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... Commutative Algebra... integral extensions, finite-
generation, Noetherian-ness...

Example: Function fields in one variable... are very similar
to Z,Q, and integral extensions of Z in finite (separable) field
extensions of Q.

Polynomial rings Fq[X] are as well-behaved as Z. Their fields of
fractions Fq(X), rational functions in X with coefficients in Fq,
are as well-behaved as Q.

For any field E, E[X] is Euclidean, a PID and a UFD. E finite
is most similar to Z, in that the residue fields are finite: quotient
Fq[X]/〈f〉 with f a prime are finite fields.

To exploit the geometric aspect, it is useful to practice on C[X]...
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The affine line

C is the affine complex line (not plane

Since C is algebraically closed, the non-zero prime ideals in C[X]
are 〈X − z〉, for z ∈ C.

The point z ∈ C is the simultaneous vanishing set of the ideal
〈X − z〉.

Discussion of the point at infinity ∞ is postponed a bit: arguably,
∞ is the vanishing set of 1/X .... but where??? Also, 1/X is not
in C[X], so we can’t talk about the ideal generated by it...
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From one viewpoint, a (compact, connected) Riemann surface M
is/corresponds (!?) to a finite field extension K of k = C(X).

Since C(X) has characteristic 0, K/k is separable, so is generated
by a single element Y , satisfying a monic f(Y ) = 0, where f
has coefficients in C(X): with aj(X), bj(X) ∈ C[X], assuming
aj(X)/bj(X) in lowest terms,

Y n +
an−1(X)

bn−1(X)
Y n−1 + . . .+

a1(X)

b1(X)
Y +

ao(X)

bo(X)
= 0

To get rid of the denominators, replace Y by
Y/bn−1(X) . . . b1(X)bo(X) and multiply through by(

bn−1(X) . . . b1(X)bo(X)
)n

After relabelling, without loss of generality, with aj(X) ∈ C[X],

Y n + an−1(X)Y n−1 + . . .+ a1(X)Y + ao(X) = 0

Note that these normalizations make Y integral over C[X].
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The most immediate description of (the not-at-infinity points of)
the Riemann surface associated to

f(X,Y ) = Y n + an−1(X)Y n−1 + . . .+ a1(X)Y + ao(X) = 0

is that, for each z ∈ C, the n solutions w1, . . . , wn ∈ C to

f(z, w) = wn + an−1(z)wn−1 + . . .+ a1(z)w + ao(z) = 0

specify the points above z, or over z. That is, the Riemann
surface is the graph of f(z, w) = 0 in (z, w) ∈ C2, and the
normalizations above arrange the projection to the first coordinate
an everywhere-defined at-most-n-to-one map.

The values of z for which the equation has multiple roots are the
ramified points.
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Ramification refers to the projection {(z, w) : f(z, w) = 0} → C to
the z-plane.

F (w) = f(z, w) has repeated roots exactly when F, F ′ have a
common factor. Apply Euclidean algorithm in C(X)[Y ]:

Example: Ramification of F (Y ) = f(X,Y ) = Y 5−5XY +4. Here
F ′(Y ) = 5Y 4 − 5X, but discard the unit 5. One step of Euclid is

(Y 5 − 5XY + 4)− Y (Y 4 −X) = −4XY + 4

−4X ∈ C(X)×, so replace −4XY +4 with Y − 1
X . The next step of

Euclid would divide Y 4 −X by Y − 1
X . By the division algorithm,

the remainder is the value of Y 4−X at Y = 1/X, namely, 1
X4 −X.

Thus, the five ramified points of f(z, w) = 0 are where z5 = 1.
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But, also, ...

The (not-at-infinity) points of the Riemann surface M are the
zero-sets of non-zero prime ideals of the integral closure O of
o = C[X] in K. (In fact, the ring O is Dedekind.)

Claim: For typical z ∈ C, the prime ideal 〈X − z〉 = (X − z)C[X]
gives rise to (X − z)O = P1 . . .Pn, where n = [K : k]. That is, n
points on M lie over z ∈ C.

The ramified points are exactly those z such that (X − z) ·O has a
repeated factor!!! (We’re not set up to address that yet...)

Proof: As above, take K = C(X,Y ) with Y satisfying a monic
polynomial equation f(X,Y ) = 0 with coefficients in C[X], and f
of degree [K : k].
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Then do the usual computation

O/(X − z)O = C[X,T ]/〈X − z, f(X,T )〉

≈ C[T ]/〈f(z, T )〉

≈ C[T ]/〈(T − w1)(T − w2) . . . (T − wn)〉

≈ C[T ]

〈T − w1〉
⊕ C[T ]

〈T − w2〉
⊕ . . .⊕ C[T ]

〈T − wn〉

≈ C⊕ C⊕ . . .⊕ C

assuming f(z, T ) factors with distinct wj . By the earlier Lemma,
(X − z)O is an intersection of n prime (maximal!) ideals. ///

Of course, the wj ’s are the solutions to f(z, w) = 0.
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For example, for the elliptic curve

Y 2 = X3 + aX + b (with a, b ∈ C)

where X3 + aX + b = 0 has distinct roots, we have (!?) O =
C[X,Y ] ≈ C[X,T ]/〈T 2−X3−aX−b〉 with a second indeterminate
T , and the usual trick gives

O/(X − z)O = C[X,T ]/〈X − z, T 2 −X3 − aX − b〉

≈ C[T ]/〈T 2 − z3 − az − b〉

≈ C[T ]/〈(T − w1)(T − w2)〉

≈ C[T ]

〈T − w1〉
⊕ C[T ]

〈T − w2〉

≈ C⊕ C

for distinct wj : (X − z)O is an intersection of 2 prime ideals.
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Example computation of integral closure: hyperelliptic curves
(quadratic extensions of C(X))

Y 2 = P (X) = (X − z1) . . . (X − zn) (distinct zj)

Claim: The integral closure O of o = C[X] in K = C(X,Y ) is
O = C[X,Y ].

Proof: Obviously C[X,Y ] ⊂ O. An element of K = C(X,Y ) can
be written uniquely as a + bY with a, b ∈ C(X). For b 6= 0, the
minimal polynomial of a + bY is monic, with coefficients trace and
norm, so integrality over o = C[X] is equivalent to trace and norm
in C[X]. The Galois conjugate of Y is −Y , so

2a ∈ C[X] a2 − b2 · P ∈ C[X]

2 ∈ C[X]×, so a ∈ C[X]. Thus, b2 · P ∈ C[X]. Since P is square-
free, writing b = C/D with relatively prime polynomials C,D, we
find D ∈ C[X]×. Thus, a, b ∈ C[X]. ///
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Completions!

Pick a constant C > 1. Doesn’t matter much...

For each z ∈ C ∪ {∞}, there is the (X − z)-adic, or just z-adic,
norm ∣∣∣(X − z)n · P (X)

Q(X)

∣∣∣
z

= C−n

The z-adic completions of C[X] and of C(X) are defined as usual,
denoted C[[X − z]] and C((X − z)). High powers of X − z are tiny,
and any infinite sum

c0 +c1(X−z)+c2(X−z)2 +c3(X−z)3 + . . . (with cj ∈ C)

is convergent, by the ultrametric inequality. This warrants calling
C[[X − z]] a formal power series ring, and C((X − z)) the field of
formal finite Laurent series. But the convergence is genuine.
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Hensel’s lemma applies: With monic F (T ) ∈ C[[X]][T ], given α1 ∈
C[[X − z]] with F (α1) = 0 mod X − z with F ′(α1) 6= 0 mod X − z,
the recursion

αn+1 = αn −
F (αn)

F ′(αn)
mod (X − z)n+1

gives α∞ = limn αn ∈ C[[X − z]] with F (α∞) = 0 in C[[X − z]],
and α∞ is the unique solution congruent to α1 mod X − z.

Example: Any β = c0 + c1(X − z) + c2(X − z)2 + . . . with co 6= 0
is a unit in C[[X − z]].

Proof: Take F (T ) = β · T − 1 (actually, not monic, but
nevermind...) and α1 = c−1o . ///

Example: Any β = c0 + c1(X − z) + c2(X − z)2 + . . . with co 6= 0
has an nth root in C[[X − z]].

Proof: Take F (T ) = Tn − β and α1 ∈ C any n
√
co. ///
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Example: For f(X,T ) ∈ C[X,T ], for z, wo ∈ C such that
f(z, wo) = 0 but ∂

∂wf(z, wo) 6= 0, there is a unique α ∈ C[[X − z]]
of the form

α = wo + higher powers of X − z

giving
f(z, α) = 0

Proof: The hypothesis is a very slight paraphrase of the
hypothesis of Hensel’s lemma. ///

Theorem: All finite field extensions of C((X − z)) are by
adjoining solutions to Y e = X − z for e = 2, 3, 4, . . .. [Pf later.]

These are (formal) Puiseux expansions.

The simplicity of the theorem is suprising.

It approximates the assertion that, locally, Riemann surfaces are
either covering spaces of the z-plane, or concatenations of we = z.
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The local ring inside the field C(X) corresponding to z ∈ C,
consisting of all rational functions defined at z, is

oz = C(X) ∩ C[[X − z]]

with unique maximal ideal

mz = C(X) ∩ (X − z) · C[[X − z]]

The point at infinity can be discovered by noting a further local
ring and maximal ideal:

o∞ = C(X) ∩ C[[1/X]] m∞ = C(X) ∩ 1

X
C[[1/X]]

Note that using 1/(X + 1) achieves the same effect, because

1

X + 1
=

1

X
· 1

1 + 1
X

=
1

X
·
(

1− 1

X
+(

1

X
)2−. . .

)
∈ 1

X
·C[[1/X]]×
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