We will later elaborate the ideas mentioned earlier: relations of primes to zeros of zetas, reciprocity laws, p-adic and adelic methods. Now... Commutative Algebra:

algebraic integer $\alpha \in \overline{\mathbb{Q}}$: satisfies $f(\alpha) = 0, f \in \mathbb{Z}[x]$ monic

Dedekind domains: unique factorization of ideals into prime ideals

integral extension of commutative rings $\mathfrak{O}/\mathfrak{o}$: every $r \in \mathfrak{O}$ satisfies f(r) = 0 for monic $f \in \mathfrak{o}[x]$

prime (ideal) \mathfrak{P} of $\mathfrak{O}/\mathfrak{o}$ lying over prime ideal \mathfrak{p} of \mathfrak{o} , and residue field extension $\mathfrak{O}/\mathfrak{P}$ over $\mathfrak{o}/\mathfrak{p}$. Galois theory!

Helpful auxiliary ideas: *localization* S^{-1} **o** of a ring **o** to force invertibility of elements of S, and v-adic completions \mathbf{o}_v, k_v of **o** and fraction field k, to squash field extensions of k. An algebraic integer $\alpha \in \overline{\mathbb{Q}}$ satisfies $f(\alpha) = 0$, for $f \in \mathbb{Z}[x]$ monic.

Also say α is *integral over* \mathbb{Z} , or simply *integral*.

In a finite algebraic field extension k of \mathbb{Q} , the ring (why!?!?) $\mathfrak{o} = \mathfrak{o}_k$ of algebraic integers in k is

$$\mathbf{o} = \{ \alpha \in k : \alpha \text{ is integral over } \mathbb{Z} \}$$

Example: Inside quadratic field extensions $k = \mathbb{Q}(\sqrt{D})$ of \mathbb{Q} , with D a square-free integer. Reasonably-enough, $\alpha = a + b\sqrt{D}$ with $a, b \in \mathbb{Z}$ is integral, satisfying

$$\alpha^2 - 2a\alpha + (a^2 - b^2 D) = 0$$

For $D = 1 \mod 4$, there are *more* algebraic integers in $\mathbb{Q}(\sqrt{D})$...

Let tr and N be Galois trace and norm $k \to \mathbb{Q}$. In terms of these, we know the minimal polynomial for α is $x^2 - \operatorname{tr} \alpha \cdot x + N\alpha$. Thus, in a quadratic extension, α is an algebraic integer if and only both *trace* and *norm* are in Z. Write $\alpha = a + b\sqrt{D}$ with $a, b \in \mathbb{Q}$.

The integrality condition is that $2a \in \mathbb{Z}$ and $a^2 - b^2 D \in \mathbb{Z}$. Try to solve for rational integrality conditions on a, b.

From the first condition, at worst $a \in \frac{1}{2}\mathbb{Z}$. With a = a'/2 and b = b'/2, the second condition becomes $a'^2 - b'^2 D \in 4\mathbb{Z}$.

Since the only squares mod 4 are 0, 1, for $D = 2, 3 \mod 4$ actually $a', b' \in 2\mathbb{Z}$, so $a, b \in \mathbb{Z}$.

But for $D = 1 \mod 4$, the condition is met for $a' = b' \mod 2!!!$

That is, the ring \mathfrak{o} of algebraic integers in $k = \mathbb{Q}(\sqrt{D})$ for square-free integer D is

$$\mathfrak{o} = \begin{cases} \mathbb{Z}[\sqrt{D}] & \text{(for } D = 2, 3 \mod 4) \\ \\ \mathbb{Z}[\frac{1+\sqrt{D}}{2}] & \text{(for } D = 1 \mod 4) \end{cases}$$

Indeed, we already knew an example of the sense of this: the cube root of unity $\omega = \frac{-1+\sqrt{-3}}{2}$ satisfies $\omega^2 + \omega + 1 = 0$.

Caution: We will see that *ignoring* these 'extra' algebraic integers would be a fatal mistake: the resulting rings are very bad, *not* Dedekind rings, exactly because they are *not integrally closed*, that is, they omit elements of their *fraction fields* integral over \mathbb{Z} .

5

Example: Cyclotomic fields $k = \mathbb{Q}(\omega)$, where ω is a primitive n^{th} root of unity. Since cyclotomic polynomials Φ_n are monic with integer coefficients, certainly ω is an algebraic integer.

So the ring \mathfrak{o} of algebraic integers in $k = \mathbb{Q}(\omega)$ contains $\mathbb{Z}[\omega]$.

In fact, $\mathfrak{o} = \mathbb{Z}[\omega]$, but this is not so easy to prove for $n \geq 5$.

The sane proof uses ideas about *localization*, *completion*, *discriminant*, *different* [sic], and *ramification*.

It is a fool's errand to try to prove $\mathbf{o} = \mathbb{Z}[\omega]$ by writing out the minimal polynomial of $a + b\omega + c\omega^2 + \ldots$ and examining the integrality conditions.

Example: Adjoining roots, for example, prime *p*-order roots $k = \mathbb{Q}(\sqrt[p]{D})$ of square-free integers *D*. Certainly $\sqrt[p]{D}$ is an algebraic integer, so the ring **o** of algebraic integers *contains* $\mathbb{Z}[\sqrt[p]{D}]$.

For $D \neq 1 \mod p^2$, in fact, $\mathfrak{o} = \mathbb{Z}[\sqrt[p]{D}]$.

For $D = 1 \mod p^2$, in parallel with the square-root story, \mathfrak{o} is of index p above $\mathbb{Z}[\sqrt[3]{D}]$, also containing

$$\frac{1+\sqrt[p]{D}+\ldots+\sqrt[p]{D}^{p-1}}{p}$$

For example, the ring $\boldsymbol{\mathfrak{o}}$ of integers in $\mathbb{Q}(\sqrt[3]{10})$ is

$$\mathfrak{o} = \mathbb{Z} + \mathbb{Z} \cdot \sqrt[3]{10} + \mathbb{Z} \cdot \frac{1 + \sqrt[3]{10} + \sqrt[3]{10}^2}{3}$$

As with cyclotomic fields, it is unwise to try prove this *directly*.

7

Why are these *rings*? Why are sums and products of algebraic integers again integral?

This issue is similar to the issue of proving that sums and products of *algebraic* numbers α, β (over \mathbb{Q} , for example) are again *algebraic*. Specifically, do *not* try to explicitly find a polynomial P with rational coefficients and $P(\alpha + \beta) = 0$, in terms of the minimal polynomials of α, β .

The methodological point in the latter is first that it is not *required* to explicitly determine the minimal polynomial of $\alpha + \beta$.

Second, about algebraic extensions, to *avoid* computation, *recharacterization* of the notion of *being algebraic over...* is needed: an element α of a field extension K/k is *algebraic* over k if $k[\alpha]$, the ring of values of polynomials on α , is a finitedimensional k-vectorspace.

Recharacterization of integrality:

Let K/k be a field extension, \mathfrak{o} a ring in k with field of fractions k.

We already know that $\alpha \in K$ is *integral over* \mathfrak{o} if $f(\alpha) = 0$ for *monic* f in $\mathfrak{o}[x]$.

Claim: Integrality of α over \mathfrak{o} is equivalent to the condition that there is a non-zero, finitely-generated \mathfrak{o} -module M inside K such that $\alpha M \subset M$.

Proof: On one hand, for α integral, with $n = [k(\alpha) : k]$, the \mathfrak{o} -module generated by $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ is finitely-generated and is stabilized by α ...

On the other hand, suppose $\alpha M \subset M$, where M has \mathfrak{o} -generators m_1, \ldots, m_n . Then there are $c_{ij} \in \mathfrak{o}$ such that $\alpha m_i = \sum_j c_{ij} m_j$, giving a system of n linear equations inside the field K:

$$\begin{cases} \alpha m_1 = c_{11}m_1 + c_{12}m_2 + \ldots + c_{1n}m_n \\ \vdots \\ \alpha m_n = c_{n1}m_1 + c_{n2}m_2 + \ldots + c_{nn}m_n \end{cases}$$

$$\begin{cases} 0 = (c_{11} - \alpha)m_1 + c_{12}m_2 + \ldots + c_{1n}m_n \\ \vdots \\ 0 = c_{n1}m_1 + c_{12}m_2 + \ldots + (c_{nn} - \alpha)m_n \end{cases}$$

Existence of a non-zero solution m_1, \ldots, m_n implies vanishing of determinant of

$$\begin{pmatrix} (c_{11} - \alpha) & c_{12} & \dots & c_{1n} \\ & & \ddots & & \\ & & c_{n1} & c_{12} & \dots & (c_{nn} - \alpha) \end{pmatrix}$$

giving a monic equation satisfied by $\alpha \parallel \parallel$

or

///

|||

Corollary: In an algebraic field extension K/k, where k is the field of fractions of a ring \mathfrak{o} , the set \mathfrak{O} of elements of K integral over \mathfrak{o} is a ring.

Proof: Let $\alpha, \beta \in \mathfrak{O}$, stabilizing non-zero, finitely-generated \mathfrak{o} modules $M = \langle m_1, \ldots, m_\mu \rangle$ and $N = \langle n_1, \ldots, n_\nu \rangle$. Then the \mathfrak{o} module $M \cdot N$ generated by all products $m_i n_j$ is non-zero, finitelygenerated, and is stabilized by $\alpha + \beta$ and by $\alpha \cdot \beta$ (!) ///

Corollary: In the field extension $\overline{\mathbb{Q}}/\mathbb{Q}$, the collection of all algebraic integers really is a *ring*.

For a ring \mathfrak{o} inside a field K, the ring \mathfrak{O} of all elements of K integral over \mathfrak{o} is the **integral closure** of \mathfrak{o} in K.

Somewhat in parallel to development of the basics of *algebraic field theory*, some unexciting things need to be checked. First, from the monic-polynomial definition,

• For $\alpha \in K$, an algebraic field extension of the field of fractions k of \mathfrak{o} , for some $0 \neq c \in \mathfrak{o}$ the multiple $c \cdot \alpha$ is *integral* over \mathfrak{o} .

• For \mathfrak{O} integral over \mathfrak{o} , for any ring hom f sending \mathfrak{O} somewhere, $f(\mathfrak{O})$ is integral over $f(\mathfrak{o})$.

Using the *recharacterization*:

• For \mathfrak{O} integral over \mathfrak{o} , if \mathfrak{O} is finitely-generated as an \mathfrak{o} -algebra, then it is finitely-generated as an \mathfrak{o} -module.

• Transitivity: For rings $A \subset B \subset C$, if B is integral over A and C is integral over B, then C is integral over A.

Let's prove the less-intuitive facts that need the recharacterization:

For \mathfrak{O} finitely-generated as an \mathfrak{o} -algebra, use induction on the number of algebra generators. This reduces to the step where $\mathfrak{O} = \mathfrak{o}[\alpha]$, and α is integral over \mathfrak{o} . Ah! But proving that $\mathfrak{o}[\alpha]$ is a finitely-generated \mathfrak{o} -module in this induction step is exactly the recharacterization of integrality! Ha. ///

Use the previous to prove the more interesting-sounding transitivity of integrality. In $A \subset B \subset C$, any $z \in C$ satisfies an integral equation $z^n + b_{n-1}z^{n-1} + \ldots + b_1z + b_o = 0$ with $b_i \in B$. The ring $B' = A[b_{n-1}, \ldots, b_o]$ is a finitely-generated A-algebra, so by the previous it is a finitely-generated A-module. Since z satisfies that monic, B'[z] is also a finitely-generated A-module. And since z satisfies that monic, multiplication by z stabilizes B'[z]. The latter is finitely-generated over A, so z is integral over A. /// **Caution:** Returning to the point that it would be a fatal mistake to ignore the notion of integrality, for example, by discarding algebraic numbers that *are* integral over \mathbb{Z} , but meet naive expectations:

Claim: UFD's \mathfrak{o} are integrally closed (in their fraction fields k).

Proof: Let a/b be integral over \mathfrak{o} , satisfying

$$(a/b)^n + c_{n-1}(a/b)^{n-1} + \ldots + c_o = 0$$

with $c_i \in \mathfrak{o}$. Multiplying out,

$$a^n + c_{n-1}a^{n-1}b + \ldots + b^n c_o = 0$$

If a prime π in \mathfrak{o} divides b, then it divides a, by unique factorization. Thus, taking a/b in lowest terms shows that b is a unit. ///