... Commutative Algebra... integral extensions, finitegeneration, Noetherian-ness...

Example: Function fields in one variable... are very similar to \mathbb{Z}, \mathbb{Q}, and integral extensions of \mathbb{Z} in finite (separable) field extensions of \mathbb{Q}.

Polynomial rings $\mathbb{F}_{q}[X]$ are as well-behaved as \mathbb{Z}. Their fields of fractions $\mathbb{F}_{q}(X)$, rational functions in X with coefficients in \mathbb{F}_{q}, are as well-behaved as \mathbb{Q}.

For any field $E, E[X]$ is Euclidean, a PID and a UFD. E finite is most similar to \mathbb{Z}, in that the residue fields are finite: quotient $\mathbb{F}_{q}[X] /\langle f\rangle$ with f a prime are finite fields.

To exploit the geometric aspect, it is useful to practice on $\mathbb{C}[X] \ldots$

The affine line

\mathbb{C} is the affine complex line (not plane
Since \mathbb{C} is algebraically closed, the non-zero prime ideals in $\mathbb{C}[X]$ are $\langle X-z\rangle$, for $z \in \mathbb{C}$.

The point $z \in \mathbb{C}$ is the simultaneous vanishing set of the ideal $\langle X-z\rangle$.

Discussion of the point at infinity ∞ is postponed a bit: arguably, ∞ is the vanishing set of $1 / X \ldots$ but where??? Also, $1 / X$ is not in $\mathbb{C}[X]$, so we can't talk about the ideal generated by it...

From one viewpoint, a (compact, connected) Riemann surface M is/corresponds (!?) to a finite field extension K of $k=\mathbb{C}(X)$.

Since $\mathbb{C}(X)$ has characteristic $0, K / k$ is separable, so is generated by a single element Y, satisfying a monic $f(Y)=0$, where f has coefficients in $\mathbb{C}(X)$: with $a_{j}(X), b_{j}(X) \in \mathbb{C}[X]$, assuming $a_{j}(X) / b_{j}(X)$ in lowest terms,

$$
Y^{n}+\frac{a_{n-1}(X)}{b_{n-1}(X)} Y^{n-1}+\ldots+\frac{a_{1}(X)}{b_{1}(X)} Y+\frac{a_{o}(X)}{b_{o}(X)}=0
$$

To get rid of the denominators, replace Y by $Y / b_{n-1}(X) \ldots b_{1}(X) b_{o}(X)$ and multiply through by

$$
\left(b_{n-1}(X) \ldots b_{1}(X) b_{o}(X)\right)^{n}
$$

After relabelling, without loss of generality, with $a_{j}(X) \in \mathbb{C}[X]$,

$$
Y^{n}+a_{n-1}(X) Y^{n-1}+\ldots+a_{1}(X) Y+a_{o}(X)=0
$$

Note that these normalizations make Y integral over $\mathbb{C}[X]$.

The most immediate description of (the not-at-infinity points of) the Riemann surface associated to

$$
f(X, Y)=Y^{n}+a_{n-1}(X) Y^{n-1}+\ldots+a_{1}(X) Y+a_{o}(X)=0
$$

is that, for each $z \in \mathbb{C}$, the n solutions $w_{1}, \ldots, w_{n} \in \mathbb{C}$ to

$$
f(z, w)=w^{n}+a_{n-1}(z) w^{n-1}+\ldots+a_{1}(z) w+a_{o}(z)=0
$$

specify the points above z, or over z. That is, the Riemann surface is the graph of $f(z, w)=0$ in $(z, w) \in \mathbb{C}^{2}$, and the normalizations above arrange the projection to the first coordinate an everywhere-defined at-most- n-to-one map.

The values of z for which the equation has multiple roots are the ramified points.

Ramification refers to the projection $\{(z, w): f(z, w)=0\} \rightarrow \mathbb{C}$ to the z-plane.
$F(w)=f(z, w)$ has repeated roots exactly when F, F^{\prime} have a common factor. Apply Euclidean algorithm in $\mathbb{C}(X)[Y]$:

Example: Ramification of $F(Y)=f(X, Y)=Y^{5}-5 X Y+4$. Here $F^{\prime}(Y)=5 Y^{4}-5 X$, but discard the unit 5 . One step of Euclid is

$$
\left(Y^{5}-5 X Y+4\right)-Y\left(Y^{4}-X\right)=-4 X Y+4
$$

$-4 X \in \mathbb{C}(X)^{\times}$, so replace $-4 X Y+4$ with $Y-\frac{1}{X}$. The next step of Euclid would divide $Y^{4}-X$ by $Y-\frac{1}{X}$. By the division algorithm, the remainder is the value of $Y^{4}-X$ at $Y=1 / X$, namely, $\frac{1}{X^{4}}-X$.

Thus, the five ramified points of $f(z, w)=0$ are where $z^{5}=1$.

But, also, ...
The (not-at-infinity) points of the Riemann surface M are the zero-sets of non-zero prime ideals of the integral closure \mathfrak{O} of $\mathfrak{o}=\mathbb{C}[X]$ in K. (In fact, the ring \mathfrak{O} is Dedekind.)

Claim: For typical $z \in \mathbb{C}$, the prime ideal $\langle X-z\rangle=(X-z) \mathbb{C}[X]$ gives rise to $(X-z) \mathfrak{O}=\mathfrak{P}_{1} \ldots \mathfrak{P}_{n}$, where $n=[K: k]$. That is, n points on M lie over $z \in \mathbb{C}$.

The ramified points are exactly those z such that $(X-z) \cdot \mathfrak{O}$ has a repeated factor!!! (We're not set up to address that yet...)

Proof: As above, take $K=\mathbb{C}(X, Y)$ with Y satisfying a monic polynomial equation $f(X, Y)=0$ with coefficients in $\mathbb{C}[X]$, and f of degree $[K: k]$.

Then do the usual computation

$$
\begin{aligned}
\mathfrak{O} /(X-z) \mathfrak{O} & =\mathbb{C}[X, T] /\langle X-z, f(X, T)\rangle \\
& \approx \mathbb{C}[T] /\langle f(z, T)\rangle \\
& \approx \mathbb{C}[T] /\left\langle\left(T-w_{1}\right)\left(T-w_{2}\right) \ldots\left(T-w_{n}\right)\right\rangle \\
& \approx \frac{\mathbb{C}[T]}{\left\langle T-w_{1}\right\rangle} \oplus \frac{\mathbb{C}[T]}{\left\langle T-w_{2}\right\rangle} \oplus \ldots \oplus \frac{\mathbb{C}[T]}{\left\langle T-w_{n}\right\rangle} \\
& \approx \mathbb{C} \oplus \mathbb{C} \oplus \ldots \oplus \mathbb{C}
\end{aligned}
$$

assuming $f(z, T)$ factors with distinct w_{j}. By the earlier Lemma, $(X-z) \mathfrak{O}$ is an intersection of n prime (maximal!) ideals. ///

Of course, the w_{j} 's are the solutions to $f(z, w)=0$.

For example, for the elliptic curve

$$
Y^{2}=X^{3}+a X+b \quad(\text { with } a, b \in \mathbb{C})
$$

where $X^{3}+a X+b=0$ has distinct roots, we have (!?) $\mathfrak{O}=$ $\mathbb{C}[X, Y] \approx \mathbb{C}[X, T] /\left\langle T^{2}-X^{3}-a X-b\right\rangle$ with a second indeterminate T, and the usual trick gives

$$
\begin{aligned}
\mathfrak{O} /(X-z) \mathfrak{O} & =\mathbb{C}[X, T] /\left\langle X-z, T^{2}-X^{3}-a X-b\right\rangle \\
& \approx \mathbb{C}[T] /\left\langle T^{2}-z^{3}-a z-b\right\rangle \\
& \approx \mathbb{C}[T] /\left\langle\left(T-w_{1}\right)\left(T-w_{2}\right)\right\rangle \\
& \approx \frac{\mathbb{C}[T]}{\left\langle T-w_{1}\right\rangle} \oplus \frac{\mathbb{C}[T]}{\left\langle T-w_{2}\right\rangle} \\
& \approx \mathbb{C} \oplus \mathbb{C}
\end{aligned}
$$

for distinct $w_{j}:(X-z) \mathfrak{O}$ is an intersection of 2 prime ideals.

Example computation of integral closure: hyperelliptic curves (quadratic extensions of $\mathbb{C}(X)$)

$$
\left.Y^{2}=P(X)=\left(X-z_{1}\right) \ldots\left(X-z_{n}\right) \quad \text { (distinct } z_{j}\right)
$$

Claim: The integral closure \mathfrak{O} of $\mathfrak{o}=\mathbb{C}[X]$ in $K=\mathbb{C}(X, Y)$ is $\mathfrak{O}=\mathbb{C}[X, Y]$.

Proof: Obviously $\mathbb{C}[X, Y] \subset \mathfrak{O}$. An element of $K=\mathbb{C}(X, Y)$ can be written uniquely as $a+b Y$ with $a, b \in \mathbb{C}(X)$. For $b \neq 0$, the minimal polynomial of $a+b Y$ is monic, with coefficients trace and norm, so integrality over $\mathfrak{o}=\mathbb{C}[X]$ is equivalent to trace and norm in $\mathbb{C}[X]$. The Galois conjugate of Y is $-Y$, so

$$
2 a \in \mathbb{C}[X] \quad a^{2}-b^{2} \cdot P \in \mathbb{C}[X]
$$

$2 \in \mathbb{C}[X]^{\times}$, so $a \in \mathbb{C}[X]$. Thus, $b^{2} \cdot P \in \mathbb{C}[X]$. Since P is squarefree, writing $b=C / D$ with relatively prime polynomials C, D, we find $D \in \mathbb{C}[X]^{\times}$. Thus, $a, b \in \mathbb{C}[X]$.

Completions!

Pick a constant $C>1$. Doesn't matter much...
For each $z \in \mathbb{C} \cup\{\infty\}$, there is the $(X-z)$-adic, or just z-adic, norm

$$
\left|(X-z)^{n} \cdot \frac{P(X)}{Q(X)}\right|_{z}=C^{-n}
$$

The z-adic completions of $\mathbb{C}[X]$ and of $\mathbb{C}(X)$ are defined as usual, denoted $\mathbb{C}[[X-z]]$ and $\mathbb{C}((X-z))$. High powers of $X-z$ are tiny, and any infinite sum
$c_{0}+c_{1}(X-z)+c_{2}(X-z)^{2}+c_{3}(X-z)^{3}+\ldots \quad\left(\right.$ with $\left.c_{j} \in \mathbb{C}\right)$
is convergent, by the ultrametric inequality. This warrants calling $\mathbb{C}[[X-z]]$ a formal power series ring, and $\mathbb{C}((X-z))$ the field of formal finite Laurent series. But the convergence is genuine.

Hensel's lemma applies: With monic $F(T) \in \mathbb{C}[[X]][T]$, given $\alpha_{1} \in$ $\mathbb{C}[[X-z]]$ with $F\left(\alpha_{1}\right)=0 \bmod X-z$ with $F^{\prime}\left(\alpha_{1}\right) \neq 0 \bmod X-z$, the recursion

$$
\alpha_{n+1}=\alpha_{n}-\frac{F\left(\alpha_{n}\right)}{F^{\prime}\left(\alpha_{n}\right)} \bmod (X-z)^{n+1}
$$

gives $\alpha_{\infty}=\lim _{n} \alpha_{n} \in \mathbb{C}[[X-z]]$ with $F\left(\alpha_{\infty}\right)=0$ in $\mathbb{C}[[X-z]]$, and α_{∞} is the unique solution congruent to $\alpha_{1} \bmod X-z$.

Example: Any $\beta=c_{0}+c_{1}(X-z)+c_{2}(X-z)^{2}+\ldots$ with $c_{o} \neq 0$ is a unit in $\mathbb{C}[[X-z]]$.

Proof: Take $F(T)=\beta \cdot T-1$ (actually, not monic, but nevermind...) and $\alpha_{1}=c_{o}^{-1}$.

Example: Any $\beta=c_{0}+c_{1}(X-z)+c_{2}(X-z)^{2}+\ldots$ with $c_{o} \neq 0$ has an $n^{\text {th }}$ root in $\mathbb{C}[[X-z]]$.

Proof: Take $F(T)=T^{n}-\beta$ and $\alpha_{1} \in \mathbb{C}$ any $\sqrt[n]{c_{o}}$.

Example: For $f(X, T) \in \mathbb{C}[X, T]$, for $z, w_{o} \in \mathbb{C}$ such that $f\left(z, w_{o}\right)=0$ but $\frac{\partial}{\partial w} f\left(z, w_{o}\right) \neq 0$, there is a unique $\alpha \in \mathbb{C}[[X-z]]$ of the form

$$
\alpha=w_{o}+\text { higher powers of } X-z
$$

giving

$$
f(z, \alpha)=0
$$

Proof: The hypothesis is a very slight paraphrase of the hypothesis of Hensel's lemma.

Theorem: All finite field extensions of $\mathbb{C}((X-z))$ are by adjoining solutions to $Y^{e}=X-z$ for $e=2,3,4, \ldots$ [Pf later.]

These are (formal) Puiseux expansions.
The simplicity of the theorem is suprising.
It approximates the assertion that, locally, Riemann surfaces are either covering spaces of the z-plane, or concatenations of $w^{e}=z$.

The local ring inside the field $\mathbb{C}(X)$ corresponding to $z \in \mathbb{C}$, consisting of all rational functions defined at z, is

$$
\mathfrak{o}_{z}=\mathbb{C}(X) \cap \mathbb{C}[[X-z]]
$$

with unique maximal ideal

$$
\mathfrak{m}_{z}=\mathbb{C}(X) \cap(X-z) \cdot \mathbb{C}[[X-z]]
$$

The point at infinity can be discovered by noting a further local ring and maximal ideal:

$$
\mathfrak{o}_{\infty}=\mathbb{C}(X) \cap \mathbb{C}[[1 / X]] \quad \mathfrak{m}_{\infty}=\mathbb{C}(X) \cap \frac{1}{X} \mathbb{C}[[1 / X]]
$$

Note that using $1 /(X+1)$ achieves the same effect, because

$$
\frac{1}{X+1}=\frac{1}{X} \cdot \frac{1}{1+\frac{1}{X}}=\frac{1}{X} \cdot\left(1-\frac{1}{X}+\left(\frac{1}{X}\right)^{2}-\ldots\right) \in \frac{1}{X} \cdot \mathbb{C}[[1 / X]]^{\times}
$$

