We will later elaborate the ideas mentioned earlier: relations of primes to zeros of zetas, reciprocity laws, p-adic and adelic methods. Now... Commutative Algebra:
algebraic integer $\alpha \in \overline{\mathbb{Q}}$: satisfies $f(\alpha)=0, f \in \mathbb{Z}[x]$ monic
Dedekind domains: unique factorization of ideals into prime ideals integral extension of commutative rings $\mathfrak{O} / \mathfrak{o}$: every $r \in \mathfrak{O}$ satisfies $f(r)=0$ for monic $f \in \mathfrak{o}[x]$
prime (ideal) \mathfrak{P} of $\mathfrak{O} / \mathfrak{o}$ lying over prime ideal \mathfrak{p} of \mathfrak{o}, and residue field extension $\mathfrak{O} / \mathfrak{P}$ over $\mathfrak{o} / \mathfrak{p}$. Galois theory!

Helpful auxiliary ideas: localization $S^{-1} \mathfrak{o}$ of a ring \mathfrak{o} to force invertibility of elements of S, and v-adic completions \mathfrak{o}_{v}, k_{v} of \mathfrak{o} and fraction field k, to squash field extensions of k.

An algebraic integer $\alpha \in \overline{\mathbb{Q}}$ satisfies $f(\alpha)=0$, for $f \in \mathbb{Z}[x]$ monic.
Also say α is integral over \mathbb{Z}, or simply integral.
In a finite algebraic field extension k of \mathbb{Q}, the ring (why!?!?) $\mathfrak{o}=\mathfrak{o}_{k}$ of algebraic integers in k is

$$
\mathfrak{o}=\{\alpha \in k: \alpha \text { is integral over } \mathbb{Z}\}
$$

Example: Inside quadratic field extensions $k=\mathbb{Q}(\sqrt{D})$ of \mathbb{Q}, with D a square-free integer. Reasonably-enough, $\alpha=a+b \sqrt{D}$ with $a, b \in \mathbb{Z}$ is integral, satisfying

$$
\alpha^{2}-2 a \alpha+\left(a^{2}-b^{2} D\right)=0
$$

For $D=1 \bmod 4$, there are more algebraic integers in $\mathbb{Q}(\sqrt{D}) \ldots$

Let tr and N be Galois trace and norm $k \rightarrow \mathbb{Q}$. In terms of these, we know the minimal polynomial for α is $x^{2}-\operatorname{tr} \alpha \cdot x+N \alpha$. Thus, in a quadratic extension, α is an algebraic integer if and only both trace and norm are in \mathbb{Z}. Write $\alpha=a+b \sqrt{D}$ with $a, b \in \mathbb{Q}$.

The integrality condition is that $2 a \in \mathbb{Z}$ and $a^{2}-b^{2} D \in \mathbb{Z}$. Try to solve for rational integrality conditions on a, b.

From the first condition, at worst $a \in \frac{1}{2} \mathbb{Z}$. With $a=a^{\prime} / 2$ and $b=b^{\prime} / 2$, the second condition becomes $a^{\prime 2}-b^{2} D \in 4 \mathbb{Z}$.

Since the only squares $\bmod 4$ are 0,1 , for $D=2,3 \bmod 4$ actually $a^{\prime}, b^{\prime} \in 2 \mathbb{Z}$, so $a, b \in \mathbb{Z}$.

But for $D=1 \bmod 4$, the condition is met for $a^{\prime}=b^{\prime} \bmod 2!!!$

That is, the ring \mathfrak{o} of algebraic integers in $k=\mathbb{Q}(\sqrt{D})$ for squarefree integer D is

$$
\mathfrak{o}= \begin{cases}\mathbb{Z}[\sqrt{D}] & (\text { for } D=2,3 \bmod 4) \\ \mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right] & (\text { for } D=1 \bmod 4)\end{cases}
$$

Indeed, we already knew an example of the sense of this: the cube root of unity $\omega=\frac{-1+\sqrt{-3}}{2}$ satisfies $\omega^{2}+\omega+1=0$.

Caution: We will see that ignoring these 'extra' algebraic integers would be a fatal mistake: the resulting rings are very bad, not Dedekind rings, exactly because they are not integrally closed, that is, they omit elements of their fraction fields integral over \mathbb{Z}.

Example: Cyclotomic fields $k=\mathbb{Q}(\omega)$, where ω is a primitive $n^{t h}$ root of unity. Since cyclotomic polynomials Φ_{n} are monic with integer coefficients, certainly ω is an algebraic integer.

So the ring \mathfrak{o} of algebraic integers in $k=\mathbb{Q}(\omega)$ contains $\mathbb{Z}[\omega]$.

In fact, $\mathfrak{o}=\mathbb{Z}[\omega]$, but this is not so easy to prove for $n \geq 5$.
The sane proof uses ideas about localization, completion, discriminant, different [sic], and ramification.

It is a fool's errand to try to prove $\mathfrak{o}=\mathbb{Z}[\omega]$ by writing out the minimal polynomial of $a+b \omega+c \omega^{2}+\ldots$ and examining the integrality conditions.

Example: Adjoining roots, for example, prime p-order roots $k=\mathbb{Q}(\sqrt[p]{D})$ of square-free integers D. Certainly $\sqrt[p]{D}$ is an algebraic integer, so the ring \mathfrak{o} of algebraic integers contains $\mathbb{Z}[\sqrt[p]{D}]$.

For $D \neq 1 \bmod p^{2}$, in fact, $\mathfrak{o}=\mathbb{Z}[\sqrt[p]{D}]$.
For $D=1 \bmod p^{2}$, in parallel with the square-root story, \mathfrak{o} is of index p above $\mathbb{Z}[\sqrt[3]{D}]$, also containing

$$
\frac{1+\sqrt[p]{D}+\ldots+\sqrt[p]{D}^{p-1}}{p}
$$

For example, the ring \mathfrak{o} of integers in $\mathbb{Q}(\sqrt[3]{10})$ is

$$
\mathfrak{o}=\mathbb{Z}+\mathbb{Z} \cdot \sqrt[3]{10}+\mathbb{Z} \cdot \frac{1+\sqrt[3]{10}+\sqrt[3]{10^{2}}}{3}
$$

As with cyclotomic fields, it is unwise to try prove this directly.

Why are these rings? Why are sums and products of algebraic integers again integral?

This issue is similar to the issue of proving that sums and products of algebraic numbers α, β (over \mathbb{Q}, for example) are again algebraic. Specifically, do not try to explicitly find a polynomial P with rational coefficients and $P(\alpha+\beta)=0$, in terms of the minimal polynomials of α, β.

The methodological point in the latter is first that it is not required to explicitly determine the minimal polynomial of $\alpha+\beta$.

Second, about algebraic extensions, to avoid computation, recharacterization of the notion of being algebraic over... is needed: an element α of a field extension K / k is algebraic over k if $k[\alpha]$, the ring of values of polynomials on α, is a finitedimensional k-vectorspace.

Recharacterization of integrality:

Let K / k be a field extension, \mathfrak{o} a ring in k with field of fractions k.

We already know that $\alpha \in K$ is integral over \mathfrak{o} if $f(\alpha)=0$ for monic f in $\mathfrak{o}[x]$.

Claim: Integrality of α over \mathfrak{o} is equivalent to the condition that there is a non-zero, finitely-generated \mathfrak{o}-module M inside K such that $\alpha M \subset M$.

Proof: On one hand, for α integral, with $n=[k(\alpha): k]$, the \mathfrak{o} module generated by $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$ is finitely-generated and is stabilized by $\alpha \ldots$

On the other hand, suppose $\alpha M \subset M$, where M has \mathfrak{o}-generators m_{1}, \ldots, m_{n}. Then there are $c_{i j} \in \mathfrak{o}$ such that $\alpha m_{i}=\sum_{j} c_{i j} m_{j}$, giving a system of n linear equations inside the field K :

$$
\left\{\begin{aligned}
\alpha m_{1} & =c_{11} m_{1}+c_{12} m_{2}+\ldots+c_{1 n} m_{n} \\
& \ldots \\
\alpha m_{n} & =c_{n 1} m_{1}+c_{n 2} m_{2}+\ldots+c_{n n} m_{n}
\end{aligned}\right.
$$

or

$$
\left\{\begin{array}{rcccc}
0 & = & \left(c_{11}-\alpha\right) m_{1} & +c_{12} m_{2} & +\ldots+ \\
& \ldots & & c_{1 n} m_{n} \\
0 & = & c_{n 1} m_{1} & +c_{12} m_{2} & +\ldots+ \\
\left(c_{n n}-\alpha\right) m_{n}
\end{array}\right.
$$

Existence of a non-zero solution m_{1}, \ldots, m_{n} implies vanishing of determinant of

$$
\left(\begin{array}{cccc}
\left(c_{11}-\alpha\right) & c_{12} & \cdots & c_{1 n} \\
& & & \\
& \cdots & & \\
& & & \\
c_{n 1} & c_{12} & \ldots & \left(c_{n n}-\alpha\right)
\end{array}\right)
$$

giving a monic equation satisfied by α !!!

Corollary: In an algebraic field extension K / k, where k is the field of fractions of a ring \mathfrak{o}, the set \mathfrak{O} of elements of K integral over \mathfrak{o} is a ring.

Proof: Let $\alpha, \beta \in \mathfrak{O}$, stabilizing non-zero, finitely-generated \mathfrak{o} modules $M=\left\langle m_{1}, \ldots, m_{\mu}\right\rangle$ and $N=\left\langle n_{1}, \ldots, n_{\nu}\right\rangle$. Then the \mathfrak{o} module $M \cdot N$ generated by all products $m_{i} n_{j}$ is non-zero, finitelygenerated, and is stabilized by $\alpha+\beta$ and by $\alpha \cdot \beta$ (!)

Corollary: In the field extension $\overline{\mathbb{Q}} / \mathbb{Q}$, the collection of all algebraic integers really is a ring.

For a ring \mathfrak{o} inside a field K, the ring \mathfrak{O} of all elements of K integral over \mathfrak{o} is the integral closure of \mathfrak{o} in K.

Somewhat in parallel to development of the basics of algebraic field theory, some unexciting things need to be checked. First, from the monic-polynomial definition,

- For $\alpha \in K$, an algebraic field extension of the field of fractions k of \mathfrak{o}, for some $0 \neq c \in \mathfrak{o}$ the multiple $c \cdot \alpha$ is integral over \mathfrak{o}.
- For \mathfrak{O} integral over \mathfrak{o}, for any ring hom f sending \mathfrak{O} somewhere, $f(\mathfrak{O})$ is integral over $f(\mathfrak{o})$.

Using the recharacterization:

- For \mathfrak{O} integral over \mathfrak{o}, if \mathfrak{O} is finitely-generated as an \mathfrak{o}-algebra, then it is finitely-generated as an \mathfrak{o}-module.
- Transitivity: For rings $A \subset B \subset C$, if B is integral over A and C is integral over B, then C is integral over A.

Let's prove the less-intuitive facts that need the recharacterization:

For \mathfrak{O} finitely-generated as an \mathfrak{o}-algebra, use induction on the number of algebra generators. This reduces to the step where $\mathfrak{O}=\mathfrak{o}[\alpha]$, and α is integral over \mathfrak{o}. Ah! But proving that $\mathfrak{o}[\alpha]$ is a finitely-generated \mathfrak{o}-module in this induction step is exactly the recharacterization of integrality! Ha.

Use the previous to prove the more interesting-sounding transitivity of integrality. In $A \subset B \subset C$, any $z \in C$ satisfies an integral equation $z^{n}+b_{n-1} z^{n-1}+\ldots+b_{1} z+b_{o}=0$ with $b_{i} \in B$. The ring $B^{\prime}=A\left[b_{n-1}, \ldots, b_{o}\right]$ is a finitely-generated A-algebra, so by the previous it is a finitely-generated A-module. Since z satisfies that monic, $B^{\prime}[z]$ is also a finitely-generated A-module. And since z satisfies that monic, multiplication by z stabilizes $B^{\prime}[z]$. The latter is finitely-generated over A, so z is integral over A.

Caution: Returning to the point that it would be a fatal mistake to ignore the notion of integrality, for example, by discarding algebraic numbers that are integral over \mathbb{Z}, but meet naive expectations:

Claim: UFD's \mathfrak{o} are integrally closed (in their fraction fields k).

Proof: Let a / b be integral over \mathfrak{o}, satisfying

$$
(a / b)^{n}+c_{n-1}(a / b)^{n-1}+\ldots+c_{o}=0
$$

with $c_{i} \in \mathfrak{o}$. Multiplying out,

$$
a^{n}+c_{n-1} a^{n-1} b+\ldots+b^{n} c_{o}=0
$$

If a prime π in \mathfrak{o} divides b, then it divides a, by unique factorization. Thus, taking a / b in lowest terms shows that b is a unit.

