... Commutative Algebra...

integral extension of commutative rings $\mathfrak{O} / \mathfrak{o}$: every $r \in \mathfrak{O}$ satisfies $f(r)=0$ for monic $f \in \mathfrak{o}[x]$

Recharacterization of integrality: α in a field extension K of field of fractions k of \mathfrak{o} is integral when there is a non-zero, finitelygenerated \mathfrak{o}-module M inside K such that $\alpha M \subset M$. [Proven]

- For \mathfrak{O} integral over \mathfrak{o}, if \mathfrak{O} is finitely-generated as an \mathfrak{o}-algebra, then it is finitely-generated as an \mathfrak{o}-module.
- Transitivity: For rings $A \subset B \subset C$, if B is integral over A and C is integral over B, then C is integral over A.

Example: Function fields in one variable

Claim: For a PID \mathfrak{o} with fraction field k, for a finite separable field extension K / k, the integral closure \mathfrak{O} of \mathfrak{o} in K is a free \mathfrak{o}-module of $\operatorname{rank}[K: k]$.

Comment on proof: \mathfrak{O} is torsion-free as \mathfrak{o}-module, but finitegeneration, to invoke the structure theorem, seems to need the separability:

Claim: For an integrally closed (in its fraction field k), Noetherian ring \mathfrak{o}, the integral closure \mathfrak{O} of \mathfrak{o} in a finite separable field extension K / k is a finitely-generated \mathfrak{o}-module.

Comment: For such reasons, Dedekind domains (below) need Noetherian-ness, as a partial substitute for PID-ness. Separability of field extensions seems important, too!

Claim: For a finite separable field extension K / k, the trace pairing $\langle\alpha, \beta\rangle=\operatorname{tr}_{K / k}(\alpha \beta)$ is non-degenerate, in the sense that, given $0 \neq \alpha \in K$, there is $\beta \in K$ such that $\operatorname{tr}_{K / k}(\alpha \beta) \neq 0$.

Equivalently, $\operatorname{tr}_{K / k}: K \rightarrow k$ is not the 0-map.
This follows from linear independence of characters: given $\chi_{1}, \ldots, \chi_{n}$ distinct group homomorphisms $K^{\times} \rightarrow \Omega^{\times}$for fields K, Ω, for any coefficients α_{j} 's in Ω,

$$
\alpha_{1} \chi_{1}+\ldots+\alpha_{n} \chi_{n}=0 \Longrightarrow \text { all } \alpha_{j}=0
$$

Corollary: For \mathfrak{O} the integral closure of Noetherian, integrally closed \mathfrak{o} (in its fraction field k) in a finite separable field extension K / k,

$$
\operatorname{tr}_{K / k} \mathfrak{O} \subset \mathfrak{o}
$$

Critical point in proofs of the above: Finitely-generated modules over Noetherian rings are Noetherian modules, and submodules \mathfrak{O} of Noetherian modules are Noetherian, so \mathfrak{O} is a finitely-generated \mathfrak{o}-module.

A module M over a commutative ring R (itself not necessarily Noetherian) is Noetherian when it satisfies any of the following (provably, below) equivalent conditions:

- Every submodule of M is finitely-generated.
- Every ascending chain of submodules $M_{1} \subset M_{2} \subset \ldots$ eventually stabilizes, that is, $M_{i}=M_{i+1}$ beyond some point.
- Any non-empty set S of submodules has a maximal element, that is, an element $M_{o} \in S$ such that $N \supset M_{o}$ and $N \in S$ implies $N=M_{o}$ 。

Claim: Submodules and quotient modules of Noetherian modules are Noetherian. Conversely, for $M \subset N$, if M and N / M are Noetherian, then N is. That is, in a short exact sequence

$$
0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0
$$

(meaning that $A \rightarrow B$ is injective, that the image of $A \rightarrow B$ is the kernel of $B \rightarrow C$, and that $B \rightarrow C$ is surjective), Noetherian-ness of B is equivalent to Noetherian-ness of A and C.

Corollary: For M, N Noetherian, $M \oplus N$ is Noetherian. Arbitrary finite sums of Noetherian modules are Noetherian.

Again, a commutative ring R is Noetherian if it is Noetherian as a module over itself. This is equivalent to the property that every submodule (=ideal) is finitely-generated.

Claim: A finitely-generated module M over a Noetherian ring R is a Noetherian module.

Proof: Let m_{1}, \ldots, m_{n} generate M, so there is a surjection $\underbrace{R \oplus \ldots \oplus R}_{n} \longrightarrow M$ by

$$
r_{1} \oplus \ldots \oplus r_{n} \longrightarrow \sum_{i} r_{i} \cdot m_{i}
$$

The sum $R \oplus \ldots \oplus R$ is Noetherian, and the image/quotient is Noetherian.

This completes the discussion of the proof that the integral closure \mathfrak{O} of Noetherian, integrally closed \mathfrak{o} in a finite, separable field extension K / k is a finitely-generated \mathfrak{o}-module.

The end of the proof had \mathfrak{O} inside a finitely-generated module:

$$
\mathfrak{O} \subset c^{-1} \cdot\left(\mathfrak{o} \cdot \alpha_{1}+\ldots+\mathfrak{o} \cdot \alpha_{n}\right)
$$

Finitely-generated modules over Noetherian rings \mathfrak{o} are Noetherian, and submodules \mathfrak{O} of Noetherian modules are Noetherian, so \mathfrak{O} is Noetherian, so finitely-generated.

Then, for \mathfrak{o} a PID, since \mathfrak{O} is finitely-generated over \mathfrak{o}, structure theory of finitely-generated modules over PIDs says \mathfrak{O} is free... it's not hard to show that an \mathfrak{o}-basis for \mathfrak{O} is also a k-basis for $K \ldots$

Example: Function fields in one variable (over finite fields):
The polynomial rings $\mathbb{F}_{q}[X]$ are as well-behaved as \mathbb{Z}. Their fields of fractions $\mathbb{F}_{q}(X)$, rational functions in X with coefficients in \mathbb{F}_{q}, are as well-behaved as \mathbb{Q}.

For that matter, for any field $E, E[X]$ is Euclidean, so is a PID and a UFD. E finite is most similar to \mathbb{Z}, especially that the residue fields are finite: quotient $\mathbb{F}_{q}[X] /\langle f\rangle$ with f a prime (=positive-degree monic polynomial) are finite fields.

The algebra of integral closures of $\mathfrak{o}=\mathbb{F}_{q}[X]$ in finite separable fields extensions of $k=\mathbb{F}_{q}(X)$ is identical to that with \mathbb{Z} and \mathbb{Q} at the bottom.

But to talk about the geometry, it is useful to think about $\mathbb{C}[X] \ldots$

Since \mathbb{C} is algebraically closed, the non-zero prime ideals in $\mathbb{C}[X]$ are $\langle X-z\rangle$, for $z \in \mathbb{C}$.

That is, the point $z \in \mathbb{C}$ is the simultaneous vanishing set of the ideal $\langle X-z\rangle$.

The point at infinity ∞ is the vanishing set of $1 / X$, but $1 / X$ is not in $\mathbb{C}[X]$, so we can't talk about the ideal generated by it...

Revise: points $z \in \mathbb{C}$ are in bijection with local rings $\mathfrak{o} \subset \mathbb{C}(X)$, meaning \mathfrak{o} has a unique maximal (proper) ideal \mathfrak{m}, by

$$
\begin{gathered}
z \longleftrightarrow \mathfrak{o}_{z}=\left\{\frac{P}{Q}: P, Q \in \mathbb{C}[X], Q(z) \neq 0\right\} \\
\mathfrak{m}_{z}=\left\{\frac{P}{Q}: P, Q \in \mathbb{C}[X], Q(z) \neq 0, P(z)=0\right\}
\end{gathered}
$$

That is, \mathfrak{o}_{z} is the ring of rational functions defined at z, and its unique maximal ideal \mathfrak{m}_{z} is the functions (defined and) vanishing at z. These are also referred to as

$$
\begin{aligned}
\mathfrak{o}_{z} & =\text { localization at }\langle X-z\rangle \text { of } \mathbb{C}[X] \\
& \left.=S^{-1} \cdot \mathbb{C}[X] \quad \text { (where } S=\mathbb{C}[X]-(X-z) \mathbb{C}[X]\right)
\end{aligned}
$$

These localizations of the PID $\mathbb{C}[X]$ are still PIDs.
In fact, again, each such has a single non-zero prime ideal $\langle X-z\rangle$.
In \mathfrak{o}_{z} every proper ideal is of the form $(X-z)^{n} \cdot \mathfrak{o}_{z}$ for some $0<n \in \mathbb{Z}$.

Again, the unique maximal ideal is $\mathfrak{m}_{z}=(X-z) \cdot \mathfrak{o}_{z}$.

As usual, instead of trying to evaluate something at $X=\infty$, evaluate $1 / X$ at 0 :

$$
\begin{gathered}
\mathfrak{o}_{\infty}=\{f(X)=g(1 / X): g \text { is defined at } 0\} \\
=\left\{\frac{P(1 / X)}{Q(1 / X)}: P, Q \in \mathbb{C}[X], Q(0) \neq 0\right\} \\
\mathfrak{m}_{\infty}=\left\{f(X)=g(1 / X) \in \mathfrak{o}_{\infty}: g(0)=0\right\} \\
=\left\{\frac{P(1 / X)}{Q(1 / X)}: P, Q \in \mathbb{C}[X], Q(0) \neq 0, P(0)=0\right\}
\end{gathered}
$$

From one viewpoint, a (compact, connected) Riemann surface M is/corresponds (!?) to a finite field extension K of $k=\mathbb{C}(X)$.

The finite points of the Riemann surface M are the zero-sets of non-zero prime ideals of the integral closure \mathfrak{O} of $\mathfrak{o}=\mathbb{C}[X]$ in K. (In fact, the ring \mathfrak{O} is Dedekind.)

Claim: For typical $z \in \mathbb{C}$, the prime ideal $\langle X-z\rangle=(X-z) \mathbb{C}[X]$ gives rise to $(X-z) \mathfrak{O}=\mathfrak{P}_{1} \ldots \mathfrak{P}_{n}$, where $n=[K: k]$. That is, n points on M lie over $z \in \mathbb{C}$:

Proof: We can reduce to the case that $K=\mathbb{C}(X, Y)$ with Y satisfying a monic polynomial equation $f(X, Y)=0$ with coefficients in $\mathbb{C}[X]$, and f of degree $[K: k]$.

Then do the usual computation

$$
\begin{aligned}
\mathfrak{O} /(X-z) \mathfrak{O} & =\mathbb{C}[X, T] /\langle X-z, f(X, T)\rangle \\
& \approx \mathbb{C}[T] /\langle f(z, T)\rangle \\
& \approx \mathbb{C}[T] /\left\langle\left(T-w_{1}\right)\left(T-w_{2}\right) \ldots\left(T-w_{n}\right)\right\rangle \\
& \approx \frac{\mathbb{C}[T]}{\left\langle T-w_{1}\right\rangle} \oplus \frac{\mathbb{C}[T]}{\left\langle T-w_{2}\right\rangle} \oplus \ldots \oplus \frac{\mathbb{C}[T]}{\left\langle T-w_{n}\right\rangle} \\
& \approx \mathbb{C} \oplus \mathbb{C} \oplus \ldots \oplus \mathbb{C}
\end{aligned}
$$

for distinct w_{j}. By the Lemma proven earlier, $\mathfrak{O} /(X-z) \mathfrak{O}$ is a product of n prime ideals.

For example, for the elliptic curve

$$
Y^{2}=X^{3}+a X+b \quad(\text { with } a, b \in \mathbb{C})
$$

where $X^{3}+a X+b=0$ has distinct roots, we have (!?) $\mathfrak{O}=$ $\mathbb{C}[X, Y] \approx \mathbb{C}[X, T] /\left\langle T^{2}-X^{3}-a X-b\right\rangle$ with a second indeterminate T, and the usual trick gives

$$
\begin{aligned}
\mathfrak{O} /(X-z) \mathfrak{O} & =\mathbb{C}[X, T] /\left\langle X-z, T^{2}-X^{3}-a X-b\right\rangle \\
& \approx \mathbb{C}[T] /\left\langle T^{2}-z^{3}-a z-b\right\rangle \\
& \approx \mathbb{C}[T] /\left\langle\left(T-w_{1}\right)\left(T-w_{2}\right)\right\rangle \\
& \approx \frac{\mathbb{C}[T]}{\left\langle T-w_{1}\right\rangle} \oplus \frac{\mathbb{C}[T]}{\left\langle T-w_{2}\right\rangle} \\
& \approx \mathbb{C} \oplus \mathbb{C}
\end{aligned}
$$

for distinct $w_{j}: \mathfrak{O} /(X-z) \mathfrak{O}$ is a product of 2 prime ideals.

To talk about points at infinity, either replace $\mathfrak{o}=\mathbb{C}[X]$ by $\mathfrak{o}=\mathbb{C}[1 / X]$, or use the local ring description:

Given a local ring $\mathfrak{o}_{z} \subset k=\mathbb{C}(X)$ corresponding to either $z \in \mathbb{C}$ or $z=\infty$, let \mathfrak{O} be the integral closure of \mathfrak{o}_{z} in $K=\mathbb{C}(X, Y)$.

The maximal ideal \mathfrak{m}_{z} of \mathfrak{o}_{z} generates a product of prime (maximal) ideals in \mathfrak{O} :

$$
\mathfrak{m}_{z} \cdot \mathfrak{O}=\mathfrak{P}_{1} \ldots \mathfrak{P}_{n} \quad(\text { with } n=[K: k])
$$

Pick a constant $C>1$. Doesn't matter much...
For each $z \in \mathbb{C} \cup\{\infty\}$, there is the $(X-z)$-adic, or just z-adic, norm

$$
\left|(X-z)^{n} \cdot \frac{P(X)}{Q(X)}\right|=C^{-n}
$$

The z-adic completions of $\mathbb{C}[X]$ and $\mathbb{C}(X)$ are defined as usual. Hensel's lemma applies.

For $\mathbb{F}_{q}[X]$, the zeta function is

$$
\begin{aligned}
& \quad Z(s)=\sum_{\text {monic } f} \frac{1}{\left(\# \mathbb{F}_{p}[X] /\langle f\rangle\right)^{s}}=\sum_{\text {monic } f} \frac{1}{q^{s \operatorname{deg} f}} \\
& \# \text { irred monics deg } d=\frac{\# \text { elements degree } d \text { over } \mathbb{F}_{q}}{\# \text { in each Galois conjugacy class }} \\
& =\frac{1}{d}\left(q^{d}-\sum_{\text {prime } p \mid d} q^{d / p}+\sum_{\operatorname{distinct} p_{1}, p_{2} \mid d} q^{d / p_{1} p_{2}}-\sum_{\operatorname{distinct} p_{1}, p_{2}, p_{3} \mid d} q^{d / p_{1} p_{2} p_{3}}+\ldots\right) \\
& {[\text { continued...] }}
\end{aligned}
$$

