We will later elaborate the ideas mentioned earlier: relations of primes to zeros of zetas, reciprocity laws, *p*-adic and adelic methods. Now... Commutative Algebra: again,

algebraic integer $\alpha \in \overline{\mathbb{Q}}$: satisfies $f(\alpha) = 0, f \in \mathbb{Z}[x]$ monic

Dedekind domains: unique factorization of ideals into prime ideals

integral extension of commutative rings $\mathfrak{O}/\mathfrak{o}$: every $r \in \mathfrak{O}$ satisfies f(r) = 0 for monic $f \in \mathfrak{o}[x]$

prime (ideal) \mathfrak{P} of $\mathfrak{O}/\mathfrak{o}$ lying over prime ideal \mathfrak{p} of \mathfrak{o} , and residue field extension $\mathfrak{O}/\mathfrak{P}$ over $\mathfrak{o}/\mathfrak{p}$. Galois theory!

Helpful auxiliary ideas: *localization* S^{-1} of a ring \mathfrak{o} to force invertibility of elements of S, and v-adic completions \mathfrak{o}_v, k_v of \mathfrak{o} and fraction field k, to squash field extensions of k. An algebraic integer $\alpha \in \overline{\mathbb{Q}}$ satisfies $f(\alpha) = 0$, for $f \in \mathbb{Z}[x]$ monic.

Also say α is *integral over* \mathbb{Z} , or simply *integral*.

In a finite algebraic field extension k of Q, the ring (!?!?!) $\mathfrak{o} = \mathfrak{o}_k$ of algebraic integers in k is

$$\mathbf{o} = \{ \alpha \in k : \alpha \text{ is integral over } \mathbb{Z} \}$$

Example: Inside quadratic field extensions $k = \mathbb{Q}(\sqrt{D})$ of \mathbb{Q} , with D a square-free integer.

$$\mathfrak{o} = \begin{cases} \mathbb{Z}[\sqrt{D}] & (\text{for } D = 2, 3 \mod 4) \\\\ \mathbb{Z}[\frac{1+\sqrt{D}}{2}] & (\text{for } D = 1 \mod 4) \end{cases}$$

Example: Cyclotomic fields $k = \mathbb{Q}(\omega)$, where ω is a primitive n^{th} root of unity. In fact, $\mathfrak{o} = \mathbb{Z}[\omega]$, not so easy to prove for $n \geq 5$.

Example: Adjoining roots, for example, prime *p*-order roots $k = \mathbb{Q}(\sqrt[p]{D})$ of square-free integers *D*. For $D \neq 1 \mod p^2$, in fact, $\mathfrak{o} = \mathbb{Z}[\sqrt[p]{D}]$. For $D = 1 \mod p^2$, in parallel with the square-root story, \mathfrak{o} is of index *p* above $\mathbb{Z}[\sqrt[p]{D}]$, also containing

$$\frac{1+\sqrt[p]{D}+\ldots+\sqrt[p]{D}^{p-1}}{p}$$

For example, the ring \mathfrak{o} of integers in $\mathbb{Q}(\sqrt[3]{10})$ is

$$\mathfrak{o} = \mathbb{Z} + \mathbb{Z} \cdot \sqrt[3]{10} + \mathbb{Z} \cdot \frac{1 + \sqrt[3]{10} + \sqrt[3]{10}^2}{3}$$

Why are these *rings*? Why are sums and products of algebraic integers again integral?

This issue is similar to the issue of proving that sums and products of *algebraic* numbers α, β (over \mathbb{Q} , for example) are again *algebraic*. Specifically, do *not* try to explicitly find a polynomial P with rational coefficients and $P(\alpha + \beta) = 0$, in terms of the minimal polynomials of α, β .

The methodological point in the latter is first that it is not *required* to explicitly determine the minimal polynomial of $\alpha + \beta$.

Second, about algebraic extensions, to *avoid* computation, *recharacterization* of the notion of *being algebraic over...* is needed: an element α of a field extension K/k is *algebraic* over k if $k[\alpha]$, the ring of values of polynomials on α , is a finitedimensional k-vectorspace.

Recharacterization of integrality:

Let K/k be a field extension of field of fractions k of \mathfrak{o} .

 $\alpha \in K$ is integral over \mathfrak{o} if $f(\alpha) = 0$ for monic f in $\mathfrak{o}[x]$.

The *recharacterization*: integrality of α over \mathfrak{o} is equivalent to the condition that there is a non-zero, finitely-generated (non-zero) \mathfrak{o} -module M inside K such that $\alpha M \subset M$. [Proven last time.]

Corollary: In an algebraic field extension K/k, where k is the field of fractions of a ring \mathfrak{o} , the set \mathfrak{O} of elements of K integral over \mathfrak{o} is a ring.

Somewhat as in the basics of *algebraic field theory*, some unexciting things need to be checked. First, from the monicpolynomial definition,

• For $\alpha \in K$, an algebraic field extension of the field of fractions k of \mathfrak{o} , for some $0 \neq c \in \mathfrak{o}$ the multiple $c \cdot \alpha$ is *integral* over \mathfrak{o} .

• For \mathfrak{O} integral over \mathfrak{o} , for any ring hom f sending \mathfrak{O} somewhere, $f(\mathfrak{O})$ is integral over $f(\mathfrak{o})$.

Using the *recharacterization*:

• For \mathfrak{O} integral over \mathfrak{o} , if \mathfrak{O} is finitely-generated as an \mathfrak{o} -algebra, then it is finitely-generated as an \mathfrak{o} -module.

• Transitivity: For rings $A \subset B \subset C$, if B is integral over A and C is integral over B, then C is integral over A.

Let's prove the less-intuitive facts that need the recharacterization:

For \mathfrak{O} finitely-generated as an \mathfrak{o} -algebra, use induction on the number of algebra generators. This reduces to the step where $\mathfrak{O} = \mathfrak{o}[\alpha]$, and α is integral over \mathfrak{o} . Ah! But proving that $\mathfrak{o}[\alpha]$ is a finitely-generated \mathfrak{o} -module in this induction step is exactly the recharacterization of integrality! Ha.

Use the previous to prove the more interesting-sounding transitivity of integrality. In $A \subset B \subset C$, any $z \in C$ satisfies an integral equation $z^n + b_{n-1}z^{n-1} + \ldots + b_1z + b_o = 0$ with $b_i \in B$. The ring $B' = A[b_{n-1}, \ldots, b_o]$ is a finitely-generated A-algebra, so by the previous it is a finitely-generated A-module. Since z satisfies that monic, B'[z] is also a finitely-generated A-module. And since z satisfies that monic, multiplication by z stabilizes B'[z]. The latter is finitely-generated over A, so z is integral over A. /// **Caution:** Returning to the point that it would be a fatal mistake to ignore the notion of integrality, for example, by discarding algebraic numbers that *are* integral over \mathbb{Z} , but meet naive expectations:

Claim: UFD's \mathfrak{o} are integrally closed (in their fraction fields k).

Proof: Let a/b be integral over \mathfrak{o} , satisfying

$$(a/b)^n + c_{n-1}(a/b)^{n-1} + \ldots + c_o = 0$$

with $c_i \in \mathfrak{o}$. Multiplying out,

$$a^n + c_{n-1}a^{n-1}b + \ldots + b^n c_o = 0$$

If a prime π in \mathfrak{o} divides b, then it divides a^n , and, thus divides a, by unique factorization. Thus, taking a/b in lowest terms shows that b is a unit. ///

Claim: For a PID \mathfrak{o} with fraction field k, for a finite *separable* field extension K/k, the integral closure \mathfrak{O} of \mathfrak{o} in K is a free \mathfrak{o} -module of rank [K:k].

Preliminary view of proof: \mathfrak{O} is certainly torsion-free as \mathfrak{o} module, but how to get finite-generation, to invoke the structure theorem? The presence of the separability hypothesis is a hint that something is more complicated than one might imagine. In fact, it is wise to prove a technical-sounding thing:

Claim: For an integrally closed (in its fraction field k), Noetherian [reviewed below] ring \mathfrak{o} , the integral closure \mathfrak{O} of \mathfrak{o} in a finite separable [reviewed below] field extension K/k is a finitelygenerated \mathfrak{o} -module.

Comment: For such reasons, *Dedekind domains* (below) need Noetherian-ness. Once things are not quite PIDs, Noetherian-ness is needed. *Separability* of field extensions is essential, too! **Separability:** This is 'just' field theory... Recall: α in an algebraic field extension K/k is *separable* over k when its minimal polynomial over k has no repeated factors. Equivalently, there are $[k(\alpha):k]$ different imbeddings of $k(\alpha)$ into an algebraic closure \overline{k} .

A finite field extension K/k is *separable* when there are [K : k] different imbeddings of K into \overline{k} .

The *theorem of the primitive element* asserts that a finite separable extension can be generated by a single element.

A less-often emphasized, but important, result:

Claim: For a finite separable field extension K/k, the *trace* pairing $\langle \alpha, \beta \rangle = \operatorname{tr}_{K/k}(\alpha\beta)$ is non-degenerate, in the sense that, given $0 \neq \alpha \in K$, there is $\beta \in K$ such that $\operatorname{tr}_{K/k}(\alpha\beta) \neq 0$.

Equivalently, $\operatorname{tr}_{K/k} : K \to k$ is not the 0-map.

For fields of characteristic 0, this non-degeneracy is easy: for [K:k] = n and for $\alpha \in k$,

$$\operatorname{tr}_{K/k} \frac{1}{n} \alpha = \frac{1}{n} \operatorname{tr}_{K/k} \alpha = \frac{1}{n} (\underbrace{\alpha + \ldots + \alpha}_{n}) = \alpha$$

But we need/want this non-degeneracy for finite fields \mathbb{F}_q and for *function fields* $\mathbb{F}_q(x)$, in positive characteristic.

The decisive preliminary is *linear independence of characters*: given χ_1, \ldots, χ_n distinct group homomorphisms $K^{\times} \to \Omega^{\times}$ for fields K, Ω , for any coefficients α_j 's in Ω ,

$$\alpha_1 \chi_1 + \ldots + \alpha_n \chi_n = 0 \implies \text{all } \alpha_j = 0$$

Proof: Suppose $\alpha_1\chi_1 + \ldots + \alpha_n\chi_n = 0$ is the *shortest* such non-trivial relation, renumbering so that no $\alpha_j = 0$. The meaning of the equality is that

$$\alpha_1 \chi_1(x) + \ldots + \alpha_n \chi_n(x) = 0 \in \Omega \qquad \text{(for all } x \in K^{\times}\text{)}$$

Since $\chi_1 \neq \chi_2$, there is $y \in K^{\times}$ such that $\chi_1(y) \neq \chi_2(y)$. Replace x by xy:

$$\alpha_1 \chi_1(y) \chi_1(x) + \ldots + \alpha_n \chi_n(y) \chi_n(x) = 0 \qquad \text{(for all } x \in K^{\times})$$

Divide the latter relation by $\chi_1(y)$, and subtract from the first:

$$\alpha_2 \big(1 - \chi_2(y) \big) \chi_2 + \ldots + \alpha_n \big(1 - \chi_n(y) \big) \chi_n = 0$$

This is shorter, contradiction.

///

To prove that the Galois trace map on a finite separable K/kis not identically 0, observe that the distinct field imbeddings $\sigma_j: K \to \overline{k} \text{ are (distinct)}$ multiplicative characters $K^{\times} \to \overline{k}^{\times}$.

Trace is $\operatorname{tr}_{K/k} = \sum_j \sigma_j = \sum_j 1 \cdot \sigma_j$. This linear combination is not identically 0.

Recall that a commutative ring R is *Noetherian* when any of the following equivalent conditions is met:

• Any ascending chain of ideals $I_1 \subset I_2 \subset \ldots$ in *R* stops, in the sense that there is n_o such that $I_n = I_{n_o}$ for $n \ge n_o$.

• Every ideal in R is a finitely-generated R-module

Example: PIDs R are Noetherian!

Proof: Let $\bar{x}_1 \rangle \subset \langle x_2 \rangle \subset \ldots$ be a chain of (principal!) ideals. Let I be the union I. It is a principal ideal $\langle y \rangle$. There is a finite expression $y = r_1 x_{i_1} + \ldots + r_n x_{i_n}$ with $r_i \in R$. Letting j be the max of the i_ℓ 's, all x_{i_j} 's are in $\langle x_j \rangle$, so $y \in \langle x_j \rangle$, and the chain stabilizes at $\langle x_j \rangle$.