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Example (cont’d): Function fields in one variable... are very
similar to Z,Q, and integral extensions of Z in finite (separable)
field extensions of Q...

Practice: consider K a finite extension of k = C(X), and O the
integral closure in K of o = C[X].

K = C(X,Y ) for some Y , and can renormalize so Y ∈ O, so
C[X,Y ] ⊂ O.

For example, for hyperelliptic curves Y 2 = P (X) with
P (X) ∈ C[X] square-free, have O = C[X,Y ] exactly.

Puiseux expansions and field extensions of C((X − z)).
Introduction to Newton polygons!?



Garrett 10-14-2011 2

Completions of C[X] and C(X) Fix a constant C > 1...

For each z ∈ C, there is the (X − z)-adic, or just z-adic, norm∣∣∣(X − z)n · P (X)

Q(X)

∣∣∣
z

= C−n (P,Q prime to X − z)

Completions of C[X] and of C(X) are C[[X − z]] and C((X − z)),
formal power series ring, and field formal finite Laurent series.

Hensel’s lemma: With monic F (T ) ∈ C[[X]][T ], given
α1 ∈ C[[X − z]] with F (α1) = 0 mod X − z,
F ′(α1) 6= 0 mod X − z, the recursion

αn+1 = αn −
F (αn)

F ′(αn)
mod (X − z)n+1

gives α∞ = limn αn ∈ C[[X − z]] with F (α∞) = 0 in C[[X − z]],
and α∞ is the unique solution congruent to α1 mod X − z.
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Example: β = c0 + c1(X − z) + . . . with co 6= 0 is in C[[X − z]]×.

Proof: F (T ) = β · T − 1 (not monic, nevermind) and α1 = c−1o .
///

Example: Any β = c0 + c1(X − z) + . . . with co 6= 0 has an nth

root in C[[X − z]].

Proof: Take F (T ) = Tn − β and α1 = n
√
co. ///

Example: For f(X,T ) ∈ C[X,T ], for z, wo ∈ C with f(z, wo) = 0
but ∂

∂wf(z, wo) 6= 0, there is a unique α ∈ C[[X − z]] of the form

α = wo +
(
higher powers of X − z

)
giving f(z, α) = 0.

Proof: Hypothesis and conclusion are those of Hensel. ///
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Theorem: All finite field extensions of C((X − z)) are by
adjoining solutions to Y e = X − z for e = 2, 3, 4, . . .. [Proof below.]

These are (formal) Puiseux expansions.

The simplicity of the theorem is suprising.

It approximates the assertion that, locally, Riemann surfaces are
either covering spaces of the z-plane, or concatenations of we = z.

The proof invites extending Hensel’s lemma to cover factorization
of polynomials.
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Paraphrase of Hensel: Consider

f(X,T ) = Tn + an−1(X)Tn−1 + . . .+ a1(X)T + ao(X)

with aj(X) ∈ C[X] and such that the equation

f(0, w) = wn + an−1(0)wn−1 + . . .+ a1(0)w + ao(0) = 0

has distinct roots in C. Then there are n distinct solutions
ϕj ∈ C[[X]] to f(X,Y ) = 0. That is, f(X,T ) factors into linear
factors:

Tn + an−1(X)Tn−1 + . . .+ ao(X) = (T −ϕ1)(T −ϕ2) . . . (T −ϕn)

Proof: To have a single factor T − ϕ1 is the content of Hensel.
Then do induction on n. ///
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Hensel’s Lemma II: Let R be a UFD, and π a prime element in
R. Given a ∈ R, suppose b1, c1 ∈ R such that

a = b1 · c1 mod π and Rb1 +Rc1 +Rπ = R

Then there are b, c in the π-adic completion
Rπ = limnR/π

n such that b = b1 mod π, c = c1 mod π, and

a = b · c (in limnR/π
n = Rπ)

Remark: We’ll apply this to R = C[[X − z]][T ] or R = C[X,T ]
and π = X − z to talk about field extensions of C((X − z)).
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Proof: With a = b1 · c1 mod π, try to adjust b1, c1 by multiples of
π to make the equation hold mod π2: require

a =
(
b1 + xπ

)
·
(
c1 + yπ

)
mod π2

Simplify: the π2 term π2xy disappears, and

a− b1c1
π

= xc1 + yb1 mod π

By hypothesis, expressions xc1 + yb1 + zπ with x, y, z ∈ R give R,
so there exist (non-unique!) x, y to make the equation hold.
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Thus, the genuine induction step involves a = bncn mod πn, and
trying to solve for x, y in

a =
(
bn + xπn

)
·
(
cn + yπn

)
mod πn+1

which gives
a− bncn
πn

= xcn + ybn mod π

Inductively, cn = c1 mod π and bn = b1 mod π, so

Rbn +Rcn +Rπ = Rc1 +Rb1 +Rπ = R

and there are x, y satisfying the condition. Induction succeeds.
///
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Caution: By Gauss’ lemma, polynomial rings o[X] over UFDs o
are UFDs, but what about o[[X]]?

We don’t really need the more general case, since we only care
about C[[X]] = limn C[X]/Xn, which is completely analogous to
Zp, where we recall that the ideals in Zp are just p` · Zp. Many
fewer than in Z, and all coming from Z.

Thus, C[[X]] is a PID, with a unique non-zero prime ideal
X · C[[X]], and all ideals are of the form Xn · C[[X]].

Even though o[[X]] is much bigger than o[X], it has many more
units, for example.

At the same time, UFDs like Z[x, y] are not PIDs, so we have to
be careful what we imagine...

Maybe proving Z[[X]] and C[[X]][T ] are UFDs is a good exercise.
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Corollary: (Now z = 0 and X − z = X.) Consider

f(X,T ) = Tn + an−1(X)Tn−1 + . . .+ a1(X)T + ao(X)

with aj(X) ∈ C[[X]] and such that the equation

f(0, Y ) = (Y − w1)ν1(Y − w2)ν2 . . . (Y − wm)νm

with wi 6= wj for i 6= j. Then f(X,T ) factors in C[[X]][T ] into m
monic-in-T factors, of degrees νj in T :

Tn + an−1(X)Tn−1 + . . .+ ao(X) = f1(X,T ) . . . fm(X,T )

with
fj(0, T ) = (T − wj)νj

That is,
fj(X,T ) = (T − wj)νj mod X
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Proof: In Hensel II, take R = C[[X]][T ], π = X, and

b1 = (T − w1)ν1 c1 = (T − w2)ν2 . . . (T − wm)νm

An equality of polynomials g(X) = h(X) mod X is equality
of complex numbers g(0) = h(0). Since w1 is distinct from
w2, . . . , wm, there are r1, r2 in the PID C[T ] such that r1b1 +
r2c1 = 1, so certainly Rb1 +Rc1 +Rπ = R. By Hensel II,

f(X,T ) = g(X,T ) · h(T,X) (in C[[X]][T ])

and
g(X,T ) = (T − w1)ν1 mod X

h(X,T ) = (T − w2)ν2 . . . (T − wm)νm mod X

Since 1 + c1X + . . . ∈ C[[X]]×, we can make g, h monic in T .
Induction on m. ///
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Corollary: Unless f(0, w) = 0 has just a single (distinct) root in
C, f(X,T ) has a proper factor in C[[X]][T ]. ///

That is, over scalars C[[X]], the irreducible factors of f(X,T ) are
(factors of) the groupings-by-distinct-factors mod X.

Now consider w1 = 0, and f(X,T ) = Tn mod X. That is, f(X,T )
is of the form

f(X,T ) = Tn + X · an−1(X) · Tn−1 + . . . + X · ao(X)

In the simplest case ao(0) 6= 0, Eisenstein’s criterion in C[[X]][T ]
gives irreducibility of f(X,T ). Let’s consider this case.
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Extend C[[X]] by adjoining X1/n. Replacing T by X1/n · T , the
polynomial becomes

X ·Tn+X1+n−1
n an−1(X) ·Tn−1 + . . . + X1+ 1

n a1(X) ·T + Xao(X)

Taking out the common factor of X gives

Tn + (X1/n)n−1an−1(X) · Tn−1 + . . . + X1/na1(X) · T + ao(X)

Mod X1/n, this is

Tn + 0 + . . .+ 0 + ao(0) = Tn + ao(0) mod X1/n

For ao(0) 6= 0, wn + ao(0) = 0 has distinct linear factors in C. By
the Hensel paraphrase, f(X,X1/nT ) factors into linear factors in
C[[X1/n]][T ]. We’re done in this case: the field extension is

C((X))(Y ) = C((X1/n))
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Example: To warm up to Newton polygons and the general case,
consider (T − X1/3)3(T − X1/2)2. Write ord(Xa/b) = a/b. The
symmetric functions of roots have ords

ordσ1 = ord(3X1/3 + 2X1/2) = 1
3

ordσ2 = ord(3X
1
3+

1
3 + 6X

1
3+

1
2 +X

1
2+

1
2 ) = 2

3

ordσ3 = ord(X3· 13 + 6X2· 13+
1
2 + 3X

1
3+2· 12 ) = 1

ordσ4 = ord(2X3· 13+
1
2 + 3X2· 13+2· 12 ) = 3

2

ordσ5 = ord(X3· 13+2· 12 ) = 2

That is, the increments in ordσ` are 1
3 ,

1
3 ,

1
3 ,

1
2 ,

1
2 .
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Variant: Varying the example, take

f(X,T ) = (T −z1X
1
3 )(T −z2X

1
3 (T −z3X

1
3 (T −z4X

1
2 )(T −z5X

1
2 )

with non-zero zi ∈ C. Now we mostly have inequalities for ords:

ordσ1 = ord((z1 + z2 + z3)X1/3 + (z4 + z5)X1/2) ≥ 1
3

ordσ2 = ord((z1z2+. . .)X
1
3+

1
3 + (. . .)X

1
3+

1
2 + z4z5X

1
2+

1
2 ) ≥ 2

3

ordσ3 = ord(z1z2z3X
3· 13 + (. . .)X2· 13+

1
2 + 3X

1
3+2· 12 ) = 1

ordσ4 = ord(z1z2z3(z4 + z5)X3· 13+
1
2 + (. . .)X2· 13+2· 12 ) ≥ 3

2

ordσ5 = ord(z1z2z3z4z5X
3· 13+2· 12 ) = 2
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A stark example of the latter is

f(X,T ) = T 5 −XT 2 +X2

The crucial mechanism is that the smallest ord is 1/3, and
replacing T by X1/3 · T will distinguish the two sizes of roots:

f(X,X1/3 · T ) = X
5
3T 5 −X 5

3T 2 +X2

Dividing through by X5/3 gives

T 5 − T 2 +X
1
3

Mod X
1
3 , this has 3 non-zero factors, and 2 zero factors, so by

Hensel II factors properly into cubic and quadratic.
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More generally, consider

f(X,T ) = (T−X1/e1)ν1 . . . (T−X1/em)νm (with 1
e1
≤ . . . ≤ 1

em
)

By the ultrametric inequality,

ord(σ`) ≥ ord
(
sum of ords of the ` smallest-ord zeros

)

≥



` · 1
e1

for 1 ≤ ` ≤ ν1

ν1
e1

+ (`− ν1) · 1
e2

for ν1 ≤ ` ≤ ν1 + ν2

ν1
e1

+ ν2
e2

+ (`− ν1 − ν2) · 1
e3

for ν1 + ν2 ≤ ` ≤ ν1 + ν2 + ν3

. . . . . .

with equality at ` = 0, ν1, ν1 + ν2, . . . , ν1 + . . .+ νm.
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Since 1
e1
≤ . . . ≤ 1

em
, the convex hull (downward) of the points

(`, ordσ`) has boundary the polygon of lines connecting the points
in R2

(0, 0)

(ν1,
ν1
e1

) = (ν1, ordσν1)

(ν1 + ν2,
ν1
e1

+ ν2
e2

) = (ν1 + ν2, ordσν1+ν2)

. . .

(ν1 + . . .+ νm,
ν1
e1

+ . . .+ νm
em

) = (ν1 + . . .+ νm, ordσν1+...νm)

This convex hull is the Newton polygon of the polynomial. For
f(X,T ) ∈ C[[X]][T ], the ords are in Z. Eisenstein’s criterion is the
case ν1 = n, and ordσn = 1, and all the exponents are 1/n.
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The general case was reduced to f(X,T ) = Tn + . . . + ao(X) with
an n-fold multiple zero wo at X = 0. Replacing T by T + wo,
without loss of generality, this root is 0, so aj(0) = 0 for all j.

Replace T by Xρ · T with ρ the slope of the first segment from
(0, 0) to (`, ordσ`) on the Newton polygon. That is, disregard any
(`′, ordσ`′) with `′ < ` lying above that segment.

Replacing T by Xρ · T and dividing through by Xnρ gives

Tn + . . .+
an−`(X)

X`ρ
· Tn−` + . . .

The Newton polygon says the ord of the coefficient of T j for
n ≥ j > n − ` is non-negative, at Tn−` the ord is 0, and for
n− ` > j it is strictly positive.
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That is, mod X,

f(0, T ) = Tn + . . .+ bn−`(0)︸ ︷︷ ︸
non−zero

·Tn−`

Thus, f(0, w) = 0 has ` non-zero complex roots, and n− ` roots 0.

Hensel II says that there are degree ` factor and degree n − `
factors in C[[Xρ]][T ].

Note that C[[Xρ]] ≈ C[[X]], so the argument can be repeated.

Induction on degree. ///


