Continuing the pre/review ...

Continuing: solving equations mod p^n , *p*-adic numbers, Hensel.

Completions versus projective limits.

Mapping-property characterizations... unique up to unique isomorphism.

Another forgotten point: not only are the $p^n \mathbb{Z}_p$ the only ideals in \mathbb{Z}_p , but also $\mathbb{Z}_p/p^n \mathbb{Z}_p \approx \mathbb{Z}/p^n \mathbb{Z}$. This is used to compare the *metric completion* version of \mathbb{Z}_p to the *limit* characterization.

Introducing **rational adeles**.

Claim: For positive integers n, $\mathbb{Z}_p/p^n\mathbb{Z}_p \approx \mathbb{Z}/p^n\mathbb{Z}$.

Proof: Inclusion $\mathbb{Z} \to \mathbb{Z}_p$ compose with $\mathbb{Z}_p \to \mathbb{Z}_p/p^n \mathbb{Z}_p$ has kernel

$$\mathbb{Z} \cap p^n \mathbb{Z}_p = \mathbb{Z} \cap \{ x \in \mathbb{Z}_p : |x|_p \le \frac{1}{p^n} \} = \{ x \in \mathbb{Z} : |x|_p \le \frac{1}{p^n} \}$$

 $= \{ \text{integers divisible by } p^n \} = p^n \mathbb{Z}$

Thus, $\mathbb{Z}/p^n\mathbb{Z}$ injects to $\mathbb{Z}_p/p^n\mathbb{Z}_p$. On the other hand, because \mathbb{Z} is dense in \mathbb{Z}_p , given $x \in \mathbb{Z}_p$ there is $y \in \mathbb{Z}$ such that $|x - y| \leq \frac{1}{p^n}$. That is, $x \in y + p^n\mathbb{Z}_p$. Then

 $x + p^{n} \mathbb{Z}_{p} = y + p^{n} \mathbb{Z}_{p} + p^{n} \mathbb{Z}_{p} = y + p^{n} \mathbb{Z}_{p} \qquad (\text{with } y \in \mathbb{Z})$

That is, the map is also *surjective*.

///

Back to projective limits: map means continuous ring hom. Require that, for every topological ring Y with compatible maps

there is a *unique* map $Y \to X$ giving a commutative diagram

A topological ring $X = \lim \mathbb{Z}/p^n$ meeting these conditions is the *(projective) limit* of the \mathbb{Z}/p^n 's, and is provably the same $\mathbb{Z}_p!!!$

Note: each finite ring \mathbb{Z}/p^n has a unique Hausdorff topology!!!

Prove existence of projective limits by a construction. Here, as is typical, $\lim_n X_n$ is a subset of the (topological) product $\prod_n X_n$. Specifically, with

$$\cdots \longrightarrow X_{n+1} \xrightarrow{\varphi_{n+1}} \cdots \xrightarrow{\varphi_3} X_2 \xrightarrow{\varphi_2} X_1$$

a projective limit $X = \lim_{n \to \infty} X_n$ can be constructed as

$$X = \{\{x_n\} : x_n \in X_n \text{ such that } \varphi_n(x_n) = x_{n-1} \text{ for all } n\}$$

That is, X consists exactly of *compatible sequences*

$$\cdots \longrightarrow x_{n+1} \xrightarrow{\varphi_{n+1}} \cdots \xrightarrow{\varphi_3} x_2 \xrightarrow{\varphi_2} x_1$$

as produced by Hensel. For continuous φ_n and *compact* X_n 's, *Tychonoff's theorem* says the product is *compact*. The limit is a *closed* subset of a compact Hausdorff space, so is *compact*. This proves compactness of $\mathbb{Z}_p!!!$

Uniqueness (up to unique isomorphism) of projective limits

The diagrammatic characterization can be used to assure that there's *no ambiguity* in what \mathbb{Z}_p is, as long as it functions as a projective limit:

First, claim the only map of $X = \lim_{n \to \infty} X_n$ to *itself*, compatible with the maps of it to the X_n , is the *identity*. Certainly the identity map is ok. Then the *uniqueness* of the dotted arrow

proves that the identity is the *only* compatible map. Next, ...

Suppose X and X' were two projective limits. On one hand, there is a unique $f: X' \to X$ giving commutative diagram

On the other hand, reversing the roles of X and X', there is a unique compatible map $g: X \to X'$ fitting into

The composites $f \circ g : X \to X$ and $g \circ f : X' \to X'$ are also compatible, so must be the identities on X and X', by the first part. Thus, f, g are mutual inverses. ///

The (projective) limit $X = \lim_n \mathbb{Z}/p^n\mathbb{Z}$ is naturally isomorphic to the metric completion \mathbb{Z}_p .

(Further details appear in the proof.)

Proof: The maps $q_n : \mathbb{Z}_p \to \mathbb{Z}_p/p^n \mathbb{Z}_p \approx \mathbb{Z}/p^n$ are a compatible family of (continuous!) maps to the limitands in $\lim_n \mathbb{Z}/p^n$, inducing a unique map of \mathbb{Z}_p to the limit:

For $0 \neq x \in \mathbb{Z}_p$, take *n* such that $|x|_p > \frac{1}{p^n}$. Then the image of *x* in $\mathbb{Z}_p/p^n\mathbb{Z}_p$ is non-zero, so \mathbb{Z}_p injects to *X*.

Prove that the map $\mathbb{Z}_p \to X$ is an *isomorphism*.

Let $f_n : Z \to \mathbb{Z}/p^n$ be afamily of maps from another object Z, compatible in the sense that

$$f_{n+1}(z) = f_n(z) \mod p^n$$
 (for all $z \in Z$, for all n)

For each $z \in Z$, for each n choose $x_n \in \mathbb{Z}$ such that

$$f_n(z) = x_n + p^n \mathbb{Z}$$

Compatibility implies $\{x_n\}$ is *Cauchy*. By completeness, take a limit

$$f(z) = \lim_{n} x_n \in \mathbb{Z}_p$$

defining a map $f : Z \to \mathbb{Z}_p$ compatible with the f_n 's and the projections.

Still need uniqueness of $f: \mathbb{Z} \to \mathbb{Z}_p$...

To show that there is a *unique* such f, let $q_n : \mathbb{Z}_p \to \mathbb{Z}_p/p^n \mathbb{Z}_p \approx \mathbb{Z}/p^n$. For two maps f and $g \mathbb{Z} \to \mathbb{Z}_p$ compatible with the projections and f_n 's,

$$q_n(f(z) - g(z)) = q_n f(z) - q_n g(z)$$
$$= f_n(z) - f_n(z) = 0 \in \mathbb{Z}/p^n$$

That is, $f(z) - g(z) \in p^n \mathbb{Z}_p$ for all n. Taking the intersection over n gives f(z) = g(z). This proves that \mathbb{Z}_p is the projective limit.

|||

Colimit (inductive limit) \mathbb{Q}_p

As topological rings, \mathbb{Q}_p is the field of fractions of \mathbb{Z}_p . Good, but we need more flexibility. Forgetting multiplication for a moment, \mathbb{Q}_p is a nested union

$$\mathbb{Q}_p = \mathbb{Z}_p \cup \frac{1}{p} \mathbb{Z}_p \cup \frac{1}{p^2} \mathbb{Z}_p \cup \dots$$

That is, it is a *colimit*, where all maps are inclusions,

The defining property of the colimit is that all compatible collections of maps from another object X to the limitands give a unique compatible map $X \to \mathbb{Q}_p$. Colimits are unique up to unique isomorphism, as usual. To construct \mathbb{Q}_p as a colimit, we can't divide \mathbb{Z}_p by p^n 's, since this begs the question. We avoid that by converting *inclusions* to *multiplications*:

$$\mathbb{Z}_{p} \xrightarrow{\text{inc}} \frac{1}{p} \mathbb{Z}_{p} \xrightarrow{\text{inc}} \frac{1}{p^{2}} \mathbb{Z}_{p} \xrightarrow{\text{inc}} \cdots$$

$$\times 1 \bigvee_{\substack{x \neq p \\ \mathbb{Z}_{p} \xrightarrow{\times p} \mathbb{Z}_{p}}} \times p \bigvee_{\substack{x \neq p \\ \times p \\ \mathbb{Z}_{p} \xrightarrow{\times p} \mathbb{Z}_{p}} \xrightarrow{\times p} \mathbb{Z}_{p} \xrightarrow{\times p} \cdots$$

All the squares *commute*, so there is a unique natural isomorphism of the colimits. Thus, we have a (second) colimit description of \mathbb{Q}_p which avoids begging the question:

Toward adeles: $\widehat{\mathbb{Z}}$

An immediate definition is $\widehat{\mathbb{Z}} = \prod_p \mathbb{Z}_p$, but this doesn't tell how $\widehat{\mathbb{Z}}$ arises in nature.

Better: instead of considering the dinky (directed) posets $\{p^n : n = 1, 2, 3, ...\}$ of powers of single primes, consider the (directed) poset of *all* integers, ordered by *divisibility*:

A robust definition:

$$\widehat{\mathbb{Z}} = \lim_{N} \mathbb{Z}/N \qquad (\text{proj lim over } N \text{ ordered by divisibility})$$

Projective limits and products fall into a broader class of "limits", which allows proof of their compatibility with each other... Using Sun-Ze, factoring each N into primes $N = \prod_p p^{e_p(N)}$,

$$\widehat{\mathbb{Z}} = \lim_{N} \mathbb{Z}/N \approx \lim_{N} \left(\prod_{p} \mathbb{Z}/p^{e_{p}(N)} \right) \approx \prod_{p} \lim_{e} \mathbb{Z}/p^{e} \approx \prod_{p} \mathbb{Z}_{p}$$

14

Recalling the (second) colimit description of \mathbb{Q}_p ,

we could do the analogous thing with $\widehat{\mathbb{Z}}$ and *all* multiplications. Since the ring $\widehat{\mathbb{Z}}$ has many zero divisors, there's no option to talk about fields-of-fractions! For $0 < n \in \mathbb{Z}$, let $X_n \approx \widehat{\mathbb{Z}}$, and for m|n, let $\varphi_{mn} : X_m \to X_n$ by $\varphi_{mn}(x) = \frac{n}{m}x$. With these transition maps $\varphi_{m,n}$ implied,

finite rational adeles $\mathbb{A}^{\text{fin}} = \text{colim}_N X_N$

The common/immediate description of \mathbb{A}^{fin} :

You will hear \mathbbm{A}^{fin} described [sic] as a restricted direct product [sic], meaning

 $\begin{aligned} \mathbb{A}^{\text{fin}} \\ &= \{ \{ x_p \} \in \prod_p \mathbb{Q}_p \ : \ x_p \in \mathbb{Z}_p \text{ for all but finitely-many primes } p \} \end{aligned}$

Since restricted direct products [sic] do not occur anywhere else, this is perhaps not an illuminating description [sic]. Its motivation is certainly completely obscure.

But it's tangible.

The rational adeles are $\mathbb{A} = \mathbb{R} \times \mathbb{A}^{\text{fin}}$.

This captures not only all the p-adic stuff, but also archimedean (real-number) stuff.

The subgroup $\mathbb{R} \times \widehat{\mathbb{Z}}$ is both open and closed.

One last point: imbed \mathbb{Q} diagonally in \mathbb{A} , meaning into each \mathbb{Q}_p and into \mathbb{R} in the usual way. For m|n, let $\mathbb{R}/n\mathbb{Z} \to \mathbb{R}/m/Z$ by $r + n\mathbb{Z} \to r + m\mathbb{Z}$. Then (we claim)

$$\mathbb{A}/\mathbb{Q} = \lim_{N} \mathbb{R}/N\mathbb{Z} = \text{compact}$$