1/n.

The general case was reduced to $f(X,T) = T^n + \ldots + a_o(X)$ with an *n*-fold multiple zero w_o at X = 0. Replacing T by $T + w_o$, without loss of generality, this root is 0, so $a_j(0) = 0$ for all j.

Replace T by $X^{\rho} \cdot T$ with ρ the slope of the first segment from (0,0) to $(\ell,\operatorname{ord}\sigma_{\ell})$ on the Newton polygon. That is, disregard any $(\ell',\operatorname{ord}\sigma_{\ell'})$ with $\ell'<\ell$ lying above that segment.

Replacing T by $X^{\rho} \cdot T$ and dividing through by $X^{n\rho}$ gives

$$T^n + \ldots + \frac{a_{n-\ell}(X)}{X^{\ell\rho}} \cdot T^{n-\ell} + \ldots$$

The Newton polygon says the *ord* of the coefficient of T^j for $n \geq j > n - \ell$ is *non-negative*, at $T^{n-\ell}$ the ord is 0, and for $n - \ell > j$ it is *strictly positive*.

That is, mod X,

$$f(0,T) = T^n + \ldots + \underbrace{b_{n-\ell}(0)}_{\text{non-zero}} \cdot T^{n-\ell}$$

Thus, f(0, w) = 0 has ℓ non-zero complex roots, and $n - \ell$ roots 0.

Hensel II says that there are degree ℓ factor and degree $n-\ell$ factors in $\mathbb{C}[[X^{\rho}]][T]$.

Note that $\mathbb{C}[[X^{\rho}]] \approx \mathbb{C}[[X]]$, so the argument can be repeated.

Induction on degree.