... Commutative Algebra...

integral extension of commutative rings $\mathfrak{O}/\mathfrak{o}$: every $r \in \mathfrak{O}$ satisfies f(r) = 0 for monic $f \in \mathfrak{o}[x]$

Recharacterization of integrality: α in a field extension K of field of fractions k of \mathfrak{o} is integral when there is a non-zero, finitelygenerated \mathfrak{o} -module M inside K such that $\alpha M \subset M$. [Proven]

• For \mathfrak{O} integral over \mathfrak{o} , if \mathfrak{O} is finitely-generated as an \mathfrak{o} -algebra, then it is finitely-generated as an \mathfrak{o} -module.

• Transitivity: For rings $A \subset B \subset C$, if B is integral over A and C is integral over B, then C is integral over A.

Example: Function fields in one variable

Claim: For a PID \mathfrak{o} with fraction field k, for a finite separable field extension K/k, the integral closure \mathfrak{O} of \mathfrak{o} in K is a free \mathfrak{o} -module of rank [K:k].

Comment on proof: \mathfrak{O} is torsion-free as \mathfrak{o} -module, but finitegeneration, to invoke the structure theorem, seems to need the separability:

Claim: For an integrally closed (in its fraction field k), Noetherian ring \mathfrak{o} , the integral closure \mathfrak{O} of \mathfrak{o} in a finite separable field extension K/k is a finitely-generated \mathfrak{o} -module.

Comment: For such reasons, *Dedekind domains* (below) need Noetherian-ness, as a partial substitute for PID-ness. *Separability* of field extensions seems important, too! Claim: For a finite separable field extension K/k, the trace pairing $\langle \alpha, \beta \rangle = \operatorname{tr}_{K/k}(\alpha\beta)$ is non-degenerate, in the sense that, given $0 \neq \alpha \in K$, there is $\beta \in K$ such that $\operatorname{tr}_{K/k}(\alpha\beta) \neq 0$.

Equivalently, $\operatorname{tr}_{K/k} : K \to k$ is not the 0-map.

This follows from *linear independence of characters*: given χ_1, \ldots, χ_n distinct group homomorphisms $K^{\times} \to \Omega^{\times}$ for fields K, Ω , for any coefficients α_j 's in Ω ,

$$\alpha_1 \chi_1 + \ldots + \alpha_n \chi_n = 0 \implies \text{all } \alpha_j = 0$$

Corollary: For \mathfrak{O} the integral closure of Noetherian, integrally closed \mathfrak{o} (in its fraction field k) in a finite separable field extension K/k,

$$\operatorname{tr}_{K/k} \mathfrak{O} \subset \mathfrak{o}$$

Critical point in proofs of the above: Finitely-generated modules over Noetherian rings are Noetherian modules, and submodules \mathfrak{O} of Noetherian modules are Noetherian, so \mathfrak{O} is a finitely-generated \mathfrak{o} -module.

A module M over a commutative ring R (itself not necessarily Noetherian) is *Noetherian* when it satisfies any of the following (provably, below) equivalent conditions:

• Every submodule of M is finitely-generated.

• Every ascending chain of submodules $M_1 \subset M_2 \subset \ldots$ eventually *stabilizes*, that is, $M_i = M_{i+1}$ beyond some point.

• Any non-empty set S of submodules has a maximal element, that is, an element $M_o \in S$ such that $N \supset M_o$ and $N \in S$ implies $N = M_o$. Claim: Submodules and quotient modules of Noetherian modules are Noetherian. Conversely, for $M \subset N$, if M and N/M are Noetherian, then N is. That is, in a short exact sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

(meaning that $A \to B$ is *injective*, that the image of $A \to B$ is the kernel of $B \to C$, and that $B \to C$ is *surjective*), Noetherian-ness of B is equivalent to Noetherian-ness of A and C.

Corollary: For M, N Noetherian, $M \oplus N$ is Noetherian. Arbitrary finite sums of Noetherian modules are Noetherian.

Again, a commutative ring R is Noetherian if it is Noetherian as a module over itself. This is equivalent to the property that every submodule (=ideal) is finitely-generated.

Claim: A finitely-generated module M over a Noetherian ring R is a Noetherian module.

Proof: Let m_1, \ldots, m_n generate M, so there is a surjection $\underbrace{R \oplus \ldots \oplus R}_n \longrightarrow M$ by $r_1 \oplus \ldots \oplus r_n \longrightarrow \sum_i r_i \cdot m_i$

The sum $R \oplus \ldots \oplus R$ is Noetherian, and the image/quotient is Noetherian. ///

///

This completes the discussion of the proof that the *integral closure* \mathfrak{O} of *Noetherian, integrally closed* \mathfrak{o} in a finite, separable field extension K/k is a *finitely-generated* \mathfrak{o} -module.

The end of the proof had $\mathfrak O$ inside a finitely-generated module:

$$\mathfrak{O} \subset c^{-1} \cdot \left(\mathfrak{o} \cdot \alpha_1 + \ldots + \mathfrak{o} \cdot \alpha_n \right)$$

Finitely-generated modules over Noetherian rings \mathfrak{o} are Noetherian, and submodules \mathfrak{O} of Noetherian modules are Noetherian, so \mathfrak{O} is Noetherian, so finitely-generated.

Then, for \mathfrak{o} a PID, since \mathfrak{O} is *finitely-generated* over \mathfrak{o} , structure theory of finitely-generated modules over PIDs says \mathfrak{O} is *free*... it's not hard to show that an \mathfrak{o} -basis for \mathfrak{O} is also a k-basis for K...

Example: Function fields in one variable (over finite fields):

The polynomial rings $\mathbb{F}_q[X]$ are as well-behaved as \mathbb{Z} . Their fields of fractions $\mathbb{F}_q(X)$, rational functions in X with coefficients in \mathbb{F}_q , are as well-behaved as \mathbb{Q} .

For that matter, for any field E, E[X] is Euclidean, so is a PID and a UFD. E finite is most similar to \mathbb{Z} , especially that the residue fields are finite: quotient $\mathbb{F}_q[X]/\langle f \rangle$ with f a prime (=positive-degree monic polynomial) are finite fields.

The algebra of integral closures of $\mathfrak{o} = \mathbb{F}_q[X]$ in finite separable fields extensions of $k = \mathbb{F}_q(X)$ is identical to that with \mathbb{Z} and \mathbb{Q} at the bottom.

But to talk about the *geometry*, it is useful to think about $\mathbb{C}[X]$...

Since \mathbb{C} is algebraically closed, the non-zero prime ideals in $\mathbb{C}[X]$ are $\langle X - z \rangle$, for $z \in \mathbb{C}$.

That is, the point $z \in \mathbb{C}$ is the simultaneous vanishing set of the ideal $\langle X - z \rangle$.

The point at infinity ∞ is the vanishing set of 1/X, but 1/X is not in $\mathbb{C}[X]$, so we can't talk about the ideal generated by it...

Revise: points $z \in \mathbb{C}$ are in bijection with *local rings* $\mathfrak{o} \subset \mathbb{C}(X)$, meaning \mathfrak{o} has a *unique maximal (proper) ideal* \mathfrak{m} , by

$$z \longleftrightarrow \mathfrak{o}_{z} = \{\frac{P}{Q} : P, Q \in \mathbb{C}[X], \ Q(z) \neq 0\}$$
$$\mathfrak{m}_{z} = \{\frac{P}{Q} : P, Q \in \mathbb{C}[X], \ Q(z) \neq 0, \ P(z) = 0\}$$

That is, \mathfrak{o}_z is the ring of rational functions *defined at z*, and its unique maximal ideal \mathfrak{m}_z is the functions *(defined and) vanishing at z*. These are also referred to as

$$\mathfrak{o}_z = localization$$
 at $\langle X - z \rangle$ of $\mathbb{C}[X]$
= $S^{-1} \cdot \mathbb{C}[X]$ (where $S = \mathbb{C}[X] - (X - z)\mathbb{C}[X]$)

These *localizations* of the PID $\mathbb{C}[X]$ are still PIDs.

In fact, again, each such has a single non-zero prime ideal $\langle X - z \rangle$.

In \mathfrak{o}_z every proper ideal is of the form $(X - z)^n \cdot \mathfrak{o}_z$ for some $0 < n \in \mathbb{Z}$.

Again, the unique maximal ideal is $\mathfrak{m}_z = (X - z) \cdot \mathfrak{o}_z$.

As usual, instead of trying to evaluate something at $X = \infty$, evaluate 1/X at 0:

$$\mathfrak{o}_{\infty} = \{f(X) = g(1/X) : g \text{ is defined at } 0\}$$
$$= \{\frac{P(1/X)}{Q(1/X)} : P, Q \in \mathbb{C}[X], \ Q(0) \neq 0\}$$
$$\mathfrak{m}_{\infty} = \{f(X) = g(1/X) \in \mathfrak{o}_{\infty} : g(0) = 0\}$$
$$= \{\frac{P(1/X)}{Q(1/X)} : P, Q \in \mathbb{C}[X], \ Q(0) \neq 0, \ P(0) = 0\}$$

From one viewpoint, a (compact, connected) Riemann surface M is/corresponds (!?) to a finite field extension K of $k = \mathbb{C}(X)$.

The finite points of the Riemann surface M are the zero-sets of non-zero prime ideals of the *integral closure* \mathfrak{O} of $\mathfrak{o} = \mathbb{C}[X]$ in K. (In fact, the ring \mathfrak{O} is *Dedekind*.)

Claim: For typical $z \in \mathbb{C}$, the prime ideal $\langle X - z \rangle = (X - z)\mathbb{C}[X]$ gives rise to $(X - z)\mathfrak{O} = \mathfrak{P}_1 \dots \mathfrak{P}_n$, where n = [K : k]. That is, n points on M lie over $z \in \mathbb{C}$:

Proof: We can reduce to the case that $K = \mathbb{C}(X, Y)$ with Y satisfying a *monic* polynomial equation f(X, Y) = 0 with coefficients in $\mathbb{C}[X]$, and f of degree [K:k].

Then do the usual computation

$$\mathfrak{O}/(X-z)\mathfrak{O} = \mathbb{C}[X,T]/\langle X-z, f(X,T)\rangle$$

$$\approx \mathbb{C}[T]/\langle f(z,T)\rangle$$

$$\approx \mathbb{C}[T]/\langle (T-w_1)(T-w_2)\dots(T-w_n)\rangle$$

$$\approx \frac{\mathbb{C}[T]}{\langle T-w_1\rangle} \oplus \frac{\mathbb{C}[T]}{\langle T-w_2\rangle} \oplus \dots \oplus \frac{\mathbb{C}[T]}{\langle T-w_n\rangle}$$

$$\approx \mathbb{C} \oplus \mathbb{C} \oplus \dots \oplus \mathbb{C}$$

for distinct w_j . By the Lemma proven earlier, $\mathfrak{O}/(X-z)\mathfrak{O}$ is a product of n prime ideals. ///

For example, for the *elliptic curve*

$$Y^2 = X^3 + aX + b \qquad (\text{with } a, b \in \mathbb{C})$$

where $X^3 + aX + b = 0$ has distinct roots, we have (!?) $\mathfrak{O} = \mathbb{C}[X,Y] \approx \mathbb{C}[X,T]/\langle T^2 - X^3 - aX - b \rangle$ with a second indeterminate T, and the usual trick gives

$$\mathcal{O}/(X-z)\mathcal{O} = \mathbb{C}[X,T]/\langle X-z, T^2-X^3-aX-b\rangle$$

$$\approx \mathbb{C}[T]/\langle T^2-z^3-az-b\rangle$$

$$\approx \mathbb{C}[T]/\langle (T-w_1)(T-w_2)\rangle$$

$$\approx \frac{\mathbb{C}[T]}{\langle T-w_1\rangle} \oplus \frac{\mathbb{C}[T]}{\langle T-w_2\rangle}$$

$$\approx \mathbb{C} \oplus \mathbb{C}$$

for distinct w_j : $\mathfrak{O}/(X-z)\mathfrak{O}$ is a product of 2 prime ideals.

To talk about *points at infinity*, either replace $\mathfrak{o} = \mathbb{C}[X]$ by $\mathfrak{o} = \mathbb{C}[1/X]$, or use the *local ring* description:

Given a *local* ring $\mathfrak{o}_z \subset k = \mathbb{C}(X)$ corresponding to either $z \in \mathbb{C}$ or $z = \infty$, let \mathfrak{O} be the integral closure of \mathfrak{o}_z in $K = \mathbb{C}(X, Y)$.

The maximal ideal \mathfrak{m}_z of \mathfrak{o}_z generates a product of prime (maximal) ideals in \mathfrak{O} :

 $\mathfrak{m}_z \cdot \mathfrak{O} = \mathfrak{P}_1 \dots \mathfrak{P}_n$ (with n = [K:k])

Pick a constant C > 1. Doesn't matter much...

For each $z \in \mathbb{C} \cup \{\infty\}$, there is the (X - z)-adic, or just z-adic, norm

$$\left| (X-z)^n \cdot \frac{P(X)}{Q(X)} \right| = C^{-n}$$

The z-adic completions of $\mathbb{C}[X]$ and $\mathbb{C}(X)$ are defined as usual.

Hensel's lemma applies.

For $\mathbb{F}_q[X]$, the zeta function is

$$Z(s) = \sum_{\text{monic } f} \frac{1}{(\#\mathbb{F}_p[X]/\langle f \rangle)^s} = \sum_{\text{monic } f} \frac{1}{q^{s \deg f}}$$

#irred monics deg $d = \frac{\# \text{ elements degree } d \text{ over } \mathbb{F}_q}{\# \text{in each Galois conjugacy class}}$
$$\frac{1}{d} \Big(q^d - \sum_{\text{prime } p \mid d} q^{d/p} + \sum_{\text{distinct } p_1, p_2 \mid d} q^{d/p_1 p_2} - \sum_{\text{distinct } p_1, p_2, p_3 \mid d} q^{d/p_1 p_2 p_3} + \dots \Big)$$

 $[{\rm continued...}]$

=