... Commutative Algebra... integral extensions, finitegeneration, Noetherian-ness...

Example: Function fields in one variable... are very similar to \mathbb{Z} , \mathbb{Q} , and integral extensions of \mathbb{Z} in finite (separable) field extensions of \mathbb{Q} .

Polynomial rings $\mathbb{F}_q[X]$ are as well-behaved as \mathbb{Z} . Their fields of fractions $\mathbb{F}_q(X)$, rational functions in X with coefficients in \mathbb{F}_q , are as well-behaved as \mathbb{Q} .

For any field E, E[X] is Euclidean, a PID and a UFD. E finite is most similar to \mathbb{Z} , in that the residue fields are finite: quotient $\mathbb{F}_q[X]/\langle f \rangle$ with f a prime are finite fields.

To exploit the geometric aspect, it is useful to practice on $\mathbb{C}[X]$...

The affine line

 \mathbb{C} is the affine complex line (not plane

Since \mathbb{C} is algebraically closed, the non-zero prime ideals in $\mathbb{C}[X]$ are $\langle X - z \rangle$, for $z \in \mathbb{C}$.

The point $z \in \mathbb{C}$ is the simultaneous vanishing set of the ideal $\langle X - z \rangle$.

Discussion of the point at infinity ∞ is postponed a bit: arguably, ∞ is the vanishing set of 1/X but where??? Also, 1/X is not in $\mathbb{C}[X]$, so we can't talk about the ideal generated by it...

From one viewpoint, a (compact, connected) Riemann surface M is/corresponds (!?) to a finite field extension K of $k = \mathbb{C}(X)$.

Since $\mathbb{C}(X)$ has characteristic 0, K/k is *separable*, so is generated by a single element Y, satisfying a monic f(Y) = 0, where f has coefficients in $\mathbb{C}(X)$: with $a_j(X), b_j(X) \in \mathbb{C}[X]$, assuming $a_j(X)/b_j(X)$ in lowest terms,

$$Y^{n} + \frac{a_{n-1}(X)}{b_{n-1}(X)}Y^{n-1} + \ldots + \frac{a_{1}(X)}{b_{1}(X)}Y + \frac{a_{o}(X)}{b_{o}(X)} = 0$$

To get rid of the denominators, replace Y by $Y/b_{n-1}(X) \dots b_1(X)b_o(X)$ and multiply through by

$$(b_{n-1}(X)\dots b_1(X)b_o(X))^n$$

After relabelling, without loss of generality, with $a_j(X) \in \mathbb{C}[X]$,

$$Y^{n} + a_{n-1}(X)Y^{n-1} + \ldots + a_{1}(X)Y + a_{0}(X) = 0$$

Note that these normalizations make Y integral over $\mathbb{C}[X]$.

The most immediate description of (the not-at-infinity points of) the Riemann surface associated to

$$f(X,Y) = Y^n + a_{n-1}(X)Y^{n-1} + \ldots + a_1(X)Y + a_o(X) = 0$$

is that, for each $z \in \mathbb{C}$, the *n* solutions $w_1, \ldots, w_n \in \mathbb{C}$ to

$$f(z,w) = w^n + a_{n-1}(z)w^{n-1} + \ldots + a_1(z)w + a_o(z) = 0$$

specify the points above z, or over z. That is, the Riemann surface is the graph of f(z, w) = 0 in $(z, w) \in \mathbb{C}^2$, and the normalizations above arrange the projection to the first coordinate an everywhere-defined at-most-n-to-one map.

The values of z for which the equation has multiple roots are the ramified points.

Ramification refers to the projection $\{(z,w): f(z,w)=0\} \to \mathbb{C}$ to the z-plane.

F(w) = f(z, w) has repeated roots exactly when F, F' have a common factor. Apply Euclidean algorithm in $\mathbb{C}(X)[Y]$:

Example: Ramification of $F(Y) = f(X,Y) = Y^5 - 5XY + 4$. Here $F'(Y) = 5Y^4 - 5X$, but discard the unit 5. One step of Euclid is

$$(Y^5 - 5XY + 4) - Y(Y^4 - X) = -4XY + 4$$

 $-4X \in \mathbb{C}(X)^{\times}$, so replace -4XY+4 with $Y-\frac{1}{X}$. The next step of Euclid would divide Y^4-X by $Y-\frac{1}{X}$. By the division algorithm, the remainder is the value of Y^4-X at Y=1/X, namely, $\frac{1}{X^4}-X$.

Thus, the five ramified points of f(z, w) = 0 are where $z^5 = 1$.

But, also, ...

The (not-at-infinity) points of the Riemann surface M are the zero-sets of non-zero prime ideals of the *integral closure* \mathfrak{O} of $\mathfrak{o} = \mathbb{C}[X]$ in K. (In fact, the ring \mathfrak{O} is Dedekind.)

Claim: For $typical\ z \in \mathbb{C}$, the prime ideal $\langle X - z \rangle = (X - z)\mathbb{C}[X]$ gives rise to $(X - z)\mathfrak{O} = \mathfrak{P}_1 \dots \mathfrak{P}_n$, where n = [K : k]. That is, n points on M lie over $z \in \mathbb{C}$.

The ramified points are exactly those z such that $(X - z) \cdot \mathfrak{O}$ has a repeated factor!!! (We're not set up to address that yet...)

Proof: As above, take $K = \mathbb{C}(X,Y)$ with Y satisfying a monic polynomial equation f(X,Y) = 0 with coefficients in $\mathbb{C}[X]$, and f of degree [K:k].

Then do the usual computation

$$\mathfrak{O}/(X-z)\mathfrak{O} = \mathbb{C}[X,T]/\langle X-z, f(X,T)\rangle$$

$$\approx \mathbb{C}[T]/\langle f(z,T)\rangle$$

$$\approx \mathbb{C}[T]/\langle (T-w_1)(T-w_2)\dots(T-w_n)\rangle$$

$$\approx \frac{\mathbb{C}[T]}{\langle T-w_1\rangle} \oplus \frac{\mathbb{C}[T]}{\langle T-w_2\rangle} \oplus \dots \oplus \frac{\mathbb{C}[T]}{\langle T-w_n\rangle}$$

$$\approx \mathbb{C} \oplus \mathbb{C} \oplus \dots \oplus \mathbb{C}$$

assuming f(z,T) factors with distinct w_j . By the earlier Lemma, $(X-z)\mathfrak{O}$ is an intersection of n prime (maximal!) ideals. ///

Of course, the w_j 's are the solutions to f(z, w) = 0.

For example, for the *elliptic curve*

$$Y^2 = X^3 + aX + b \qquad \text{(with } a, b \in \mathbb{C}\text{)}$$

where $X^3 + aX + b = 0$ has distinct roots, we have (!?) $\mathfrak{O} = \mathbb{C}[X,Y] \approx \mathbb{C}[X,T]/\langle T^2 - X^3 - aX - b \rangle$ with a second indeterminate T, and the usual trick gives

$$\mathfrak{O}/(X-z)\mathfrak{O} = \mathbb{C}[X,T]/\langle X-z, T^2-X^3-aX-b\rangle$$

$$\approx \mathbb{C}[T]/\langle T^2-z^3-az-b\rangle$$

$$\approx \mathbb{C}[T]/\langle (T-w_1)(T-w_2)\rangle$$

$$\approx \frac{\mathbb{C}[T]}{\langle T-w_1\rangle} \oplus \frac{\mathbb{C}[T]}{\langle T-w_2\rangle}$$

$$\approx \mathbb{C} \oplus \mathbb{C}$$

for distinct w_j : $(X-z)\mathfrak{O}$ is an intersection of 2 prime ideals.

Example computation of integral closure: hyperelliptic curves (quadratic extensions of $\mathbb{C}(X)$)

$$Y^2 = P(X) = (X - z_1) \dots (X - z_n)$$
 (distinct z_j)

Claim: The integral closure $\mathfrak O$ of $\mathfrak o=\mathbb C[X]$ in $K=\mathbb C(X,Y)$ is $\mathfrak O=\mathbb C[X,Y].$

Proof: Obviously $\mathbb{C}[X,Y] \subset \mathfrak{O}$. An element of $K = \mathbb{C}(X,Y)$ can be written uniquely as a+bY with $a,b\in\mathbb{C}(X)$. For $b\neq 0$, the minimal polynomial of a+bY is monic, with coefficients trace and norm, so integrality over $\mathfrak{o}=\mathbb{C}[X]$ is equivalent to trace and norm in $\mathbb{C}[X]$. The Galois conjugate of Y is -Y, so

$$2a \in \mathbb{C}[X] \qquad a^2 - b^2 \cdot P \in \mathbb{C}[X]$$

 $2 \in \mathbb{C}[X]^{\times}$, so $a \in \mathbb{C}[X]$. Thus, $b^2 \cdot P \in \mathbb{C}[X]$. Since P is square-free, writing b = C/D with relatively prime polynomials C, D, we find $D \in \mathbb{C}[X]^{\times}$. Thus, $a, b \in \mathbb{C}[X]$.

Completions!

Pick a constant C > 1. Doesn't matter much...

For each $z \in \mathbb{C} \cup \{\infty\}$, there is the (X - z)-adic, or just z-adic, norm

$$\left| (X-z)^n \cdot \frac{P(X)}{Q(X)} \right|_z = C^{-n}$$

The z-adic completions of $\mathbb{C}[X]$ and of $\mathbb{C}(X)$ are defined as usual, denoted $\mathbb{C}[[X-z]]$ and $\mathbb{C}((X-z))$. High powers of X-z are tiny, and any infinite sum

$$c_0 + c_1(X - z) + c_2(X - z)^2 + c_3(X - z)^3 + \dots$$
 (with $c_j \in \mathbb{C}$)

is *convergent*, by the ultrametric inequality. This warrants calling $\mathbb{C}[[X-z]]$ a formal power series ring, and $\mathbb{C}((X-z))$ the field of formal finite Laurent series. But the convergence is genuine.

Hensel's lemma applies: With monic $F(T) \in \mathbb{C}[[X]][T]$, given $\alpha_1 \in \mathbb{C}[[X-z]]$ with $F(\alpha_1) = 0 \mod X - z$ with $F'(\alpha_1) \neq 0 \mod X - z$, the recursion

$$\alpha_{n+1} = \alpha_n - \frac{F(\alpha_n)}{F'(\alpha_n)} \mod (X-z)^{n+1}$$

gives $\alpha_{\infty} = \lim_{n} \alpha_{n} \in \mathbb{C}[[X - z]]$ with $F(\alpha_{\infty}) = 0$ in $\mathbb{C}[[X - z]]$, and α_{∞} is the unique solution congruent to $\alpha_{1} \mod X - z$.

Example: Any $\beta = c_0 + c_1(X - z) + c_2(X - z)^2 + \dots$ with $c_o \neq 0$ is a *unit* in $\mathbb{C}[[X - z]]$.

Proof: Take
$$F(T) = \beta \cdot T - 1$$
 (actually, not monic, but nevermind...) and $\alpha_1 = c_o^{-1}$.

Example: Any $\beta = c_0 + c_1(X - z) + c_2(X - z)^2 + \dots$ with $c_o \neq 0$ has an n^{th} root in $\mathbb{C}[[X - z]]$.

Proof: Take
$$F(T) = T^n - \beta$$
 and $\alpha_1 \in \mathbb{C}$ any $\sqrt[n]{c_o}$. ///

Example: For $f(X,T) \in \mathbb{C}[X,T]$, for $z, w_o \in \mathbb{C}$ such that $f(z,w_o) = 0$ but $\frac{\partial}{\partial w} f(z,w_o) \neq 0$, there is a unique $\alpha \in \mathbb{C}[[X-z]]$ of the form

$$\alpha = w_o + \text{higher powers of } X - z$$

giving

$$f(z, \alpha) = 0$$

Proof: The hypothesis is a very slight paraphrase of the hypothesis of Hensel's lemma.

Theorem: All finite field extensions of $\mathbb{C}((X-z))$ are by adjoining solutions to $Y^e = X - z$ for $e = 2, 3, 4, \ldots$ [Pf later.]

These are (formal) Puiseux expansions.

The simplicity of the theorem is suprising.

It approximates the assertion that, *locally*, Riemann surfaces are either *covering spaces* of the z-plane, or concatenations of $w^e = z$.

The local ring inside the field $\mathbb{C}(X)$ corresponding to $z \in \mathbb{C}$, consisting of all rational functions defined at z, is

$$\mathfrak{o}_z = \mathbb{C}(X) \cap \mathbb{C}[[X-z]]$$

with unique maximal ideal

$$\mathfrak{m}_z = \mathbb{C}(X) \cap (X-z) \cdot \mathbb{C}[[X-z]]$$

The *point at infinity* can be discovered by noting a further local ring and maximal ideal:

$$\mathfrak{o}_{\infty} = \mathbb{C}(X) \cap \mathbb{C}[[1/X]] \qquad \mathfrak{m}_{\infty} = \mathbb{C}(X) \cap \frac{1}{X}\mathbb{C}[[1/X]]$$

Note that using 1/(X+1) achieves the same effect, because

$$\frac{1}{X+1} \; = \; \frac{1}{X} \cdot \frac{1}{1+\frac{1}{X}} \; = \; \frac{1}{X} \cdot \left(1 - \frac{1}{X} + (\frac{1}{X})^2 - \dots\right) \; \in \; \frac{1}{X} \cdot \mathbb{C}[[1/X]]^\times$$