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Continuing the pre/review ...

Riemann’s explicit formula, Gauss Quadratic Reciprocity,
Lagrange resolvents for cyclotomic fields, factorization of
Dedekind zeta functions, ...

Continuing: solving equations mod pn ... and p-adic numbers.
Hensel’s Lemma, a version of Newton-Raphson in a different
context. Both completions and projective limits.

Forgotten example: Cauchy’s criterion is sufficient, p-adically.
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Ultrametric inequality: All p-adic triangles are isosceles!!!
Stronger than triangle inequality:

|x± y|p ≤ max
(
|x|p, |y|p) (with equality unless |x|p = |y|p)

Ring structure of Zp

All integers n prime to p become p-adic units

No zero divisors in Zp: use the p-adic norm...

Even on the completion Q×p the p-adic norm still takes only the

discrete values p` with ` ∈ Z ... in contrast to the usual | ∗ |’s
values on R versus on Q.
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Each of these sets is both open and closed.

Zp = {α ∈ Qp : |α|p ≤ 1} = {α ∈ Qp : |α|p < p}

pZp = {α ∈ Qp : |α|p < 1} = {α ∈ Qp : |α|p ≤ 1
p}

Z×p = {α ∈ Qp : |α|p = 1} = {α ∈ Qp : 1
p < |α|p < p}

Proof: Discreteness of | ∗ |p...

Zp and Qp are totally disconnected. That is, given α 6= β in
Qp, there are disjoint open-and-closed sets U 3 α and V 3 β such
that U ∪ V = Qp ...
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Cauchy’s criterion is necessary-and-sufficient: A p-adic
infinite sum ao + a1 + a2 + . . . is convergent if and only if |an| → 0.

Proof: Ultrametric property: given ε > 0, let mo be large enough
so that |am|p < ε for m ≥ mo. Then, by the ultrametric property,
for mo ≤ m < n, the tail between these two indices has size

|am+1 + . . .+ an|p ≤ max
m<j≤n

|aj |p < ε

Done.

Don’t forget that in R, Cauchy’s criterion is necessary, but not
sufficient: the harmonic series 1 + 1

2 + 1
3 + . . . diverges.
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Observe: The only non-zero proper ideals in Zp are p` · Zp with
` > 0.

Proof: Given a proper, non-zero ideal I in Zp, let σ = supx∈I |x|p.
By the discreteness of | ∗ |p, for |xj |p → σ 6= 0, eventually |xi|p = σ.

Thus, we can choose a largest element x in I. For all y ∈ I,
|y/x|p = |y|p/|x|p ≤ 1. That is, y/x ∈ Zp, and I = x · Zp. ///
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Another viewpoint: Even though the p-adic norm and metric
succeed in making the sequences produced by Hensel’s lemma
convergent, there was no mandate to make metric spaces.

One ambiguity is that many different metrics can give the same
topology.

Candidly, Hensel’s recursion produces a sequence xn fitting into a
picture

. . . // xn+1 // . . . // x2 // x1

. . . // Z/pn+1
mod pn

// . . . mod p2

// Z/p2
mod p // Z/p
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What we want is not so much a metric something-something, but
an object X behind all the Z/pn’s, and x∞ ∈ X,

x∞
))l h c _ [ V

''n l j h f c a _ ] [ Y V T R P %%r
o

l j g d b _ \ Z W T R
O

L
. . . // xn+1 // . . . // x2 // x1

making a commutative diagram (meaning that the outcome
doesn’t depend on what route is traversed)

X
**k g c _ [ W ((m k i g e c a _ ] [ Y W U S &&p

m
k i f d a _ ] Z X U S

Q
N

. . . // Z/pn+1
mod pn

// . . . mod p2

// Z/p2
mod p // Z/p

We should tell how this X is to interact with other things,
probably topological rings, meaning rings with topologies so that
addition and multiplication are continuous. Hausdorff, for sanity.
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Warm-up: characterizations versus constructions:

The ordered pair formation (a, b) is characterized by the property
that (a, b) = (a′, b′) if and only if a = a′ and b = b′.
Straightforward intent!

In contrast, the set-theory construction is (a, b) = {{a}, {a, b}}.
In the early 20th century, this was interesting. The construction is
irrelevant to the use of ordered pairs.

Or, what is an indeterminate? We tell calculus students that x
is a variable real number. Or is arbitrary. Not bad intuition, but
what does that mean? This viewpoint is stressed beyond hope
in the Cayley-Hamilton theorem: a linear map T on a finite-
dimensional real vectorspace V has characteristic polynomial
χT (x) = det(x · 1V − T ). The CH theorem says χT (T ) = 0.

We are substituting a matrix for x.
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The CH theorem helps illustrate that x has the property that we
can substitute anything for it... within reason.

One way to say this: working over C, for example, the polynomial
ring C[x] should have the property that, for every ring R
containing a copy of C, and for every ro ∈ R, there is a unique
ring hom C[x] → R mapping x → ro (and mapping C to the copy
inside R).

That is, C[x] is the free C-algebra on one generator.

Set-maps {x} → R become C-algebra maps C[x]→ R.

(The functor {x} // C[x] is adjoint to the forgetful functor

taking R to its underlying set.)
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Quotient groups:

The quotient G/N of a group G by a normal subgroup N is
usually defined to be the set of cosets gN . This is easy to say, but
conceals the purpose. With hindsight, the real purpose is to make
a group Q with a group hom q : G → Q such that every group
hom f : G → H with ker f ⊃ N factors through q : G → Q, in the
sense of giving a commutative diagram

Q

��@
@

@
@

G

q

OO

f // H

Existence of Q is proven by the usual construction by cosets.

A form of simplest isomorphism theorem is really the
characterization of the quotient.
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Simple example: products: A product X =
∏

iXi of objects
Xi has maps pi : X → Xi such that, for every object Y with maps
qi : Y → Xi, there is a unique f : Y → X such that qi = pi ◦ f . A
picture:

X

pi

��1
11

11
11

11
11

11
1

Y

qi
((PPPPPPPPPPPPPPP

f
>>}

}
}

}

. . . Xi
. . .

This characterization explains why the product topology of an
infinite collection of topological spaces is coarser than we might
expect: the following general fact (proven just below) shows that
there is no choice of how to make a sensible product object!

This diagrammatic characterization determines the product
∏

iXi

uniquely up to unique isomorphism.
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Proof: First, show that the only map X → X compatible with the
diagram

X

pi

��1
11

11
11

11
11

11
1

X

pi

((PPPPPPPPPPPPPPP

>>|
|

|
|

. . . Xi
. . .

is the identity map. Indeed, the identity map fits, and the
assertion that there is only one map fitting into the diagram
finishes it.

Next, ...
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... show that, given two products X,X ′ with projections pi, p
′
i

to Xi, there is a unique isomorphism X ′ → X fitting into the
diagram

X

pi

��1
11

11
11

11
11

11
11

X ′

p′
i ((PPPPPPPPPPPPPPP

isom f
=={

{
{

{

. . . Xi
. . .

First, since X is a product, in any case there is a unique map f
fitting into the diagram. We must prove it is an isomorphism.
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On the other hand, reversing the roles of X,X ′, using the fact
that X ′ is a product, there is some map g fitting into the diagram

X

p′
i

��1
11

11
11

11
11

11
11

g

}}{
{

{
{

X ′

p′
i ((PPPPPPPPPPPPPPP

. . . Xi
. . .

Then g ◦ f : X ′ → X ′ and f ◦ g : X → X respect the projections,
so must be the respective identity maps, and are isomorphisms. ///
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Coproducts are characterized by reversing the arrows: A
coproduct X =

∐
iXi of objects Xi has maps ji : Xi → X such

that, for every object Y with maps ki : Xi → Y , there is a unique
f : X → Y such that qi = f ◦ pi. A picture:

X
f

~~}
}

}
}

Y

. . . Xi

ji

XX11111111111111ki

hhPPPPPPPPPPPPPPP
. . .

The same argument shows this diagrammatic characterization
determines the coproduct uniquely up to unique isomorphism.
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Note: In concrete categories, where objects more-or-less are
constructible as sets with additional structure, products are
typically constructible as set-products with the corresponding
additional structure.

Product groups’ underlying sets are product sets, as are
topological spaces, vector spaces, etc .

In contrast, set-coproducts are disjoint unions, which is not the
underlying set for coproducts of groups or vector spaces.
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Back to projective limits: map means continuous ring hom.
Require that, for every topological ring Y with compatible maps

Y
** (( &&

. . . // Z/pn+1
mod pn

// . . . mod p2

// Z/p2
mod p // Z/p

there is a unique map Y → X giving a commutative diagram

X
** (( &&

. . . // Z/pn+1
mod pn

// . . . mod 2// Z/p2
mod p // Z/p

Y

``@
@

@
@

;;wwwwwwwww

33ggggggggggggggggggggggggggg

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

A topological ring X = limZ/pn meeting these conditions is the
(projective) limit of the Z/pn’s, and is provably the same Zp!!!

Note: each finite ring Z/pn has a unique Hausdorff topology!!!
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Prove existence of projective limits by a construction. Here, as is
typical, limnXn is a subset of the (topological) product

∏
nXn.

Specifically, with

. . . // Xn+1
ϕn+1 // . . . ϕ3 // X2

ϕ2 // X1

a projective limit X = limnXn can be constructed as

X = {{xn} : xn ∈ Xn such that ϕn(xn) = xn−1 for all n}

That is, X consists exactly of compatible sequences

. . . // xn+1
ϕn+1 // . . . ϕ3 // x2

ϕ2 // x1

as produced by Hensel. For continuous ϕn and compact Xn’s,
Tychonoff’s theorem says the product is compact. The limit is a
closed subset of a compact Hausdorff space, so is compact. This
proves compactness of Zp!!!
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Uniqueness (up to unique isomorphism) of projective limits

The diagrammatic characterization can be used to assure that
there’s no ambiguity in what Zp is, as long as it functions as a
projective limit:

First, claim the only map of X = limnXn to itself, compatible
with the maps of it to the Xn, is the identity. Certainly the
identity map is ok. Then the uniqueness of the dotted arrow

X
(( '' %%

. . . // Xn
ϕn // . . . ϕ3 // X2

ϕ2 // X1

X

``A
A

A
A

=={{{{{{{{

44hhhhhhhhhhhhhhhhhhhhhhh

33ffffffffffffffffffffffffffffffff

proves that the identity is the only compatible map. Next, ...
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Suppose X and X ′ were two projective limits. On one hand, there
is a unique f : X ′ → X giving commutative diagram

X
(( '' %%

. . . // Xn
ϕn // . . . ϕ3 // X2

ϕ2 // X1

X ′

``A
A

A
A

=={{{{{{{{

44iiiiiiiiiiiiiiiiiiiiiii

33ffffffffffffffffffffffffffffffff

On the other hand, reversing the roles of X and X ′, there is a
unique compatible map g : X → X ′ fitting into

X ′
(( '' %%

. . . // Xn
ϕn // . . . ϕ3 // X2

ϕ2 // X1

X

aaB
B

B
B

=={{{{{{{{

44hhhhhhhhhhhhhhhhhhhhhhh

33ffffffffffffffffffffffffffffffff

The composites f ◦ g : X → X and g ◦ f : X ′ → X ′ are also
compatible, so must be the identities on X and X ′, by the first
part. Thus, f, g are mutual inverses. ///


