Garrett 10-14-2011

Example (cont’d): Function fields in one variable... are very
similar to Z,Q, and integral extensions of Z in finite (separable)
field extensions of Q...

Practice: consider K a finite extension of £ = C(X), and O the
integral closure in K of 0 = C[X].

K = C(X,Y) for some Y, and can renormalize so Y € 9, so
ClX,Y] C ©O.

For example, for hyperelliptic curves Y2 = P(X) with
P(X) € C[X] square-free, have O = C[X, Y] exactly.

Puiseux expansions and field extensions of C((X — z)).
Introduction to Newton polygons!?
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Completions of C[X| and C(X) Fix a constant C' > 1...

For each z € C, there is the (X — z)-adic, or just z-adic, norm

(X—z)”-%z = C™" (P, @ prime to X — 2)

O

Completions of C[X] and of C(X) are C[[X — z]] and C((X — z2)),

formal power series ring, and field formal finite Laurent series.

Hensel’s lemma: With monic F(T') € C[[X]][T], given
ay € C[[X — z]] with F(a;) =0mod X — z,
F'(a1) # 0mod X — z, the recursion

F(ay)
F'(ay,)

mod (X — z)"*!

Op+1 = Op —

gives ao = lim, i, € C[[X — 2]] with F(as) = 0 in C[[X — Z]],
and a is the unique solution congruent to a; mod X — z.
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Example: 8 =cy+ c1(X —2) + ... with ¢, # 0 is in C[[X — z]]*.

Proof: F(T) = B3-T — 1 (not monic, nevermind) and a; = c,!.

///

Example: Any 8 = ¢y + ¢ (X — 2) + ... with ¢, # 0 has an nt"
root in C[[X — z]].

Proof: Take F(T)=T" — 8 and a1 = {/c,. ///

Example: For f(X,T) € C[X,T], for z,w, € C with f(z,w,) =0
but -2 f(z,w,) # 0, there is a unique a € C[[X — 2]] of the form

a = w,+ (higher powers of X — z)
giving f(z,a) = 0.

Proof: Hypothesis and conclusion are those of Hensel. ///



Garrett 10-14-2011 4

Theorem: All finite field extensions of C((X — z)) are by
adjoining solutions to Y¢ = X — z for e = 2,3,4,.... [Proof below.]

These are (formal) Puiseux expansions.
The simplicity of the theorem is suprising.

It approximates the assertion that, locally, Riemann surfaces are
either covering spaces of the z-plane, or concatenations of w® = z.

The proof invites extending Hensel’s lemma to cover factorization
of polynomials.
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Paraphrase of Hensel: Consider
fX,T)=T" +a,_1(X)T" '+ ... +a (X)T + ao(X)
with a;(X) € C[X] and such that the equation
F0,w) =w" 4+ ap_1(0)w" ' +...+a1(0)w + a,(0) = 0
has distinct roots in C. Then there are n distinct solutions

p; € C[[X]] to f(X,Y) = 0. That is, f(X,T) factors into linear
factors:

T" +an 1 (X)T" ' 4. 4 ao(X) = (T—01)(T—2) ... (T — on)

Proof: To have a single factor T' — (7 is the content of Hensel.
Then do induction on n. ///
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Hensel’s Lemma II: Let R be a UFD, and 7 a prime element in
R. Given a € R, suppose b1, c; € R such that

a = by-c;ymodm and Rby + Rey + Rm = R

Then there are b, ¢ in the m-adic completion
R, =lim,, R/m"™ such that b = b; mod 7, ¢ = ¢; mod 7, and

a="b-c (in lim, R/7™ = R;)

Remark: We'll apply this to R = C[[X — z||[T] or R = C[X,T]
and m = X — z to talk about field extensions of C((X — z)).
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Proof: With a = by - ¢; mod 7, try to adjust by, c; by multiples of
7 to make the equation hold mod 72: require

a = (bl + :mr) - (cl + y7r) mod 72
Simplify: the 72 term 72zy disappears, and

a— bic
S xci +ybi mod
T

By hypothesis, expressions xcy + yb1 + zm with x,y, 2z € R give R,
so there exist (non-unique!) x,y to make the equation hold.
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Thus, the genuine induction step involves a = b,,¢, mod 7", and
trying to solve for z,y in

a = (bn + xw”) : (cn + yw”) mod 7”11

which gives

—b
47 Onln xc, + yb, mod
ﬂ-n

Inductively, ¢,, = ¢; mod 7 and b,, = b; mod 7, so
Rb, + Rc,, + Rm = Rc;y +Rby +Rm = R

and there are x,y satisfying the condition. Induction succeeds.

///
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Caution: By Gauss’ lemma, polynomial rings 0[X| over UFDs o
are UFDs, but what about o[[X]]?

We don’t really need the more general case, since we only care
about C[[X]] = lim,, C[X]/X™", which is completely analogous to
Zp, where we recall that the ideals in Z,, are just pt - Zy. Many
fewer than in Z, and all coming from 7.

Thus, C[[X]] is a PID, with a unique non-zero prime ideal
X - C[[X]], and all ideals are of the form X™ - C[[X]].

Even though o[[X]] is much bigger than o[X], it has many more
units, for example.

At the same time, UFDs like Z|z, y| are not PIDs, so we have to
be careful what we imagine...

Maybe proving Z[[X]] and C[[X]][T] are UFDs is a good exercise.
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Corollary: (Now z =0 and X — 2z = X.) Consider
fX,T)=T" +a,_1(X)T" '+ ... +a(X)T + ao(X)
with a;(X) € C[[X]] and such that the equation
f(0,Y) = (Y —w)"' (Y —w2)? ... (Y —wp,)"™

with w; # w; for i # j. Then f(X,T) factors in C[[X]]|[T] into m
monic-in-T' factors, of degrees v; in T":

T" + an 1 (X)T" P+ 4 a(X) = (X, T)... fm(X,T)

with
fi0,T) = (T — wj)™

That is,
[;(X,T) = (T —w,)" mod X
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Proof: In Hensel 11, take R = C[[X]|[T], 7 = X, and

by = (T—wl)”1 C1 = (T—”LUg)VQ ...(T—wm)ym
An equality of polynomials g(X) = h(X) mod X is equality
of complex numbers ¢g(0) = h(0). Since w; is distinct from
Wa, . .., Wy, there are r1, 9 in the PID C[T] such that r1b; +
roc1 = 1, so certainly Rb1 + Rcqy + Rm = R. By Hensel II,

f(X,T) = g(X,T) - (T, X) (in C[[X]][TT)

and
g(X,T) = (T —wy)"* mod X

(X, T) = (T —w2)"?...(T — wpy)"™ mod X

Since 1 + 1 X + ... € C[[X]]*, we can make g, h monicin T.
Induction on m. ///
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Corollary: Unless f(0,w) = 0 has just a single (distinct) root in
C, f(X,T) has a proper factor in C[[X]][T]. ///

That is, over scalars C[[X]], the irreducible factors of f(X,T) are
(factors of) the groupings-by-distinct-factors mod X.

Now consider wy = 0, and f(X,7T) = T"™ mod X. That is, f(X,T)
is of the form

fIX,T) =T" + X-a,1(X)- T + ... + X -a,(X)

In the simplest case a,(0) # 0, Eisenstein’s criterion in C[[X]][T]]
gives irreducibility of f(X,T). Let’s consider this case.
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Extend C[[X]] by adjoining X'/™. Replacing T by X'/ - T, the
polynomial becomes

n—1

X-Tr+ X" an (X)) T 4+ o+ X na(X)T + Xao(X)

Taking out the common factor of X gives
T" + (XY™l 1(X)-T" 1 + ...+ XYV (X)-T + ao(X)
Mod X1/™ this is

T" +0+4...4+0+ao(0) = T" + a,(0) mod X/
For a,(0) # 0, w™ 4 a,(0) = 0 has distinct linear factors in C. By
the Hensel paraphrase, f(X, X'/"T) factors into linear factors in

C[[XY/™)][T]. We’re done in this case: the field extension is

C((X))(Y) = C((x™)
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Example: To warm up to Newton polygons and the general case,
consider (T — X/3)3(T — X'/2)2, Write ord(X%/?) = a/b. The
symmetric functions of roots have ords

ordo; = ord(3X13 +2X1/2) _ %
ordoy = 0rd(3X%+% +6X3t3s + X%Jr%) — %
ordos = ord(X%3s +6X23Tz 43X35t227) = 1
ordoy, = ord(2X3’%+% + 3X2'%+2'%) _ %
ordos = ord(X33+22) = 2

That is, the increments in ord oy are 3, 5, 3,5, 5 :
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Variant: Varying the example, take
FIX,T) = (T—21 X5)(T—20X5(T— 23X5(T— 24 X2)(T — 25X ?)

with non-zero z; € C. Now we mostly have inequalities for ords:

ordoy = ord((z; + 2o + 23) X3 4 (24 + 25) X /?) > 1
ordos = ord((z122+..)X375 +(..) X3 2 4 2425 X2t2) > 2
ordos = ord(z1223X%5 + (.. )X¥573 £ 3X5123) =1
ordoy = ord(z12223(24 + 25)X3'%+% + (.. ,)XZ'%JFZ%) > %

1491
ordos = ord(21222324Z5X3 at? 2) =2
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A stark example of the latter is
f(X,T) = T° - XT? + X?

The crucial mechanism is that the smallest ord is 1/3, and
replacing T' by X /3 . T will distinguish the two sizes of roots:

FIX,XY3.T) = X3T° — X372 4+ X2
Dividing through by X°/3 gives
T5 —T% 4 X3

Mod X %, this has 3 non-zero factors, and 2 zero factors, so by
Hensel II factors properly into cubic and quadratic.
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More generally, consider

fX,T) = (T-XYeryn  (T—XYemyrm  (with L <. <L)
By the ultrametric inequality,

ord(o;) > ord(sum of ords of the ¢ smallest-ord zeros)
fﬁ-é for 1 </<u1y

v 1
A=) for vy <L <+ 10

Vv

:_1+:_§+(£_’/1_V2)'% for v1 + 10 <l <11+ vy + 13

\

with equality at £ =0, v, 1 + Vo, ..., V1 4+ ...+ Uppy.
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Since - < ... < -1, the convez hull (downward) of the points

(¢, ord alg) has b()_un(irlary the polygon of lines connecting the points
in R?

(0,0)

(v, :—i) = (11,ordoy,)

(V1 +vo, 20+ 22) = (11 + 1va,01d 04y 10)

itV Bt ) = (v + . F v, 0rd O )

E€m

This convex hull is the Newton polygon of the polynomial. For
f(X,T) € C[[X]][T], the ords are in Z. FEisenstein’s criterion is the
case v1 = n, and ord o, = 1, and all the exponents are 1/n.
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The general case was reduced to f(X,T) =T" + ...+ a,(X) with
an n-fold multiple zero w, at X = 0. Replacing T by T' + w,,
without loss of generality, this root is 0, so a;(0) = 0 for all j.

Replace T' by X? - T with p the slope of the first segment from
(0,0) to (¢,ord oy) on the Newton polygon. That is, disregard any
(¢',ord o) with £/ < ¢ lying above that segment.

Replacing T' by X? -T" and dividing through by X™* gives

Ap—yp (X)

n—~¢
e Tan AL

"+ ...+

The Newton polygon says the ord of the coefficient of T for
n > j > n — {is non-negative, at T"* the ord is 0, and for
n — £ > j it is strictly positive.
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That is, mod X,

FO,T) = T+ ...+ by_g(0) - T"¢
N——

non—zero

Thus, f(0,w) = 0 has ¢ non-zero complex roots, and n — ¢ roots 0.

Hensel II says that there are degree ¢ factor and degree n — ¢
factors in C[[X?]][T].

Note that C[[X?]] ~ C[[X]], so the argument can be repeated.

Induction on degree. ///




