Garrett 10-12-2011

... Commutative Algebra... integral extensions, finite-
generation, Noetherian-ness...

Example: Function fields in one variable... are very similar
to Z,Q, and integral extensions of Z in finite (separable) field
extensions of Q.

Polynomial rings F,[X] are as well-behaved as Z. Their fields of
fractions [F,(X), rational functions in X with coefficients in F,
are as well-behaved as Q.

For any field E, E[X] is Euclidean, a PID and a UFD. E finite
is most similar to Z, in that the residue fields are finite: quotient
F,[X]/(f) with f a prime are finite fields.

To exploit the geometric aspect, it is useful to practice on C[X]...
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The affine line
C is the affine complex line (not plane

Since C is algebraically closed, the non-zero prime ideals in C[X]
are (X — z), for z € C.

The point z € C is the simultaneous vanishing set of the ideal
(X — 2).

Discussion of the point at infinity oo is postponed a bit: arguably,
oo is the vanishing set of 1/X .... but where??? Also, 1/X is not
in C[X], so we can’t talk about the ideal generated by it...
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From one viewpoint, a (compact, connected) Riemann surface M
is/corresponds (!17) to a finite field extension K of k = C(X).

Since C(X) has characteristic 0, K/k is separable, so is generated
by a single element Y, satisfying a monic f(Y) = 0, where f
has coefficients in C(X): with a;(X),b,;(X) € C[X], assuming
a;(X)/b;j(X) in lowest terms,

an_l(X)Yn_l+...+ al(X)Y+

Y X (X)) T B (X)

To get rid of the denominators, replace Y by
Y/bp—1(X)...01(X)bo(X) and multiply through by

(br—1(X) ... b1 (X)bo(X))"
After relabelling, without loss of generality, with a;(X) € C[X],
Y+ a, 1 (X)Y" 4+ a0 (X)Y 4+ a0(X) = 0

Note that these normalizations make Y integral over C[X].
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The most immediate description of (the not-at-infinity points of)
the Riemann surface associated to

fFIX)Y) = Y +a, 1 (X)Y" L+ a0 (X)Y +a,(X) = 0
is that, for each z € C, the n solutions wq,...,w, € C to
fz,w) = W+ ap_1(2)w" .. Fa (2w +an(z) = 0
specify the points above z, or over z. That is, the Riemann
surface is the graph of f(z,w) = 0in (2,w) € C?, and the
normalizations above arrange the projection to the first coordinate

an everywhere-defined at-most-n-to-one map.

The values of z for which the equation has multiple roots are the
ramified points.
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Ramification refers to the projection {(z,w) : f(z,w) =0} — C to
the z-plane.

F(w) = f(z,w) has repeated roots exactly when F, F’ have a
common factor. Apply Fuclidean algorithm in C(X)[Y]:

Example: Ramification of F(Y) = f(X,Y) = Y°>-5XY +4. Here
F'(Y)=5Y*—-5X, but discard the unit 5. One step of Euclid is

(Y° —5XY +4) - Y(Y* - X) = —4XY +4
—4X € C(X)*, so replace —4XY +4 with Y —+. The next step of
Euclid would divide Y* — X by Y — % By the division algorithm,
the remainder is the value of Y*— X at Y = 1/X, namely, % — X.

Thus, the five ramified points of f(z,w) = 0 are where 2° = 1.
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But, also, ...

The (not-at-infinity) points of the Riemann surface M are the
zero-sets of non-zero prime ideals of the integral closure O of
0 =C[X] in K. (In fact, the ring O is Dedekind.)

Claim: For typical z € C, the prime ideal (X — z) = (X — 2)C[X]
gives rise to (X — 2)O =P ...B,,, where n = [K : k|. That is, n
points on M lie over z € C.

The ramified points are exactly those z such that (X — z) -9 has a
repeated factor!!! (We're not set up to address that yet...)

Proof: As above, take K = C(X,Y) with Y satisfying a monic
polynomial equation f(X,Y) = 0 with coefficients in C[X], and f
of degree [K : k.
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Then do the usual computation

O/(X =2)0 = CIX,T]/(X -z, f(X,T))

Q

CIT]/(f(=,T))

CIT)/((T —w1)(T — w3) ... (T —wy))

Q

_oom  cn o
(T —wy) (T —ws) (T —wy)

~ CopCo...C

assuming f(z,T) factors with distinct w;. By the earlier Lemma,
(X — 2)O is an intersection of n prime (maximall) ideals. ///

Of course, the w;’s are the solutions to f(z,w) = 0.
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For example, for the elliptic curve
Y? = X°4+aX+0b (with a,b € C)
where X3 4+ aX + b = 0 has distinct roots, we have (1?) O =

C[X,Y] ~C[X,T]/{(T? - X3 —aX —b) with a second indeterminate
T, and the usual trick gives

O/(X —2)9 = C[X,T]/(X —2 T? - X*—aX —b)

Q

C[T)/(T? — 2> — az — D)

Q

CIT]/((T = w1 (T = w2))

cr_, Ci)
<T—w1> (T—w2>

~ CoC

for distinct w;: (X — 2)O is an intersection of 2 prime ideals.
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Example computation of integral closure: hyperelliptic curves
(quadratic extensions of C(X))

Y2 = P(X) = (X —2)...(X — 2,) (distinct z;)

Claim: The integral closure © of 0 = C[X]in K = C(X,Y) is
O =ClX,Y].

Proof: Obviously C[X,Y] C O. An element of K = C(X,Y) can
be written uniquely as a + bY with a,b € C(X). For b # 0, the
minimal polynomial of a + Y is monic, with coefficients trace and
norm, so integrality over 0 = C[X] is equivalent to trace and norm

in C[X]. The Galois conjugate of Y is =Y, so
2a € C[X] a’ —b*- P € C[X]
2 € C[X]*, so a € C[X]. Thus, b*- P € C[X]. Since P is square-

free, writing b = C/D with relatively prime polynomials C, D, we
find D € C[X]*. Thus, a,b € C[X]. ///
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Completions!
Pick a constant C > 1. Doesn’t matter much...

For each z € C U {oo}, there is the (X — z)-adic, or just z-adic,
norm P(X)

X—-2)"—=—| =C™"

FT ).
The z-adic completions of C[X] and of C(X) are defined as usual,
denoted C[[X — z]] and C((X — z)). High powers of X — z are tiny,

and any infinite sum
cot+cr(X —2)+ea(X —2) 2 4+e3(X —2)°+... (with ¢; € C)

is convergent, by the ultrametric inequality. This warrants calling
Cl[X — z]] a formal power series ring, and C((X — z)) the field of
formal finite Laurent series. But the convergence is genuine.
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Hensel’s lemma applies: With monic F(T') € C[[X]][T], given ay €
Cl[X — z]] with F(a1) =0 mod X — z with F'(ay) # 0 mod X — z,
the recursion

F(ay)

X . n+1
Fi(a,) mod ( 2)

apy1 = Op —

gives o = lim, a,, € C[[X — z]] with F(as) = 0 in C[[X — Z]],
and a. is the unique solution congruent to a; mod X — z.

Example: Any 3 =co+c1(X —2) +co(X —2)? + ... with ¢, # 0
is a unit in C[[X — z]].

Proof: Take F(T) = p - T — 1 (actually, not monic, but
nevermind...) and a; = ¢, 1. ///

Example: Any 8 =cy+c1(X —2) +c2(X —2)2 + ... with ¢, # 0
has an nt" root in C[[X — 2]].

Proof: Take F(T)=T" — 8 and a1 € C any {/c,. ///
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Example: For f(X,T) € C[X,T], for z,w, € C such that
f(z,wo) = 0 but -2 f(z,w,) # 0, there is a unique o € C[[X — 2]]
of the form

a = w, + higher powers of X — 2

giving

flz,a) = 0

Proof: The hypothesis is a very slight paraphrase of the
hypothesis of Hensel’s lemma. ///

Theorem: All finite field extensions of C((X — z)) are by
adjoining solutions to Y¢ = X — z for e = 2,3,4,.... [Pf later.]

These are (formal) Puiseux exrpansions.
The simplicity of the theorem is suprising.

It approximates the assertion that, locally, Riemann surfaces are
either covering spaces of the z-plane, or concatenations of w® = z.
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The local ring inside the field C(X) corresponding to z € C,
consisting of all rational functions defined at z, is

0, = C(X) n C[[X —z]]
with unique maximal ideal
m, = C(X) N (X —2) -C[[X — z]]

The point at infinity can be discovered by noting a further local
ring and maximal ideal:

1
0 = C(X) N C[[1/X]] me = C(X) N LC[[1/X]]
Note that using 1/(X + 1) achieves the same effect, because

X+1 X144+ = X

1 1 1 1 ( 1 1
X

-t (2)..) € —-Cl[L/X])"
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