Continuing the pre/review ...

Riemann's explicit formula, Gauss *Quadratic Reciprocity*, Lagrange resolvents for cyclotomic fields, factorization of Dedekind zeta functions, ...

Continuing: solving equations mod p^n ... and *p*-adic numbers. Hensel's Lemma, a version of Newton-Raphson in a different context. Both completions and projective limits.

Forgotten example: Cauchy's criterion is *sufficient*, *p*-adically.

Ultrametric inequality: All *p*-adic triangles are isosceles!!! Stronger than *triangle inequality*:

 $|x \pm y|_p \leq \max(|x|_p, |y|_p)$ (with equality unless $|x|_p = |y|_p$)

Ring structure of \mathbb{Z}_p

All integers n prime to p become p-adic units

No zero divisors in \mathbb{Z}_p : use the *p*-adic norm...

Even on the *completion* \mathbb{Q}_p^{\times} the *p*-adic norm *still* takes only the discrete values p^{ℓ} with $\ell \in \mathbb{Z}$... in contrast to the usual |*|'s values on \mathbb{R} versus on \mathbb{Q} .

Each of these sets is both open and closed.

$$\mathbb{Z}_p = \{ \alpha \in \mathbb{Q}_p : |\alpha|_p \le 1 \} = \{ \alpha \in \mathbb{Q}_p : |\alpha|_p
$$p\mathbb{Z}_p = \{ \alpha \in \mathbb{Q}_p : |\alpha|_p < 1 \} = \{ \alpha \in \mathbb{Q}_p : |\alpha|_p \le \frac{1}{p} \}$$

$$\mathbb{Z}_p^{\times} = \{ \alpha \in \mathbb{Q}_p : |\alpha|_p = 1 \} = \{ \alpha \in \mathbb{Q}_p : \frac{1}{p} < |\alpha|_p < p \}$$$$

Proof: Discreteness of $|*|_p$...

 \mathbb{Z}_p and \mathbb{Q}_p are totally disconnected. That is, given $\alpha \neq \beta$ in \mathbb{Q}_p , there are disjoint open-and-closed sets $U \ni \alpha$ and $V \ni \beta$ such that $U \cup V = \mathbb{Q}_p$...

Cauchy's criterion is necessary-and-sufficient: A *p*-adic infinite sum $a_o + a_1 + a_2 + \ldots$ is convergent if and only if $|a_n| \to 0$.

Proof: Ultrametric property: given $\varepsilon > 0$, let m_o be large enough so that $|a_m|_p < \varepsilon$ for $m \ge m_o$. Then, by the ultrametric property, for $m_o \le m < n$, the tail between these two indices has size

$$|a_{m+1} + \ldots + a_n|_p \leq \max_{m < j \leq n} |a_j|_p < \varepsilon$$

Done.

Don't forget that in \mathbb{R} , Cauchy's criterion is *necessary*, but *not* sufficient: the harmonic series $1 + \frac{1}{2} + \frac{1}{3} + \ldots$ diverges.

Observe: The only non-zero proper *ideals* in \mathbb{Z}_p are $p^{\ell} \cdot \mathbb{Z}_p$ with $\ell > 0$.

Proof: Given a proper, non-zero ideal I in \mathbb{Z}_p , let $\sigma = \sup_{x \in I} |x|_p$. By the discreteness of $|*|_p$, for $|x_j|_p \to \sigma \neq 0$, eventually $|x_i|_p = \sigma$.

Thus, we can choose a largest element x in I. For all $y \in I$, $|y/x|_p = |y|_p/|x|_p \le 1$. That is, $y/x \in \mathbb{Z}_p$, and $I = x \cdot \mathbb{Z}_p$. /// **Another viewpoint:** Even though the *p*-adic norm and metric succeed in making the sequences produced by Hensel's lemma *convergent*, there was no mandate to make metric spaces.

One ambiguity is that many different metrics can give the same topology.

Candidly, Hensel's recursion produces a sequence x_n fitting into a picture

 $\cdots \longrightarrow x_{n+1} \longrightarrow \cdots \longrightarrow x_2 \longrightarrow x_1$

 $\cdots \longrightarrow \mathbb{Z}/p^{n+1} \xrightarrow{\text{mod } p^n} \cdots \xrightarrow{\text{mod } p^2} \mathbb{Z}/p^2 \xrightarrow{\text{mod } p} \mathbb{Z}/p$

What we want is not so much a metric something-something, but an object X behind all the \mathbb{Z}/p^n 's, and $x_{\infty} \in X$,

$$x_{\infty} \xrightarrow{} x_{n+1} \xrightarrow{} \dots \xrightarrow{} x_{2} \xrightarrow{} x_{1}$$

making a *commutative diagram* (meaning that the outcome doesn't depend on what route is traversed)

We should tell how this X is to *interact* with other things, probably *topological rings*, meaning rings with topologies so that addition and multiplication are continuous. *Hausdorff*, for sanity.

Warm-up: characterizations versus constructions:

The ordered pair formation (a, b) is characterized by the property that (a, b) = (a', b') if and only if a = a' and b = b'. Straightforward intent!

In contrast, the set-theory construction is $(a, b) = \{\{a\}, \{a, b\}\}$. In the early 20th century, this was interesting. The construction is irrelevant to the *use* of ordered pairs.

Or, what is an indeterminate? We tell calculus students that x is a variable real number. Or is arbitrary. Not bad intuition, but what does that mean? This viewpoint is stressed beyond hope in the Cayley-Hamilton theorem: a linear map T on a finitedimensional real vectorspace V has characteristic polynomial $\chi_T(x) = \det(x \cdot 1_V - T)$. The CH theorem says $\chi_T(T) = 0$.

We are substituting a *matrix* for x.

The CH theorem helps illustrate that x has the property that we can *substitute anything* for it... within reason.

One way to say this: working over \mathbb{C} , for example, the polynomial ring $\mathbb{C}[x]$ should have the property that, for every ring Rcontaining a copy of \mathbb{C} , and for every $r_o \in R$, there is a unique ring hom $\mathbb{C}[x] \to R$ mapping $x \to r_o$ (and mapping \mathbb{C} to the copy inside R).

That is, $\mathbb{C}[x]$ is the free \mathbb{C} -algebra on one generator.

Set-maps $\{x\} \to R$ become \mathbb{C} -algebra maps $\mathbb{C}[x] \to R$.

(The functor $\{x\} \longrightarrow \mathbb{C}[x]$ is adjoint to the forgetful functor taking R to its underlying set.)

Quotient groups:

The quotient G/N of a group G by a normal subgroup N is usually defined to be the set of cosets gN. This is easy to say, but conceals the *purpose*. With hindsight, the real purpose is to make a group Q with a group hom $q : G \to Q$ such that every group hom $f : G \to H$ with ker $f \supset N$ factors through $q : G \to Q$, in the sense of giving a commutative diagram

Existence of Q is proven by the usual *construction* by cosets.

A form of simplest *isomorphism theorem* is really the *characterization* of the quotient.

Simple example: products: A product $X = \prod_i X_i$ of objects X_i has maps $p_i : X \to X_i$ such that, for every object Y with maps $q_i : Y \to X_i$, there is a unique $f : Y \to X$ such that $q_i = p_i \circ f$. A picture:

This characterization explains why the *product topology* of an infinite collection of topological spaces is coarser than we might expect: the following general fact (proven just below) shows that there is *no choice* of how to make a sensible product object!

This diagrammatic characterization determines the product $\prod_i X_i$ uniquely up to unique isomorphism. $\mathit{Proof:}$ First, show that the only map $X \to X$ compatible with the diagram

is the *identity* map. Indeed, the identity map fits, and the assertion that there is *only one* map fitting into the diagram finishes it.

Next, ...

... show that, given two products X, X' with projections p_i, p'_i to X_i , there is a unique isomorphism $X' \to X$ fitting into the diagram

First, since X is a product, in any case there is a *unique* map f fitting into the diagram. We must prove it is an isomorphism.

On the other hand, reversing the roles of X, X', using the fact that X' is a product, there is *some* map g fitting into the diagram

Then $g \circ f : X' \to X'$ and $f \circ g : X \to X$ respect the projections, so must be the respective identity maps, and are isomorphisms. ///

Coproducts are characterized by reversing the arrows: A coproduct $X = \coprod_i X_i$ of objects X_i has maps $j_i : X_i \to X$ such that, for every object Y with maps $k_i : X_i \to Y$, there is a unique $f: X \to Y$ such that $q_i = f \circ p_i$. A picture:

The same argument shows this diagrammatic characterization determines the coproduct *uniquely up to unique isomorphism*.

Note: In *concrete* categories, where objects more-or-less are constructible as *sets* with additional structure, *products* are typically constructible as *set*-products with the corresponding additional structure.

Product groups' underlying sets are product sets, as are topological spaces, vector spaces, etc .

In contrast, set-*coproducts* are *disjoint unions*, which is *not* the underlying set for coproducts of groups or vector spaces.

Back to projective limits: map means continuous ring hom. Require that, for every topological ring Y with compatible maps

there is a *unique* map $Y \to X$ giving a commutative diagram

A topological ring $X = \lim \mathbb{Z}/p^n$ meeting these conditions is the *(projective) limit* of the \mathbb{Z}/p^n 's, and is provably the same $\mathbb{Z}_p!!!$

Note: each finite ring \mathbb{Z}/p^n has a unique Hausdorff topology!!!

Prove existence of projective limits by a construction. Here, as is typical, $\lim_n X_n$ is a subset of the (topological) product $\prod_n X_n$. Specifically, with

$$\cdots \longrightarrow X_{n+1} \xrightarrow{\varphi_{n+1}} \cdots \xrightarrow{\varphi_3} X_2 \xrightarrow{\varphi_2} X_1$$

a projective limit $X = \lim_{n \to \infty} X_n$ can be constructed as

$$X = \{\{x_n\} : x_n \in X_n \text{ such that } \varphi_n(x_n) = x_{n-1} \text{ for all } n\}$$

That is, X consists exactly of *compatible sequences*

 $\cdots \longrightarrow x_{n+1} \xrightarrow{\varphi_{n+1}} \cdots \xrightarrow{\varphi_3} x_2 \xrightarrow{\varphi_2} x_1$

as produced by Hensel. For continuous φ_n and *compact* X_n 's, *Tychonoff's theorem* says the product is *compact*. The limit is a *closed* subset of a compact Hausdorff space, so is *compact*. This proves compactness of $\mathbb{Z}_p!!!$

Uniqueness (up to unique isomorphism) of projective limits

The diagrammatic characterization can be used to assure that there's *no ambiguity* in what \mathbb{Z}_p is, as long as it functions as a projective limit:

First, claim the only map of $X = \lim_{n \to \infty} X_n$ to *itself*, compatible with the maps of it to the X_n , is the *identity*. Certainly the identity map is ok. Then the *uniqueness* of the dotted arrow

proves that the identity is the *only* compatible map. Next, ...

Suppose X and X' were two projective limits. On one hand, there is a unique $f: X' \to X$ giving commutative diagram

On the other hand, reversing the roles of X and X', there is a unique compatible map $g: X \to X'$ fitting into

The composites $f \circ g : X \to X$ and $g \circ f : X' \to X'$ are also compatible, so must be the identities on X and X', by the first part. Thus, f, g are mutual inverses. ///