We will later elaborate the ideas mentioned earlier: relations of primes to zeros of zetas, reciprocity laws, p-adic and adelic methods. Now... Commutative Algebra: again, algebraic integer $\alpha \in \overline{\mathbb{Q}}$: satisfies $f(\alpha)=0, f \in \mathbb{Z}[x]$ monic

Dedekind domains: unique factorization of ideals into prime ideals integral extension of commutative rings $\mathfrak{O} / \mathfrak{o}$: every $r \in \mathfrak{O}$ satisfies $f(r)=0$ for monic $f \in \mathfrak{o}[x]$
prime (ideal) \mathfrak{P} of $\mathfrak{O} / \mathfrak{o}$ lying over prime ideal \mathfrak{p} of \mathfrak{o}, and residue field extension $\mathfrak{O} / \mathfrak{P}$ over $\mathfrak{o} / \mathfrak{p}$. Galois theory!

Helpful auxiliary ideas: localization S^{-1} of a ring \mathfrak{o} to force invertibility of elements of S, and v-adic completions \mathfrak{o}_{v}, k_{v} of \mathfrak{o} and fraction field k, to squash field extensions of k.

An algebraic integer $\alpha \in \overline{\mathbb{Q}}$ satisfies $f(\alpha)=0$, for $f \in \mathbb{Z}[x]$ monic.
Also say α is integral over \mathbb{Z}, or simply integral.
In a finite algebraic field extension k of \mathbb{Q}, the $\operatorname{ring}(!?!?!) \mathfrak{o}=\mathfrak{o}_{k}$ of algebraic integers in k is

$$
\mathfrak{o}=\{\alpha \in k: \alpha \text { is integral over } \mathbb{Z}\}
$$

Example: Inside quadratic field extensions $k=\mathbb{Q}(\sqrt{D})$ of \mathbb{Q}, with D a square-free integer.

$$
\mathfrak{o}= \begin{cases}\mathbb{Z}[\sqrt{D}] & (\text { for } D=2,3 \bmod 4) \\ \mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right] & (\text { for } D=1 \bmod 4)\end{cases}
$$

Example: Cyclotomic fields $k=\mathbb{Q}(\omega)$, where ω is a primitive $n^{t h}$ root of unity. In fact, $\mathfrak{o}=\mathbb{Z}[\omega]$, not so easy to prove for $n \geq 5$.

Example: Adjoining roots, for example, prime p-order roots $k=\mathbb{Q}(\sqrt[p]{D})$ of square-free integers D. For $D \neq 1 \bmod p^{2}$, in fact, $\mathfrak{o}=\mathbb{Z}[\sqrt[p]{D}]$. For $D=1 \bmod p^{2}$, in parallel with the square-root story, \mathfrak{o} is of index p above $\mathbb{Z}[\sqrt[p]{D}]$, also containing

$$
\frac{1+\sqrt[p]{D}_{D}+\ldots+\sqrt[p]{D}^{p-1}}{p}
$$

For example, the ring \mathfrak{o} of integers in $\mathbb{Q}(\sqrt[3]{10})$ is

$$
\mathfrak{o}=\mathbb{Z}+\mathbb{Z} \cdot \sqrt[3]{10}+\mathbb{Z} \cdot \frac{1+\sqrt[3]{10}+\sqrt[3]{10} 0^{2}}{3}
$$

Why are these rings? Why are sums and products of algebraic integers again integral?

This issue is similar to the issue of proving that sums and products of algebraic numbers α, β (over \mathbb{Q}, for example) are again algebraic. Specifically, do not try to explicitly find a polynomial P with rational coefficients and $P(\alpha+\beta)=0$, in terms of the minimal polynomials of α, β.

The methodological point in the latter is first that it is not required to explicitly determine the minimal polynomial of $\alpha+\beta$.

Second, about algebraic extensions, to avoid computation, recharacterization of the notion of being algebraic over... is needed: an element α of a field extension K / k is algebraic over k if $k[\alpha]$, the ring of values of polynomials on α, is a finitedimensional k-vectorspace.

Recharacterization of integrality:

Let K / k be a field extension of field of fractions k of \mathfrak{o}.
$\alpha \in K$ is integral over \mathfrak{o} if $f(\alpha)=0$ for monic f in $\mathfrak{o}[x]$.
The recharacterization: integrality of α over \mathfrak{o} is equivalent to the condition that there is a non-zero, finitely-generated (non-zero) o-module M inside K such that $\alpha M \subset M$. [Proven last time.]

Corollary: In an algebraic field extension K / k, where k is the field of fractions of a ring \mathfrak{o}, the set \mathfrak{O} of elements of K integral over \mathfrak{o} is a ring.

Somewhat as in the basics of algebraic field theory, some unexciting things need to be checked. First, from the monicpolynomial definition,

- For $\alpha \in K$, an algebraic field extension of the field of fractions k of \mathfrak{o}, for some $0 \neq c \in \mathfrak{o}$ the multiple $c \cdot \alpha$ is integral over \mathfrak{o}.
- For \mathfrak{O} integral over \mathfrak{o}, for any ring hom f sending \mathfrak{O} somewhere, $f(\mathfrak{O})$ is integral over $f(\mathfrak{o})$.

Using the recharacterization:

- For \mathfrak{O} integral over \mathfrak{o}, if \mathfrak{O} is finitely-generated as an \mathfrak{o}-algebra, then it is finitely-generated as an \mathfrak{o}-module.
- Transitivity: For rings $A \subset B \subset C$, if B is integral over A and C is integral over B, then C is integral over A.

Let's prove the less-intuitive facts that need the recharacterization:

For \mathfrak{O} finitely-generated as an \mathfrak{o}-algebra, use induction on the number of algebra generators. This reduces to the step where $\mathfrak{O}=\mathfrak{o}[\alpha]$, and α is integral over \mathfrak{o}. Ah! But proving that $\mathfrak{o}[\alpha]$ is a finitely-generated \mathfrak{o}-module in this induction step is exactly the recharacterization of integrality! Ha.

Use the previous to prove the more interesting-sounding transitivity of integrality. In $A \subset B \subset C$, any $z \in C$ satisfies an integral equation $z^{n}+b_{n-1} z^{n-1}+\ldots+b_{1} z+b_{o}=0$ with $b_{i} \in B$. The ring $B^{\prime}=A\left[b_{n-1}, \ldots, b_{o}\right]$ is a finitely-generated A-algebra, so by the previous it is a finitely-generated A-module. Since z satisfies that monic, $B^{\prime}[z]$ is also a finitely-generated A-module. And since z satisfies that monic, multiplication by z stabilizes $B^{\prime}[z]$. The latter is finitely-generated over A, so z is integral over A.

Caution: Returning to the point that it would be a fatal mistake to ignore the notion of integrality, for example, by discarding algebraic numbers that are integral over \mathbb{Z}, but meet naive expectations:

Claim: UFD's \mathfrak{o} are integrally closed (in their fraction fields k).
Proof: Let a / b be integral over \mathfrak{o}, satisfying

$$
(a / b)^{n}+c_{n-1}(a / b)^{n-1}+\ldots+c_{o}=0
$$

with $c_{i} \in \mathfrak{o}$. Multiplying out,

$$
a^{n}+c_{n-1} a^{n-1} b+\ldots+b^{n} c_{o}=0
$$

If a prime π in \mathfrak{o} divides b, then it divides a^{n}, and, thus divides a, by unique factorization. Thus, taking a / b in lowest terms shows that b is a unit.

Claim: For a PID \mathfrak{o} with fraction field k, for a finite separable field extension K / k, the integral closure \mathfrak{O} of \mathfrak{o} in K is a free \mathfrak{o} module of rank $[K: k]$.

Preliminary view of proof: \mathfrak{O} is certainly torsion-free as \mathfrak{o} module, but how to get finite-generation, to invoke the structure theorem? The presence of the separability hypothesis is a hint that something is more complicated than one might imagine. In fact, it is wise to prove a technical-sounding thing:

Claim: For an integrally closed (in its fraction field k), Noetherian [reviewed below] ring \mathfrak{o}, the integral closure \mathfrak{O} of \mathfrak{o} in a finite separable [reviewed below] field extension K / k is a finitelygenerated \mathfrak{o}-module.

Comment: For such reasons, Dedekind domains (below) need Noetherian-ness. Once things are not quite PIDs, Noetherian-ness is needed. Separability of field extensions is essential, too!

Separability: This is 'just' field theory... Recall: α in an algebraic field extension K / k is separable over k when its minimal polynomial over k has no repeated factors. Equivalently, there are $[k(\alpha): k]$ different imbeddings of $k(\alpha)$ into an algebraic closure \bar{k}.

A finite field extension K / k is separable when there are $[K: k]$ different imbeddings of K into \bar{k}.

The theorem of the primitive element asserts that a finite separable extension can be generated by a single element.

A less-often emphasized, but important, result:
Claim: For a finite separable field extension K / k, the trace pairing $\langle\alpha, \beta\rangle=\operatorname{tr}_{K / k}(\alpha \beta)$ is non-degenerate, in the sense that, given $0 \neq \alpha \in K$, there is $\beta \in K$ such that $\operatorname{tr}_{K / k}(\alpha \beta) \neq 0$.

Equivalently, $\operatorname{tr}_{K / k}: K \rightarrow k$ is not the 0-map.

For fields of characteristic 0 , this non-degeneracy is easy: for $[K: k]=n$ and for $\alpha \in k$,

$$
\operatorname{tr}_{K / k} \frac{1}{n} \alpha=\frac{1}{n} \operatorname{tr}_{K / k} \alpha=\frac{1}{n}(\underbrace{\alpha+\ldots+\alpha}_{n})=\alpha
$$

But we need/want this non-degeneracy for finite fields \mathbb{F}_{q} and for function fields $\mathbb{F}_{q}(x)$, in positive characteristic.

The decisive preliminary is linear independence of characters: given $\chi_{1}, \ldots, \chi_{n}$ distinct group homomorphisms $K^{\times} \rightarrow \Omega^{\times}$for fields K, Ω, for any coefficients α_{j} 's in Ω,

$$
\alpha_{1} \chi_{1}+\ldots+\alpha_{n} \chi_{n}=0 \quad \Longrightarrow \quad \text { all } \alpha_{j}=0
$$

Proof: Suppose $\alpha_{1} \chi_{1}+\ldots+\alpha_{n} \chi_{n}=0$ is the shortest such nontrivial relation, renumbering so that no $\alpha_{j}=0$. The meaning of the equality is that

$$
\alpha_{1} \chi_{1}(x)+\ldots+\alpha_{n} \chi_{n}(x)=0 \in \Omega \quad\left(\text { for all } x \in K^{\times}\right)
$$

Since $\chi_{1} \neq \chi_{2}$, there is $y \in K^{\times}$such that $\chi_{1}(y) \neq \chi_{2}(y)$. Replace x by $x y$:

$$
\alpha_{1} \chi_{1}(y) \chi_{1}(x)+\ldots+\alpha_{n} \chi_{n}(y) \chi_{n}(x)=0 \quad\left(\text { for all } x \in K^{\times}\right)
$$

Divide the latter relation by $\chi_{1}(y)$, and subtract from the first:

$$
\alpha_{2}\left(1-\chi_{2}(y)\right) \chi_{2}+\ldots+\alpha_{n}\left(1-\chi_{n}(y)\right) \chi_{n}=0
$$

This is shorter, contradiction.

To prove that the Galois trace map on a finite separable K / k is not identically 0 , observe that the distinct field imbeddings $\sigma_{j}: K \rightarrow \bar{k}$ are (distinct) multiplicative characters $K^{\times} \rightarrow \bar{k}^{\times}$. Trace is $\operatorname{tr}_{K / k}=\sum_{j} \sigma_{j}=\sum_{j} 1 \cdot \sigma_{j}$. This linear combination is not identically 0 .

Recall that a commutative ring R is Noetherian when any of the following equivalent conditions is met:

- Any ascending chain of ideals $I_{1} \subset I_{2} \subset \ldots$ in R stops, in the sense that there is n_{o} such that $I_{n}=I_{n_{o}}$ for $n \geq n_{o}$.
- Every ideal in R is a finitely-generated R-module

Example: PIDs R are Noetherian!
Proof: Let $\left.\bar{x}_{1}\right\rangle \subset\left\langle x_{2}\right\rangle \subset \ldots$ be a chain of (principal!) ideals. Let I be the union I. It is a principal ideal $\langle y\rangle$. There is a finite expression $y=r_{1} x_{i_{1}}+\ldots+r_{n} x_{i_{n}}$ with $r_{i} \in R$. Letting j be the max of the i_{ℓ} 's, all $x_{i_{j}}$'s are in $\left\langle x_{j}\right\rangle$, so $y \in\left\langle x_{j}\right\rangle$, and the chain stabilizes at $\left\langle x_{j}\right\rangle$.

