Example (cont'd): Function fields in one variable... are very similar to \mathbb{Z}, \mathbb{Q}, and integral extensions of \mathbb{Z} in finite (separable) field extensions of \mathbb{Q}...

Practice: consider K a finite extension of $k=\mathbb{C}(X)$, and \mathfrak{O} the integral closure in K of $\mathfrak{o}=\mathbb{C}[X]$.
$K=\mathbb{C}(X, Y)$ for some Y, and can renormalize so $Y \in \mathfrak{O}$, so $\mathbb{C}[X, Y] \subset \mathfrak{O}$.

For example, for hyperelliptic curves $Y^{2}=P(X)$ with $P(X) \in \mathbb{C}[X]$ square-free, have $\mathfrak{O}=\mathbb{C}[X, Y]$ exactly.

Puiseux expansions and field extensions of $\mathbb{C}((X-z))$. Introduction to Newton polygons!?

Completions of $\mathbb{C}[X]$ and $\mathbb{C}(X)$ Fix a constant $C>1 \ldots$
For each $z \in \mathbb{C}$, there is the $(X-z)$-adic, or just z-adic, norm

$$
\left|(X-z)^{n} \cdot \frac{P(X)}{Q(X)}\right|_{z}=C^{-n} \quad(P, Q \text { prime to } X-z)
$$

Completions of $\mathbb{C}[X]$ and of $\mathbb{C}(X)$ are $\mathbb{C}[[X-z]]$ and $\mathbb{C}((X-z))$, formal power series ring, and field formal finite Laurent series.

Hensel's lemma: With monic $F(T) \in \mathbb{C}[[X]][T]$, given $\alpha_{1} \in \mathbb{C}[[X-z]]$ with $F\left(\alpha_{1}\right)=0 \bmod X-z$, $F^{\prime}\left(\alpha_{1}\right) \neq 0 \bmod X-z$, the recursion

$$
\alpha_{n+1}=\alpha_{n}-\frac{F\left(\alpha_{n}\right)}{F^{\prime}\left(\alpha_{n}\right)} \bmod (X-z)^{n+1}
$$

gives $\alpha_{\infty}=\lim _{n} \alpha_{n} \in \mathbb{C}[[X-z]]$ with $F\left(\alpha_{\infty}\right)=0$ in $\mathbb{C}[[X-z]]$, and α_{∞} is the unique solution congruent to $\alpha_{1} \bmod X-z$.

Example: $\beta=c_{0}+c_{1}(X-z)+\ldots$ with $c_{o} \neq 0$ is in $\mathbb{C}[[X-z]]^{\times}$. Proof: $F(T)=\beta \cdot T-1$ (not monic, nevermind) and $\alpha_{1}=c_{o}^{-1}$.

Example: Any $\beta=c_{0}+c_{1}(X-z)+\ldots$ with $c_{o} \neq 0$ has an $n^{t h}$ root in $\mathbb{C}[[X-z]]$.

Proof: Take $F(T)=T^{n}-\beta$ and $\alpha_{1}=\sqrt[n]{c_{o}}$.
Example: For $f(X, T) \in \mathbb{C}[X, T]$, for $z, w_{o} \in \mathbb{C}$ with $f\left(z, w_{o}\right)=0$ but $\frac{\partial}{\partial w} f\left(z, w_{o}\right) \neq 0$, there is a unique $\alpha \in \mathbb{C}[[X-z]]$ of the form

$$
\alpha=w_{o}+(\text { higher powers of } X-z)
$$

giving $f(z, \alpha)=0$.
Proof: Hypothesis and conclusion are those of Hensel.

Theorem: All finite field extensions of $\mathbb{C}((X-z))$ are by adjoining solutions to $Y^{e}=X-z$ for $e=2,3,4, \ldots$. [Proof below.]

These are (formal) Puiseux expansions.
The simplicity of the theorem is suprising.
It approximates the assertion that, locally, Riemann surfaces are either covering spaces of the z-plane, or concatenations of $w^{e}=z$. The proof invites extending Hensel's lemma to cover factorization of polynomials.

Paraphrase of Hensel: Consider

$$
f(X, T)=T^{n}+a_{n-1}(X) T^{n-1}+\ldots+a_{1}(X) T+a_{o}(X)
$$

with $a_{j}(X) \in \mathbb{C}[X]$ and such that the equation

$$
f(0, w)=w^{n}+a_{n-1}(0) w^{n-1}+\ldots+a_{1}(0) w+a_{o}(0)=0
$$

has distinct roots in \mathbb{C}. Then there are n distinct solutions $\varphi_{j} \in \mathbb{C}[[X]]$ to $f(X, Y)=0$. That is, $f(X, T)$ factors into linear factors:
$T^{n}+a_{n-1}(X) T^{n-1}+\ldots+a_{o}(X)=\left(T-\varphi_{1}\right)\left(T-\varphi_{2}\right) \ldots\left(T-\varphi_{n}\right)$

Proof: To have a single factor $T-\varphi_{1}$ is the content of Hensel. Then do induction on n.

Hensel's Lemma II: Let R be a UFD, and π a prime element in R. Given $a \in R$, suppose $b_{1}, c_{1} \in R$ such that

$$
a=b_{1} \cdot c_{1} \bmod \pi \quad \text { and } \quad R b_{1}+R c_{1}+R \pi=R
$$

Then there are b, c in the π-adic completion $R_{\pi}=\lim _{n} R / \pi^{n}$ such that $b=b_{1} \bmod \pi, c=c_{1} \bmod \pi$, and

$$
a=b \cdot c \quad\left(\text { in } \lim _{n} R / \pi^{n}=R_{\pi}\right)
$$

Remark: We'll apply this to $R=\mathbb{C}[[X-z]][T]$ or $R=\mathbb{C}[X, T]$ and $\pi=X-z$ to talk about field extensions of $\mathbb{C}((X-z))$.

Proof: With $a=b_{1} \cdot c_{1} \bmod \pi$, try to adjust b_{1}, c_{1} by multiples of π to make the equation hold $\bmod \pi^{2}$: require

$$
a=\left(b_{1}+x \pi\right) \cdot\left(c_{1}+y \pi\right) \bmod \pi^{2}
$$

Simplify: the π^{2} term $\pi^{2} x y$ disappears, and

$$
\frac{a-b_{1} c_{1}}{\pi}=x c_{1}+y b_{1} \bmod \pi
$$

By hypothesis, expressions $x c_{1}+y b_{1}+z \pi$ with $x, y, z \in R$ give R, so there exist (non-unique!) x, y to make the equation hold.

Thus, the genuine induction step involves $a=b_{n} c_{n} \bmod \pi^{n}$, and trying to solve for x, y in

$$
a=\left(b_{n}+x \pi^{n}\right) \cdot\left(c_{n}+y \pi^{n}\right) \bmod \pi^{n+1}
$$

which gives

$$
\frac{a-b_{n} c_{n}}{\pi^{n}}=x c_{n}+y b_{n} \bmod \pi
$$

Inductively, $c_{n}=c_{1} \bmod \pi$ and $b_{n}=b_{1} \bmod \pi$, so

$$
R b_{n}+R c_{n}+R \pi=R c_{1}+R b_{1}+R \pi=R
$$

and there are x, y satisfying the condition. Induction succeeds.

Caution: By Gauss' lemma, polynomial rings $\mathfrak{o}[X]$ over UFDs \mathfrak{o} are UFDs, but what about $\mathfrak{o}[[X]]$?

We don't really need the more general case, since we only care about $\mathbb{C}[[X]]=\lim _{n} \mathbb{C}[X] / X^{n}$, which is completely analogous to \mathbb{Z}_{p}, where we recall that the ideals in \mathbb{Z}_{p} are just $p^{\ell} \cdot \mathbb{Z}_{p}$. Many fewer than in \mathbb{Z}, and all coming from \mathbb{Z}.

Thus, $\mathbb{C}[[X]]$ is a PID, with a unique non-zero prime ideal $X \cdot \mathbb{C}[[X]]$, and all ideals are of the form $X^{n} \cdot \mathbb{C}[[X]]$.

Even though $\mathfrak{o}[[X]]$ is much bigger than $\mathfrak{o}[X]$, it has many more units, for example.

At the same time, UFDs like $\mathbb{Z}[x, y]$ are not PIDs, so we have to be careful what we imagine...

Maybe proving $\mathbb{Z}[[X]]$ and $\mathbb{C}[[X]][T]$ are UFDs is a good exercise.

Corollary: (Now $z=0$ and $X-z=X$.) Consider

$$
f(X, T)=T^{n}+a_{n-1}(X) T^{n-1}+\ldots+a_{1}(X) T+a_{o}(X)
$$

with $a_{j}(X) \in \mathbb{C}[[X]]$ and such that the equation

$$
f(0, Y)=\left(Y-w_{1}\right)^{\nu_{1}}\left(Y-w_{2}\right)^{\nu_{2}} \ldots\left(Y-w_{m}\right)^{\nu_{m}}
$$

with $w_{i} \neq w_{j}$ for $i \neq j$. Then $f(X, T)$ factors in $\mathbb{C}[[X]][T]$ into m monic-in- T factors, of degrees ν_{j} in T :

$$
T^{n}+a_{n-1}(X) T^{n-1}+\ldots+a_{o}(X)=f_{1}(X, T) \ldots f_{m}(X, T)
$$

with

$$
f_{j}(0, T)=\left(T-w_{j}\right)^{\nu_{j}}
$$

That is,

$$
f_{j}(X, T)=\left(T-w_{j}\right)^{\nu_{j}} \bmod X
$$

Proof: In Hensel II, take $R=\mathbb{C}[[X]][T], \pi=X$, and

$$
b_{1}=\left(T-w_{1}\right)^{\nu_{1}} \quad c_{1}=\left(T-w_{2}\right)^{\nu_{2}} \ldots\left(T-w_{m}\right)^{\nu_{m}}
$$

An equality of polynomials $g(X)=h(X) \bmod X$ is equality of complex numbers $g(0)=h(0)$. Since w_{1} is distinct from w_{2}, \ldots, w_{m}, there are r_{1}, r_{2} in the PID $\mathbb{C}[T]$ such that $r_{1} b_{1}+$ $r_{2} c_{1}=1$, so certainly $R b_{1}+R c_{1}+R \pi=R$. By Hensel II,

$$
f(X, T)=g(X, T) \cdot h(T, X) \quad(\text { in } \mathbb{C}[[X]][T])
$$

and

$$
\begin{aligned}
& g(X, T)=\left(T-w_{1}\right)^{\nu_{1}} \bmod X \\
& h(X, T)=\left(T-w_{2}\right)^{\nu_{2}} \ldots\left(T-w_{m}\right)^{\nu_{m}} \bmod X
\end{aligned}
$$

Since $1+c_{1} X+\ldots \in \mathbb{C}[[X]]^{\times}$, we can make g, h monic in T. Induction on m.

Corollary: Unless $f(0, w)=0$ has just a single (distinct) root in $\mathbb{C}, f(X, T)$ has a proper factor in $\mathbb{C}[[X]][T]$.

That is, over scalars $\mathbb{C}[[X]]$, the irreducible factors of $f(X, T)$ are (factors of) the groupings-by-distinct-factors mod X.

Now consider $w_{1}=0$, and $f(X, T)=T^{n} \bmod X$. That is, $f(X, T)$ is of the form

$$
f(X, T)=T^{n}+X \cdot a_{n-1}(X) \cdot T^{n-1}+\ldots+X \cdot a_{o}(X)
$$

In the simplest case $a_{o}(0) \neq 0$, Eisenstein's criterion in $\mathbb{C}[[X]][T]$ gives irreducibility of $f(X, T)$. Let's consider this case.

Extend $\mathbb{C}[[X]]$ by adjoining $X^{1 / n}$. Replacing T by $X^{1 / n} \cdot T$, the polynomial becomes
$X \cdot T^{n}+X^{1+\frac{n-1}{n}} a_{n-1}(X) \cdot T^{n-1}+\ldots+X^{1+\frac{1}{n}} a_{1}(X) \cdot T+X a_{o}(X)$
Taking out the common factor of X gives
$T^{n}+\left(X^{1 / n}\right)^{n-1} a_{n-1}(X) \cdot T^{n-1}+\ldots+X^{1 / n} a_{1}(X) \cdot T+a_{o}(X)$
$\operatorname{Mod} X^{1 / n}$, this is

$$
T^{n}+0+\ldots+0+a_{o}(0)=T^{n}+a_{o}(0) \bmod X^{1 / n}
$$

For $a_{o}(0) \neq 0, w^{n}+a_{o}(0)=0$ has distinct linear factors in \mathbb{C}. By the Hensel paraphrase, $f\left(X, X^{1 / n} T\right)$ factors into linear factors in $\mathbb{C}\left[\left[X^{1 / n}\right]\right][T]$. We're done in this case: the field extension is

$$
\mathbb{C}((X))(Y)=\mathbb{C}\left(\left(X^{1 / n}\right)\right)
$$

Example: To warm up to Newton polygons and the general case, consider $\left(T-X^{1 / 3}\right)^{3}\left(T-X^{1 / 2}\right)^{2}$. Write $\operatorname{ord}\left(X^{a / b}\right)=a / b$. The symmetric functions of roots have ords

$$
\begin{array}{ll}
\operatorname{ord} \sigma_{1}=\operatorname{ord}\left(3 X^{1 / 3}+2 X^{1 / 2}\right) & =\frac{1}{3} \\
\operatorname{ord} \sigma_{2}=\operatorname{ord}\left(3 X^{\frac{1}{3}+\frac{1}{3}}+6 X^{\frac{1}{3}+\frac{1}{2}}+X^{\frac{1}{2}+\frac{1}{2}}\right) & =\frac{2}{3} \\
\operatorname{ord} \sigma_{3}=\operatorname{ord}\left(X^{3 \cdot \frac{1}{3}}+6 X^{2 \cdot \frac{1}{3}+\frac{1}{2}}+3 X^{\frac{1}{3}+2 \cdot \frac{1}{2}}\right) & =1 \\
\operatorname{ord} \sigma_{4}=\operatorname{ord}\left(2 X^{3 \cdot \frac{1}{3}+\frac{1}{2}}+3 X^{2 \cdot \frac{1}{3}+2 \cdot \frac{1}{2}}\right) & =\frac{3}{2} \\
\operatorname{ord} \sigma_{5}=\operatorname{ord}\left(X^{3 \cdot \frac{1}{3}+2 \cdot \frac{1}{2}}\right) & =2
\end{array}
$$

That is, the increments in ord σ_{ℓ} are $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}$.

Variant: Varying the example, take

$$
f(X, T)=\left(T-z_{1} X^{\frac{1}{3}}\right)\left(T-z_{2} X^{\frac{1}{3}}\left(T-z_{3} X^{\frac{1}{3}}\left(T-z_{4} X^{\frac{1}{2}}\right)\left(T-z_{5} X^{\frac{1}{2}}\right)\right.\right.
$$

with non-zero $z_{i} \in \mathbb{C}$. Now we mostly have inequalities for ords:

$$
\begin{array}{ll}
\operatorname{ord} \sigma_{1}=\operatorname{ord}\left(\left(z_{1}+z_{2}+z_{3}\right) X^{1 / 3}+\left(z_{4}+z_{5}\right) X^{1 / 2}\right) & \geq \frac{1}{3} \\
\operatorname{ord} \sigma_{2}=\operatorname{ord}\left(\left(z_{1} z_{2}+\ldots\right) X^{\frac{1}{3}+\frac{1}{3}}+(\ldots) X^{\frac{1}{3}+\frac{1}{2}}+z_{4} z_{5} X^{\frac{1}{2}+\frac{1}{2}}\right) & \geq \frac{2}{3} \\
\operatorname{ord} \sigma_{3}=\operatorname{ord}\left(z_{1} z_{2} z_{3} X^{3 \cdot \frac{1}{3}}+(\ldots) X^{2 \cdot \frac{1}{3}+\frac{1}{2}}+3 X^{\frac{1}{3}+2 \cdot \frac{1}{2}}\right) & =1 \\
\operatorname{ord} \sigma_{4}=\operatorname{ord}\left(z_{1} z_{2} z_{3}\left(z_{4}+z_{5}\right) X^{3 \cdot \frac{1}{3}+\frac{1}{2}}+(\ldots) X^{2 \cdot \frac{1}{3}+2 \cdot \frac{1}{2}}\right) & \geq \frac{3}{2} \\
\operatorname{ord} \sigma_{5}=\operatorname{ord}\left(z_{1} z_{2} z_{3} z_{4} z_{5} X^{3 \cdot \frac{1}{3}+2 \cdot \frac{1}{2}}\right) & =2
\end{array}
$$

A stark example of the latter is

$$
f(X, T)=T^{5}-X T^{2}+X^{2}
$$

The crucial mechanism is that the smallest ord is $1 / 3$, and replacing T by $X^{1 / 3} \cdot T$ will distinguish the two sizes of roots:

$$
f\left(X, X^{1 / 3} \cdot T\right)=X^{\frac{5}{3}} T^{5}-X^{\frac{5}{3}} T^{2}+X^{2}
$$

Dividing through by $X^{5 / 3}$ gives

$$
T^{5}-T^{2}+X^{\frac{1}{3}}
$$

$\operatorname{Mod} X^{\frac{1}{3}}$, this has 3 non-zero factors, and 2 zero factors, so by Hensel II factors properly into cubic and quadratic.

More generally, consider

$$
f(X, T)=\left(T-X^{1 / e_{1}}\right)^{\nu_{1}} \ldots\left(T-X^{1 / e_{m}}\right)^{\nu_{m}} \quad\left(\text { with } \frac{1}{e_{1}} \leq \ldots \leq \frac{1}{e_{m}}\right)
$$

By the ultrametric inequality,

$$
\begin{aligned}
& \quad \operatorname{ord}\left(\sigma_{\ell}\right) \geq \operatorname{ord}(\text { sum of ords of the } \ell \text { smallest-ord zeros) } \\
& \geq \begin{cases}\ell \cdot \frac{1}{e_{1}} & \text { for } 1 \leq \ell \leq \nu_{1} \\
\frac{\nu_{1}}{e_{1}}+\left(\ell-\nu_{1}\right) \cdot \frac{1}{e_{2}} & \text { for } \nu_{1} \leq \ell \leq \nu_{1}+\nu_{2} \\
\frac{\nu_{1}}{e_{1}}+\frac{\nu_{2}}{e_{2}}+\left(\ell-\nu_{1}-\nu_{2}\right) \cdot \frac{1}{e_{3}} & \text { for } \nu_{1}+\nu_{2} \leq \ell \leq \nu_{1}+\nu_{2}+\nu_{3} \\
\ldots & \ldots\end{cases}
\end{aligned}
$$

with equality at $\ell=0, \nu_{1}, \nu_{1}+\nu_{2}, \ldots, \nu_{1}+\ldots+\nu_{m}$.

Since $\frac{1}{e_{1}} \leq \ldots \leq \frac{1}{e_{m}}$, the convex hull (downward) of the points (ℓ, ord σ_{ℓ}) has boundary the polygon of lines connecting the points in \mathbb{R}^{2}

$$
(0,0)
$$

$$
\left(\nu_{1}, \frac{\nu_{1}}{e_{1}}\right)=\left(\nu_{1}, \text { ord } \sigma_{\nu_{1}}\right)
$$

$$
\left(\nu_{1}+\nu_{2}, \frac{\nu_{1}}{e_{1}}+\frac{\nu_{2}}{e_{2}}\right)=\left(\nu_{1}+\nu_{2}, \operatorname{ord} \sigma_{\nu_{1}+\nu_{2}}\right)
$$

$$
\left(\nu_{1}+\ldots+\nu_{m}, \frac{\nu_{1}}{e_{1}}+\ldots+\frac{\nu_{m}}{e_{m}}\right)=\left(\nu_{1}+\ldots+\nu_{m}, \operatorname{ord} \sigma_{\nu_{1}+\ldots \nu_{m}}\right)
$$

This convex hull is the Newton polygon of the polynomial. For $f(X, T) \in \mathbb{C}[[X]][T]$, the ords are in \mathbb{Z}. Eisenstein's criterion is the case $\nu_{1}=n$, and ord $\sigma_{n}=1$, and all the exponents are $1 / n$.

The general case was reduced to $f(X, T)=T^{n}+\ldots+a_{o}(X)$ with an n-fold multiple zero w_{o} at $X=0$. Replacing T by $T+w_{o}$, without loss of generality, this root is 0 , so $a_{j}(0)=0$ for all j.

Replace T by $X^{\rho} \cdot T$ with ρ the slope of the first segment from $(0,0)$ to $\left(\ell\right.$, ord $\left.\sigma_{\ell}\right)$ on the Newton polygon. That is, disregard any (ℓ^{\prime}, ord $\sigma_{\ell^{\prime}}$) with $\ell^{\prime}<\ell$ lying above that segment.

Replacing T by $X^{\rho} \cdot T$ and dividing through by $X^{n \rho}$ gives

$$
T^{n}+\ldots+\frac{a_{n-\ell}(X)}{X^{\ell \rho}} \cdot T^{n-\ell}+\ldots
$$

The Newton polygon says the ord of the coefficient of T^{j} for $n \geq j>n-\ell$ is non-negative, at $T^{n-\ell}$ the ord is 0 , and for $n-\ell>j$ it is strictly positive.

That is, $\bmod X$,

$$
f(0, T)=T^{n}+\ldots+\underbrace{b_{n-\ell}(0)}_{\text {non-zero }} \cdot T^{n-\ell}
$$

Thus, $f(0, w)=0$ has ℓ non-zero complex roots, and $n-\ell$ roots 0 . Hensel II says that there are degree ℓ factor and degree $n-\ell$ factors in $\mathbb{C}\left[\left[X^{\rho}\right]\right][T]$.

Note that $\mathbb{C}\left[\left[X^{\rho}\right]\right] \approx \mathbb{C}[[X]]$, so the argument can be repeated. Induction on degree.

