Continuing the pre/review ...

Riemann's explicit formula, Gauss Quadratic Reciprocity, Lagrange resolvents for cyclotomic fields, factorization of Dedekind zeta functions, ...

Continuing: solving equations $\bmod p^{n} \ldots$ and p-adic numbers. Hensel's Lemma, a version of Newton-Raphson in a different context. Both completions and projective limits.

Forgotten example: Cauchy's criterion is sufficient, p-adically.

Ultrametric inequality: All p-adic triangles are isosceles!!! Stronger than triangle inequality:

$$
\left.|x \pm y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right) \quad \text { (with equality unless }|x|_{p}=|y|_{p}\right)
$$

Ring structure of \mathbb{Z}_{p}

All integers n prime to p become p-adic units

No zero divisors in \mathbb{Z}_{p} : use the p-adic norm...

Even on the completion \mathbb{Q}_{p}^{\times}the p-adic norm still takes only the discrete values p^{ℓ} with $\ell \in \mathbb{Z} \ldots$ in contrast to the usual $|*|$'s values on \mathbb{R} versus on \mathbb{Q}.

Each of these sets is both open and closed.

$$
\begin{aligned}
& \mathbb{Z}_{p}=\left\{\alpha \in \mathbb{Q}_{p}:|\alpha|_{p} \leq 1\right\}=\left\{\alpha \in \mathbb{Q}_{p}:|\alpha|_{p}<p\right\} \\
& p \mathbb{Z}_{p}=\left\{\alpha \in \mathbb{Q}_{p}:|\alpha|_{p}<1\right\}=\left\{\alpha \in \mathbb{Q}_{p}:|\alpha|_{p} \leq \frac{1}{p}\right\} \\
& \mathbb{Z}_{p}^{\times}=\left\{\alpha \in \mathbb{Q}_{p}:|\alpha|_{p}=1\right\}=\left\{\alpha \in \mathbb{Q}_{p}: \frac{1}{p}<|\alpha|_{p}<p\right\}
\end{aligned}
$$

Proof: Discreteness of $|*|_{p} \ldots$
\mathbb{Z}_{p} and \mathbb{Q}_{p} are totally disconnected. That is, given $\alpha \neq \beta$ in \mathbb{Q}_{p}, there are disjoint open-and-closed sets $U \ni \alpha$ and $V \ni \beta$ such that $U \cup V=\mathbb{Q}_{p} \ldots$

Cauchy's criterion is necessary-and-sufficient: A p-adic infinite sum $a_{o}+a_{1}+a_{2}+\ldots$ is convergent if and only if $\left|a_{n}\right| \rightarrow 0$.

Proof: Ultrametric property: given $\varepsilon>0$, let m_{o} be large enough so that $\left|a_{m}\right|_{p}<\varepsilon$ for $m \geq m_{o}$. Then, by the ultrametric property, for $m_{o} \leq m<n$, the tail between these two indices has size

$$
\left|a_{m+1}+\ldots+a_{n}\right|_{p} \leq \max _{m<j \leq n}\left|a_{j}\right|_{p}<\varepsilon
$$

Done.

Don't forget that in \mathbb{R}, Cauchy's criterion is necessary, but not sufficient: the harmonic series $1+\frac{1}{2}+\frac{1}{3}+\ldots$ diverges.

Observe: The only non-zero proper ideals in \mathbb{Z}_{p} are $p^{\ell} \cdot \mathbb{Z}_{p}$ with $\ell>0$.

Proof: Given a proper, non-zero ideal I in \mathbb{Z}_{p}, let $\sigma=\sup _{x \in I}|x|_{p}$. By the discreteness of $|*|_{p}$, for $\left|x_{j}\right|_{p} \rightarrow \sigma \neq 0$, eventually $\left|x_{i}\right|_{p}=\sigma$.

Thus, we can choose a largest element x in I. For all $y \in I$, $|y / x|_{p}=|y|_{p} /|x|_{p} \leq 1$. That is, $y / x \in \mathbb{Z}_{p}$, and $I=x \cdot \mathbb{Z}_{p}$.

Another viewpoint: Even though the p-adic norm and metric succeed in making the sequences produced by Hensel's lemma convergent, there was no mandate to make metric spaces.

One ambiguity is that many different metrics can give the same topology.

Candidly, Hensel's recursion produces a sequence x_{n} fitting into a picture

$$
\begin{aligned}
& \cdots \longrightarrow x_{n+1} \longrightarrow x_{2} \longrightarrow x_{1} \\
& \cdots \longrightarrow \mathbb{Z} / p^{n+1} \xrightarrow{\bmod p^{n}} \cdots \xrightarrow{\bmod p^{2}} \mathbb{Z} / p^{2} \xrightarrow{\bmod p} \mathbb{Z} / p
\end{aligned}
$$

What we want is not so much a metric something-something, but an object X behind all the \mathbb{Z} / p^{n} 's, and $x_{\infty} \in X$,

making a commutative diagram (meaning that the outcome doesn't depend on what route is traversed)

We should tell how this X is to interact with other things, probably topological rings, meaning rings with topologies so that addition and multiplication are continuous. Hausdorff, for sanity.

Warm-up: characterizations versus constructions:

The ordered pair formation (a, b) is characterized by the property that $(a, b)=\left(a^{\prime}, b^{\prime}\right)$ if and only if $a=a^{\prime}$ and $b=b^{\prime}$. Straightforward intent!

In contrast, the set-theory construction is $(a, b)=\{\{a\},\{a, b\}\}$.
In the early 20 th century, this was interesting. The construction is irrelevant to the use of ordered pairs.

Or, what is an indeterminate? We tell calculus students that x is a variable real number. Or is arbitrary. Not bad intuition, but what does that mean? This viewpoint is stressed beyond hope in the Cayley-Hamilton theorem: a linear map T on a finitedimensional real vectorspace V has characteristic polynomial $\chi_{T}(x)=\operatorname{det}\left(x \cdot 1_{V}-T\right)$. The CH theorem says $\chi_{T}(T)=0$.

We are substituting a matrix for x.

The CH theorem helps illustrate that x has the property that we can substitute anything for it... within reason.

One way to say this: working over \mathbb{C}, for example, the polynomial ring $\mathbb{C}[x]$ should have the property that, for every ring R containing a copy of \mathbb{C}, and for every $r_{o} \in R$, there is a unique ring hom $\mathbb{C}[x] \rightarrow R$ mapping $x \rightarrow r_{o}$ (and mapping \mathbb{C} to the copy inside R).

That is, $\mathbb{C}[x]$ is the free \mathbb{C}-algebra on one generator.

Set-maps $\{x\} \rightarrow R$ become \mathbb{C}-algebra maps $\mathbb{C}[x] \rightarrow R$.
(The functor $\{x\} \cdots \cdots \cdots>\mathbb{C}[x]$ is adjoint to the forgetful functor taking R to its underlying set.)

Quotient groups:

The quotient G / N of a group G by a normal subgroup N is usually defined to be the set of cosets $g N$. This is easy to say, but conceals the purpose. With hindsight, the real purpose is to make a group Q with a group hom $q: G \rightarrow Q$ such that every group hom $f: G \rightarrow H$ with $\operatorname{ker} f \supset N$ factors through $q: G \rightarrow Q$, in the sense of giving a commutative diagram

Existence of Q is proven by the usual construction by cosets.

A form of simplest isomorphism theorem is really the characterization of the quotient.

Simple example: products: A product $X=\prod_{i} X_{i}$ of objects X_{i} has maps $p_{i}: X \rightarrow X_{i}$ such that, for every object Y with maps $q_{i}: Y \rightarrow X_{i}$, there is a unique $f: Y \rightarrow X$ such that $q_{i}=p_{i} \circ f$. A picture:

This characterization explains why the product topology of an infinite collection of topological spaces is coarser than we might expect: the following general fact (proven just below) shows that there is no choice of how to make a sensible product object!

This diagrammatic characterization determines the product $\prod_{i} X_{i}$ uniquely up to unique isomorphism.

Proof: First, show that the only map $X \rightarrow X$ compatible with the diagram

is the identity map. Indeed, the identity map fits, and the assertion that there is only one map fitting into the diagram finishes it.

Next, ...
... show that, given two products X, X^{\prime} with projections p_{i}, p_{i}^{\prime} to X_{i}, there is a unique isomorphism $X^{\prime} \rightarrow X$ fitting into the diagram

First, since X is a product, in any case there is a unique map f fitting into the diagram. We must prove it is an isomorphism.

On the other hand, reversing the roles of X, X^{\prime}, using the fact that X^{\prime} is a product, there is some map g fitting into the diagram

Then $g \circ f: X^{\prime} \rightarrow X^{\prime}$ and $f \circ g: X \rightarrow X$ respect the projections, so must be the respective identity maps, and are isomorphisms. ///

Coproducts are characterized by reversing the arrows: A coproduct $X=\coprod_{i} X_{i}$ of objects X_{i} has maps $j_{i}: X_{i} \rightarrow X$ such that, for every object Y with maps $k_{i}: X_{i} \rightarrow Y$, there is a unique $f: X \rightarrow Y$ such that $q_{i}=f \circ p_{i}$. A picture:

The same argument shows this diagrammatic characterization determines the coproduct uniquely up to unique isomorphism.

Note: In concrete categories, where objects more-or-less are constructible as sets with additional structure, products are typically constructible as set-products with the corresponding additional structure.

Product groups' underlying sets are product sets, as are topological spaces, vector spaces, etc .

In contrast, set-coproducts are disjoint unions, which is not the underlying set for coproducts of groups or vector spaces.

Back to projective limits: map means continuous ring hom. Require that, for every topological ring Y with compatible maps

there is a unique map $Y \rightarrow X$ giving a commutative diagram

A topological ring $X=\lim \mathbb{Z} / p^{n}$ meeting these conditions is the (projective) limit of the \mathbb{Z} / p^{n} 's, and is provably the same \mathbb{Z}_{p} !!!

Note: each finite ring \mathbb{Z} / p^{n} has a unique Hausdorff topology!!!

Prove existence of projective limits by a construction. Here, as is typical, $\lim _{n} X_{n}$ is a subset of the (topological) product $\prod_{n} X_{n}$. Specifically, with

$$
\cdots \longrightarrow X_{n+1} \xrightarrow{\varphi_{n+1}} \cdots \xrightarrow{\varphi_{3}} X_{2} \xrightarrow{\varphi_{2}} X_{1}
$$

a projective limit $X=\lim _{n} X_{n}$ can be constructed as

$$
X=\left\{\left\{x_{n}\right\}: x_{n} \in X_{n} \text { such that } \varphi_{n}\left(x_{n}\right)=x_{n-1} \text { for all } n\right\}
$$

That is, X consists exactly of compatible sequences

$$
\cdots \longrightarrow x_{n+1} \xrightarrow{\varphi_{n+1}} \cdots \xrightarrow{\varphi_{3}} x_{2} \xrightarrow{\varphi_{2}} x_{1}
$$

as produced by Hensel. For continuous φ_{n} and compact X_{n} 's, Tychonoff's theorem says the product is compact. The limit is a closed subset of a compact Hausdorff space, so is compact. This proves compactness of $\mathbb{Z}_{p}!!!$

Uniqueness (up to unique isomorphism) of projective limits

The diagrammatic characterization can be used to assure that there's no ambiguity in what \mathbb{Z}_{p} is, as long as it functions as a projective limit:

First, claim the only map of $X=\lim _{n} X_{n}$ to itself, compatible with the maps of it to the X_{n}, is the identity. Certainly the identity map is ok. Then the uniqueness of the dotted arrow

proves that the identity is the only compatible map. Next, ...

Suppose X and X^{\prime} were two projective limits. On one hand, there is a unique $f: X^{\prime} \rightarrow X$ giving commutative diagram

On the other hand, reversing the roles of X and X^{\prime}, there is a unique compatible map $g: X \rightarrow X^{\prime}$ fitting into

The composites $f \circ g: X \rightarrow X$ and $g \circ f: X^{\prime} \rightarrow X^{\prime}$ are also compatible, so must be the identities on X and X^{\prime}, by the first part. Thus, f, g are mutual inverses.

