
Garrett 10-10-2011 1

... Commutative Algebra...

integral extension of commutative rings O/o: every r ∈ O satisfies
f(r) = 0 for monic f ∈ o[x]

Recharacterization of integrality: α in a field extension K of field
of fractions k of o is integral when there is a non-zero, finitely-
generated o-module M inside K such that αM ⊂M . [Proven]

• For O integral over o, if O is finitely-generated as an o-algebra,
then it is finitely-generated as an o-module.

• Transitivity: For rings A ⊂ B ⊂ C, if B is integral over A and C
is integral over B, then C is integral over A.

Example: Function fields in one variable
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Claim: For a PID o with fraction field k, for a finite separable field
extension K/k, the integral closure O of o in K is a free o-module
of rank [K : k].

Comment on proof: O is torsion-free as o-module, but finite-
generation, to invoke the structure theorem, seems to need the
separability:

Claim: For an integrally closed (in its fraction field k), Noetherian
ring o, the integral closure O of o in a finite separable field
extension K/k is a finitely-generated o-module.

Comment: For such reasons, Dedekind domains (below) need
Noetherian-ness, as a partial substitute for PID-ness. Separability
of field extensions seems important, too!
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Claim: For a finite separable field extension K/k, the trace pairing
〈α, β〉 = trK/k(αβ) is non-degenerate, in the sense that, given
0 6= α ∈ K, there is β ∈ K such that trK/k(αβ) 6= 0.

Equivalently, trK/k : K → k is not the 0-map.

This follows from linear independence of characters: given
χ1, . . . , χn distinct group homomorphisms K× → Ω× for fields
K,Ω, for any coefficients αj ’s in Ω,

α1χ1 + . . . + αnχn = 0 =⇒ all αj = 0

Corollary: For O the integral closure of Noetherian, integrally
closed o (in its fraction field k) in a finite separable field extension
K/k,

trK/k O ⊂ o
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Critical point in proofs of the above: Finitely-generated modules
over Noetherian rings are Noetherian modules, and submodules O

of Noetherian modules are Noetherian, so O is a finitely-generated
o-module.

A module M over a commutative ring R (itself not necessarily
Noetherian) is Noetherian when it satisfies any of the following
(provably, below) equivalent conditions:

• Every submodule of M is finitely-generated.

• Every ascending chain of submodules M1 ⊂ M2 ⊂ . . . eventually
stabilizes, that is, Mi = Mi+1 beyond some point.

• Any non-empty set S of submodules has a maximal element,
that is, an element Mo ∈ S such that N ⊃ Mo and N ∈ S implies
N = Mo.
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Claim: Submodules and quotient modules of Noetherian modules
are Noetherian. Conversely, for M ⊂ N , if M and N/M are
Noetherian, then N is. That is, in a short exact sequence

0 −→ A −→ B −→ C −→ 0

(meaning that A → B is injective, that the image of A → B is the
kernel of B → C, and that B → C is surjective), Noetherian-ness
of B is equivalent to Noetherian-ness of A and C.

Corollary: For M,N Noetherian, M ⊕N is Noetherian. Arbitrary
finite sums of Noetherian modules are Noetherian.
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Again, a commutative ring R is Noetherian if it is Noetherian as
a module over itself. This is equivalent to the property that every
submodule (=ideal) is finitely-generated.

Claim: A finitely-generated module M over a Noetherian ring R is
a Noetherian module.

Proof: Let m1, . . . ,mn generate M , so there is a surjection
R⊕ . . .⊕R
︸ ︷︷ ︸

n

−→M by

r1 ⊕ . . .⊕ rn −→
∑

i

ri ·mi

The sum R ⊕ . . . ⊕ R is Noetherian, and the image/quotient is
Noetherian. ///
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This completes the discussion of the proof that the integral closure
O of Noetherian, integrally closed o in a finite, separable field
extension K/k is a finitely-generated o-module.

The end of the proof had O inside a finitely-generated module:

O ⊂ c−1 ·
(

o · α1 + . . . + o · αn

)

Finitely-generated modules over Noetherian rings o are
Noetherian, and submodules O of Noetherian modules are
Noetherian, so O is Noetherian, so finitely-generated. ///

Then, for o a PID, since O is finitely-generated over o, structure
theory of finitely-generated modules over PIDs says O is free... it’s
not hard to show that an o-basis for O is also a k-basis for K...
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Example: Function fields in one variable (over finite fields):

The polynomial rings Fq[X] are as well-behaved as Z. Their fields
of fractions Fq(X), rational functions in X with coefficients in Fq,
are as well-behaved as Q.

For that matter, for any field E, E[X] is Euclidean, so is a PID
and a UFD. E finite is most similar to Z, especially that the
residue fields are finite: quotient Fq[X]/〈f〉 with f a prime
(=positive-degree monic polynomial) are finite fields.

The algebra of integral closures of o = Fq[X] in finite separable
fields extensions of k = Fq(X) is identical to that with Z and Q
at the bottom.

But to talk about the geometry, it is useful to think about C[X]...
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Since C is algebraically closed, the non-zero prime ideals in C[X]
are 〈X − z〉, for z ∈ C.

That is, the point z ∈ C is the simultaneous vanishing set of the
ideal 〈X − z〉.

The point at infinity ∞ is the vanishing set of 1/X, but 1/X is
not in C[X], so we can’t talk about the ideal generated by it...

Revise: points z ∈ C are in bijection with local rings o ⊂ C(X),
meaning o has a unique maximal (proper) ideal m, by

z ←→ oz = {
P

Q
: P,Q ∈ C[X], Q(z) 6= 0}

mz = {
P

Q
: P,Q ∈ C[X], Q(z) 6= 0, P (z) = 0}
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That is, oz is the ring of rational functions defined at z, and its
unique maximal ideal mz is the functions (defined and) vanishing
at z. These are also referred to as

oz = localization at 〈X − z〉 of C[X]

= S−1 ·C[X] (where S = C[X]− (X − z)C[X])

These localizations of the PID C[X] are still PIDs.

In fact, again, each such has a single non-zero prime ideal 〈X − z〉.

In oz every proper ideal is of the form (X − z)n · oz for some
0 < n ∈ Z.

Again, the unique maximal ideal is mz = (X − z) · oz.
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As usual, instead of trying to evaluate something at X = ∞,
evaluate 1/X at 0:

o∞ = {f(X) = g(1/X) : g is defined at 0}

= {
P (1/X)

Q(1/X)
: P,Q ∈ C[X], Q(0) 6= 0}

m∞ = {f(X) = g(1/X) ∈ o∞ : g(0) = 0}

= {
P (1/X)

Q(1/X)
: P,Q ∈ C[X], Q(0) 6= 0, P (0) = 0}
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From one viewpoint, a (compact, connected) Riemann surface M
is/corresponds (!?) to a finite field extension K of k = C(X).

The finite points of the Riemann surface M are the zero-sets of
non-zero prime ideals of the integral closure O of o = C[X] in K.
(In fact, the ring O is Dedekind.)

Claim: For typical z ∈ C, the prime ideal 〈X − z〉 = (X − z)C[X]
gives rise to (X − z)O = P1 . . . Pn, where n = [K : k]. That is, n
points on M lie over z ∈ C:

Proof: We can reduce to the case that K = C(X,Y ) with Y
satisfying a monic polynomial equation f(X,Y ) = 0 with
coefficients in C[X], and f of degree [K : k].
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Then do the usual computation

O/(X − z)O = C[X,T ]/〈X − z, f(X,T )〉

≈ C[T ]/〈f(z, T )〉

≈ C[T ]/〈(T − w1)(T − w2) . . . (T − wn)〉

≈
C[T ]

〈T − w1〉
⊕

C[T ]

〈T − w2〉
⊕ . . .⊕

C[T ]

〈T − wn〉

≈ C⊕C⊕ . . .⊕C
for distinct wj . By the Lemma proven earlier, O/(X − z)O is a
product of n prime ideals. ///
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For example, for the elliptic curve

Y 2 = X3 + aX + b (with a, b ∈ C)

where X3 + aX + b = 0 has distinct roots, we have (!?) O =C[X,Y ] ≈ C[X,T ]/〈T 2−X3−aX−b〉 with a second indeterminate
T , and the usual trick gives

O/(X − z)O = C[X,T ]/〈X − z, T 2 −X3 − aX − b〉

≈ C[T ]/〈T 2 − z3 − az − b〉

≈ C[T ]/〈(T − w1)(T − w2)〉

≈
C[T ]

〈T − w1〉
⊕

C[T ]

〈T − w2〉

≈ C⊕C
for distinct wj : O/(X − z)O is a product of 2 prime ideals.
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To talk about points at infinity, either replace o = C[X] by
o = C[1/X], or use the local ring description:

Given a local ring oz ⊂ k = C(X) corresponding to either z ∈ C or
z =∞, let O be the integral closure of oz in K = C(X,Y ).

The maximal ideal mz of oz generates a product of prime
(maximal) ideals in O:

mz ·O = P1 . . .Pn (with n = [K : k])
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Pick a constant C > 1. Doesn’t matter much...

For each z ∈ C ∪ {∞}, there is the (X − z)-adic, or just z-adic,
norm

∣
∣
∣(X − z)n ·

P (X)

Q(X)

∣
∣
∣ = C−n

The z-adic completions of C[X] and C(X) are defined as usual.

Hensel’s lemma applies.
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For Fq[X], the zeta function is

Z(s) =
∑

monic f

1

(#Fp[X]/〈f〉)s
=

∑

monic f

1

qs deg f

#irred monics deg d =
# elements degree d over Fq

#in each Galois conjugacy class

=
1

d

(

qd−
∑

prime p|d

qd/p +
∑

distinct p1,p2|d

qd/p1p2 −
∑

distinct p1,p2,p3|d

qd/p1p2p3 + . . .
)

[continued...]


