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We will later elaborate the ideas mentioned earlier: relations
of primes to zeros of zetas, reciprocity laws, p-adic and adelic
methods. Now... Commutative Algebra: again,

algebraic integer α ∈ Q: satisfies f(α) = 0, f ∈ Z[x] monic

Dedekind domains: unique factorization of ideals into prime ideals

integral extension of commutative rings O/o: every r ∈ O satisfies
f(r) = 0 for monic f ∈ o[x]

prime (ideal) P of O/o lying over prime ideal p of o, and residue

field extension O/P over o/p. Galois theory!

Helpful auxiliary ideas: localization S−1 of a ring o to force
invertibility of elements of S, and v-adic completions ov, kv of o

and fraction field k, to squash field extensions of k.
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An algebraic integer α ∈ Q satisfies f(α) = 0, for f ∈ Z[x] monic.

Also say α is integral over Z, or simply integral.

In a finite algebraic field extension k of Q, the ring (!?!?!) o = ok

of algebraic integers in k is

o = {α ∈ k : α is integral over Z}
Example: Inside quadratic field extensions k = Q(

√
D) of Q,

with D a square-free integer.

o =







Z[
√

D] (for D = 2, 3 mod 4)Z[ 1+
√

D
2

] (for D = 1 mod 4)
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Example: Cyclotomic fields k = Q(ω), where ω is a primitive nth

root of unity. In fact, o = Z[ω], not so easy to prove for n ≥ 5.

Example: Adjoining roots, for example, prime p-order roots
k = Q( p

√
D) of square-free integers D. For D 6= 1 mod p2, in fact,

o = Z[ p
√

D]. For D = 1 mod p2, in parallel with the square-root
story, o is of index p above Z[ p

√
D], also containing

1 + p
√

D + . . . + p
√

D
p−1

p

For example, the ring o of integers in Q( 3
√

10) is

o = Z + Z · 3
√

10 + Z · 1 + 3
√

10 + 3
√

10
2

3
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Why are these rings? Why are sums and products of algebraic
integers again integral?

This issue is similar to the issue of proving that sums and
products of algebraic numbers α, β (over Q, for example) are again
algebraic. Specifically, do not try to explicitly find a polynomial
P with rational coefficients and P (α + β) = 0, in terms of the
minimal polynomials of α, β.

The methodological point in the latter is first that it is not
required to explicitly determine the minimal polynomial of α + β.

Second, about algebraic extensions, to avoid computation,
recharacterization of the notion of being algebraic over... is
needed: an element α of a field extension K/k is algebraic over
k if k[α], the ring of values of polynomials on α, is a finite-
dimensional k-vectorspace.
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Recharacterization of integrality:

Let K/k be a field extension of field of fractions k of o.

α ∈ K is integral over o if f(α) = 0 for monic f in o[x].

The recharacterization: integrality of α over o is equivalent to the
condition that there is a non-zero, finitely-generated (non-zero)
o-module M inside K such that αM ⊂ M . [Proven last time.]

Corollary: In an algebraic field extension K/k, where k is the field
of fractions of a ring o, the set O of elements of K integral over o

is a ring.
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Somewhat as in the basics of algebraic field theory, some
unexciting things need to be checked. First, from the monic-
polynomial definition,

• For α ∈ K, an algebraic field extension of the field of fractions k
of o, for some 0 6= c ∈ o the multiple c · α is integral over o.

• For O integral over o, for any ring hom f sending O somewhere,
f(O) is integral over f(o).

Using the recharacterization:

• For O integral over o, if O is finitely-generated as an o-algebra,
then it is finitely-generated as an o-module.

• Transitivity: For rings A ⊂ B ⊂ C, if B is integral over A and C
is integral over B, then C is integral over A.
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Let’s prove the less-intuitive facts that need the
recharacterization:

For O finitely-generated as an o-algebra, use induction on the
number of algebra generators. This reduces to the step where
O = o[α], and α is integral over o. Ah! But proving that o[α] is
a finitely-generated o-module in this induction step is exactly the
recharacterization of integrality! Ha. ///

Use the previous to prove the more interesting-sounding
transitivity of integrality. In A ⊂ B ⊂ C, any z ∈ C satisfies an
integral equation zn+bn−1z

n−1+. . .+b1z+bo = 0 with bi ∈ B. The
ring B′ = A[bn−1, . . . , bo] is a finitely-generated A-algebra, so by
the previous it is a finitely-generated A-module. Since z satisfies
that monic, B′[z] is also a finitely-generated A-module. And since
z satisfies that monic, multiplication by z stabilizes B′[z]. The
latter is finitely-generated over A, so z is integral over A. ///
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Caution: Returning to the point that it would be a fatal mistake
to ignore the notion of integrality, for example, by discarding
algebraic numbers that are integral over Z, but meet naive
expectations:

Claim: UFD’s o are integrally closed (in their fraction fields k).

Proof: Let a/b be integral over o, satisfying

(a/b)n + cn−1(a/b)n−1 + . . . + co = 0

with ci ∈ o. Multiplying out,

an + cn−1a
n−1b + . . . + bnco = 0

If a prime π in o divides b, then it divides an, and, thus divides a,
by unique factorization. Thus, taking a/b in lowest terms shows
that b is a unit. ///
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Claim: For a PID o with fraction field k, for a finite separable

field extension K/k, the integral closure O of o in K is a free o-
module of rank [K : k].

Preliminary view of proof: O is certainly torsion-free as o-
module, but how to get finite-generation, to invoke the structure
theorem? The presence of the separability hypothesis is a hint
that something is more complicated than one might imagine. In
fact, it is wise to prove a technical-sounding thing:

Claim: For an integrally closed (in its fraction field k),
Noetherian [reviewed below] ring o, the integral closure O of o in
a finite separable [reviewed below] field extension K/k is a finitely-
generated o-module.

Comment: For such reasons, Dedekind domains (below) need
Noetherian-ness. Once things are not quite PIDs, Noetherian-ness
is needed. Separability of field extensions is essential, too!
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Separability: This is ’just’ field theory... Recall: α in an
algebraic field extension K/k is separable over k when its minimal
polynomial over k has no repeated factors. Equivalently, there are
[k(α) : k] different imbeddings of k(α) into an algebraic closure k.

A finite field extension K/k is separable when there are [K : k]
different imbeddings of K into k.

The theorem of the primitive element asserts that a finite
separable extension can be generated by a single element.

A less-often emphasized, but important, result:

Claim: For a finite separable field extension K/k, the trace

pairing 〈α, β〉 = trK/k(αβ) is non-degenerate, in the sense that,
given 0 6= α ∈ K, there is β ∈ K such that trK/k(αβ) 6= 0.

Equivalently, trK/k : K → k is not the 0-map.
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For fields of characteristic 0, this non-degeneracy is easy: for
[K : k] = n and for α ∈ k,

trK/k
1

n
α =

1

n
trK/kα =

1

n
(α + . . . + α
︸ ︷︷ ︸

n

) = α

But we need/want this non-degeneracy for finite fields Fq and for
function fields Fq(x), in positive characteristic.

The decisive preliminary is linear independence of characters:
given χ1, . . . , χn distinct group homomorphisms K× → Ω× for
fields K,Ω, for any coefficients αj ’s in Ω,

α1χ1 + . . . + αnχn = 0 =⇒ all αj = 0
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Proof: Suppose α1χ1 + . . . + αnχn = 0 is the shortest such non-
trivial relation, renumbering so that no αj = 0. The meaning of
the equality is that

α1χ1(x) + . . . + αnχn(x) = 0 ∈ Ω (for all x ∈ K×)

Since χ1 6= χ2, there is y ∈ K× such that χ1(y) 6= χ2(y). Replace
x by xy:

α1χ1(y)χ1(x) + . . . + αnχn(y)χn(x) = 0 (for all x ∈ K×)

Divide the latter relation by χ1(y), and subtract from the first:

α2

(
1 − χ2(y)

)
χ2 + . . . + αn

(
1 − χn(y)

)
χn = 0

This is shorter, contradiction. ///



Garrett 10-05-2011 13

To prove that the Galois trace map on a finite separable K/k
is not identically 0, observe that the distinct field imbeddings

σj : K → k are (distinct) multiplicative characters K× → k
×

.

Trace is trK/k =
∑

j σj =
∑

j 1 · σj . This linear combination is not
identically 0. ///
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Recall that a commutative ring R is Noetherian when any of the
following equivalent conditions is met:

• Any ascending chain of ideals I1 ⊂ I2 ⊂ . . . in R stops, in the
sense that there is no such that In = Ino

for n ≥ no.

• Every ideal in R is a finitely-generated R-module

Example: PIDs R are Noetherian!

Proof: Let x̄1〉 ⊂ 〈x2〉 ⊂ . . . be a chain of (principal!) ideals.
Let I be the union I. It is a principal ideal 〈y〉. There is a finite

expression y = r1xi1 + . . . + rnxin
with ri ∈ R. Letting j be the

max of the iℓ’s, all xij
’s are in 〈xj〉, so y ∈ 〈xj〉, and the chain

stabilizes at 〈xj〉. ///


