## Continuing the pre/review ...

Riemann's explicit formula: complex zeros of zeta functions (and $L$-functions) versus properties of primes.

Gauss' Quadratic Reciprocity via Gauss sums, which are Lagrange resolvents for cyclotomic fields.

Factorization of Dedekind zeta functions of quadratic extensions of $\mathbb{Q}$ and of cyclotomic fields, as Reciprocity Laws.

Continuing: solving equations $\bmod p^{n} \ldots$ and $p$-adic numbers. This is Hensel's Lemma, a version of Newton-Raphson in a different context. Both completions and projective limits.

Theorem: (Hensel) For $f$ monic in $\mathbb{Z}[x]$, for prime $p$, if there is $x_{1} \in \mathbb{Z}$ such that $f\left(x_{1}\right)=0 \bmod p$ but $f^{\prime}\left(x_{1}\right) \neq 0 \bmod p$, then there is a unique $x_{n} \bmod p^{n}$ such that $f\left(x_{n}\right)=0 \bmod p^{n}$ and $x_{n}=x_{1} \bmod p$. Specifically, with $f^{\prime}\left(x_{1}\right)$ inverted $\bmod p$,

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{1}\right)} \quad \bmod p^{n+1}
$$

Proof: Given $x_{n}$, solve for $y \bmod p$ so that $x_{n+1}=x_{n}+p^{n} y$ is a solution $\bmod p^{n+1}$. Taylor series:

$$
\begin{gathered}
0=f\left(x_{n+1}\right)=f\left(x_{n}+p^{n} y\right) \\
=f\left(x_{n}\right)+\frac{f^{\prime}\left(x_{n}\right)}{1!} p^{n} y+\frac{f^{\prime \prime}\left(x_{n}\right)}{2!}\left(p^{n} y\right)^{2}+\ldots \bmod p^{n+1}
\end{gathered}
$$

$2 n \geq n+1$ for $n \geq 1$, the equation becomes linear in $y \ldots$

The $p$-adic norm $|*|_{p}$ is defined on $\mathbb{Q}^{\times}$by

$$
\left|p^{n} \cdot \frac{a}{b}\right|_{p}=p^{-n} \quad(\text { with } a, b \text { prime to } p, n \in \mathbb{Z})
$$

and $|0|_{p}=0$. The $p$-adic metric is made from the norm as usual: $d(x, y)=|x-y|_{p}$. Note that $|n|_{p} \leq 1$ for all $n \in \mathbb{Z}$.

The ring of $p$-adic integers $\mathbb{Z}_{p}$ is the completion of $\mathbb{Z}$ with respect to $|*|_{p}$.

The field of $p$-adic rationals $\mathbb{Q}_{p}$ is the completion of $\mathbb{Q}$ with respect to $|*|_{p}$.

For example, 2-adically,

$$
\begin{aligned}
& 1+2+4+8+16+\ldots=\lim _{n}\left(1+2+\ldots+2^{n}\right) \\
= & \lim _{n} \frac{1-2^{n+1}}{1-2}=\lim _{n} \frac{1-\lim _{n} 2^{n+1}}{1-2}=\frac{1-0}{1-2}=-1
\end{aligned}
$$

Repeat warning: Yes, it is possible to write $p$-adic integers in a form that makes them look like power series:
$\alpha=a_{o}+a_{1} p^{1}+a_{2} p^{2}+a_{3} p^{3}+\ldots \quad\left(\right.$ with $\left.a_{i} \in\{0,1,2, \ldots, p-1\}\right)$
Even though such representations have occasional use, this is potentially misleading: no number of $x^{k}$ s can add up to $x^{k+1}$, but adding $p p^{k}$ 's gives $p^{k+1}$.

Ultrametric inequality: All $p$-adic triangles are isosceles!!!

Stronger than the triangle inequality, the ultrametric inequality holds:
$|x \pm y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right) \quad$ (with equality unless $|x|_{p}=|y|_{p}!!!$ )
To discuss this the $p$-adic valuation or $\operatorname{ord}(e r)$ is useful:

$$
\operatorname{ord}_{p}\left(p^{\ell} \cdot \frac{a}{b}\right)=\nu_{p}\left(p^{\ell} \cdot \frac{a}{b}\right)=\ell \quad(\text { with } a, b \text { prime to } p)
$$

And $\operatorname{ord}_{p} 0=\infty$. Then $|x|_{p}=p^{-\operatorname{ord}_{p} x}$.

To see the ultrametric inequality, observe that, for $p^{m}$ the largest power of $p$ dividing $x$, and $p^{n}$ the largest power of $p$ dividing $y$, taking $m \leq n$ without loss of generality, $p^{m}$ divides $x \pm y$. If $m<n$, then $p^{m}$ is the largest power dividing $x \pm y$. That is,

$$
\begin{aligned}
& \operatorname{ord}_{p}(x \pm y) \geq \min \left(\operatorname{ord}_{p} x, \operatorname{ord}_{p} y\right) \\
& \quad(\text { with equality unless ord} \\
& \left.\quad x=\operatorname{ord}_{p} y\right)
\end{aligned}
$$

Rewriting in terms of the norm reverses the inequality, giving the ultrametric inequality.

## Ring structure of $\mathbb{Z}_{p}$

All integers $n$ prime to $p$ become $p$-adic units!!!

Proof: Let $f(x)=n x-1$. Integers $a, b$ with $a p+b n=1$ give solution $x_{1}=b$ to $f(x)=0 \bmod p$. Since $f^{\prime}(x)=n \neq$ $0 \bmod p$, Hensel gives a (compatible!) sequence $x_{n}$ such that $n x_{n}=1 \bmod p^{n}$. The compatibility $x_{n+1}=x_{n} \bmod p^{n}$ assures the sequence is Cauchy, and the limit is the $p$-adic $n^{-1}$.

Or: computing in $\mathbb{Q}_{p}$, from $b n=1-a p, b^{-1} n^{-1}=(1-a p)^{-1}$ and

$$
n^{-1}=b \cdot(1-a p)^{-1}=b \cdot\left(1+a p+a^{2} p^{2}+a^{3} p^{3}+\ldots\right) \in \mathbb{Z}_{p}
$$

For example, to find 11 -adic $7^{-1}$, from $2 \cdot 11-3 \cdot 7=1$,

$$
7^{-1}=(-3) \cdot(1-2 \cdot 11)^{-1}=(-3) \cdot\left(1+2 \cdot 11+4 \cdot 11^{2}+8 \cdot 11^{3}+\ldots\right)
$$

## But wait: zero divisors in $\mathbb{Z}_{p}$ ? $\operatorname{Is} \mathbb{Q}_{p}$ really a field?

Use the $p$-adic norm: if $\alpha \cdot \beta=0$ for $p$-adic integers $\alpha, \beta$, then by multiplicativity

$$
0=|0|_{p}=|\alpha \cdot \beta|_{p}=|\alpha|_{p} \cdot|\beta|_{p}
$$

This is an equality of rational numbers, so either $|\alpha|_{p}=0$ or $|\beta|_{p}=0$, so either $\alpha=0$ or $\beta=0$.

Just to be sure that $|\alpha|_{p}=0 \Rightarrow \alpha=0$ : the completion is Cauchy sequences modulo $\left\{x_{n}\right\} \sim\left\{y_{n}\right\}$ when $\lim _{n}\left|x_{n}-y_{n}\right|_{p}=0$. For non-zero rationals, $\left|p^{\ell} \frac{a}{b}\right|_{p} \rightarrow 0$ requires $\ell \rightarrow+\infty$ (with $a, b$ prime to $p$ ), and $a, b$ have no impact. Then $\left|p^{\ell} \frac{a}{b}-0\right|_{p} \rightarrow 0$, and $p^{\ell} \frac{a}{b} \rightarrow 0$ in $\mathbb{Q}_{p}$. That is, the Cauchy sequence is identified with 0 .

Claim: On $\mathbb{Q}_{p}^{\times}$the $p$-adic norm (still) takes only the discrete values $p^{\ell}$ with $\ell \in \mathbb{Z}$.
... in contrast to the usual $|*|$ 's values on $\mathbb{R}$ versus on $\mathbb{Q}$.

Proof: By definition, for Cauchy $\left\{\alpha_{n}\right\},\left|\lim _{n} \alpha_{n}\right|_{p}=\lim _{n}\left|\alpha_{n}\right|_{p}$. Let $\alpha$ be the limit. For $0<\varepsilon<|\alpha|_{p}$ and $\left|\alpha_{n}-\alpha\right|_{p}<\varepsilon$, by the ultrametric inequality

$$
\left|\alpha_{n}\right|_{p}=\left|\alpha_{n}-\alpha+\alpha\right|_{p}=\max \left(\left|\alpha_{n}-\alpha\right|_{p},|\alpha|_{p}\right)=|\alpha|_{p}
$$

Since $\left|\alpha_{n}\right|_{p}$ are integer powers of $p$, so is $|\alpha|_{p}$.

The discreteness of $|*|_{p}$ is hugely different from the usual $|*|$.

Claim: The $p$-adic completion $\mathbb{Z}_{p}$ of $\mathbb{Z}$ has properties:

$$
\begin{aligned}
& \mathbb{Z}_{p}=\left\{\alpha \in \mathbb{Q}_{p}:|\alpha|_{p} \leq 1\right\}=\left\{\alpha \in \mathbb{Q}_{p}:|\alpha|_{p}<p\right\} \\
& p \mathbb{Z}_{p}=\left\{\alpha \in \mathbb{Q}_{p}:|\alpha|_{p}<1\right\}=\left\{\alpha \in \mathbb{Q}_{p}:|\alpha|_{p} \leq \frac{1}{p}\right\} \\
& \mathbb{Z}_{p}^{\times}=\left\{\alpha \in \mathbb{Q}_{p}:|\alpha|_{p}=1\right\}=\left\{\alpha \in \mathbb{Q}_{p}: \frac{1}{p}<|\alpha|_{p}<p\right\}
\end{aligned}
$$

Each of these sets is both open and closed.

Proof: Use discreteness of $|*|_{p}$.

When a Cauchy sequence $\alpha_{n} \in \mathbb{Q}^{\times}$has $\lim _{n}\left|\alpha_{n}\right|_{p} \leq 1$, eventually $\left|\alpha_{n}\right|_{p}<p$, and then necessarily $\left|\alpha_{n}\right|_{p} \leq 1$ by discreteness. Thus, $\alpha_{n} \in \mathbb{Z}$ from that point, so $\lim _{n} \alpha_{n} \in \mathbb{Z}_{p}$.
[Cont'd]

For a Cauchy sequence $\alpha \in \mathbb{Q}^{\times}$with $\lim _{n}\left|\alpha_{n}\right|_{p}<1$, by discreteness eventually $\left|\alpha_{n}\right|_{p} \leq \frac{1}{p}$. Thus, eventually $\alpha_{n} \in p \mathbb{Z}$. Thus, eventually $\alpha_{n}=p \cdot \frac{\alpha_{n}}{p}$ with $\alpha_{n} / p \in \mathbb{Z}$, exhibiting $\lim _{n} \alpha_{n}$ as an element of $p \cdot \mathbb{Z}_{p}$.

For Cauchy sequence $\alpha \in \mathbb{Q}^{\times}$with $\lim _{n}\left|\alpha_{n}\right|_{p}=1$, by discreteness eventually $\frac{1}{p}<\left|\alpha_{n}\right|_{p}<p$, so $\left|\alpha_{n}\right|_{p}=1$, and $\alpha_{n}=\frac{a_{n}}{b_{n}}$ with $a, b$ prime to $p$. We'd already noted that such things are $p$-adic units.

The topology is metric, and the above shows that $\mathbb{Z}_{p}$ is both the closed ball of radius 1 centered at 0 , and also the open ball of any radius $r$ with $1<r<p$.

## $\mathbb{Z}_{p}$ and $\mathbb{Q}_{p}$ are totally disconnected

That is, given $\alpha \neq \beta \in \mathbb{Q}_{p}$, there are disjoint open-and-closed sets $U \ni \alpha$ and $V \ni \beta$ such that $U \cup V=\mathbb{Q}_{p}$.
... due to the discreteness of the norm/metric/valuation: Let $p^{\ell}=|\alpha-\beta|_{p}$, and consider a ball centered at $\alpha$

$$
B=\left\{x \in \mathbb{Q}_{p}:|\alpha-x|_{p}<p^{\ell}\right\}=\left\{x \in \mathbb{Q}_{p}:|\alpha-x|_{p} \leq p^{\ell-1}\right\}
$$

That is, the ball is both open and closed, so its complement, containing $\beta$, is both open and closed.

Another viewpoint: Even though the $p$-adic norm and metric succeed in making the sequences produced by Hensel's lemma convergent, there might seem an element of whim.

One ambiguity is that many different metrics can give the same topology.

The true state of affairs, addressed candidly, is that Hensel's recursion produces a sequence $x_{n}$ fitting into a picture

$$
\begin{aligned}
& \cdots \longrightarrow x_{n+1} \longrightarrow x_{2} \longrightarrow x_{1} \\
& \cdots \longrightarrow \mathbb{Z} / p^{n+1} \xrightarrow{\bmod p^{n}} \cdots \xrightarrow{\bmod p^{2}} \mathbb{Z} / p^{2} \xrightarrow{\bmod p} \mathbb{Z} / p
\end{aligned}
$$

What we want is not so much a metric something-something, but an object $X$ behind all the $\mathbb{Z} / p^{n}$ 's, and $x_{\infty} \in X$,
making a commutative diagram (meaning that the outcome doesn't depend on what route is traversed)

We should tell how this $X$ is to interact with other things, probably topological rings, meaning rings with topologies so that addition and multiplication are continuous. Hausdorff, for sanity.

Now map will mean continuous ring hom. Require that, for every topological ring $Y$ with a collection of compatible maps (meaning the diagram is commutative)

there is a unique map $Y \rightarrow X$ giving a commutative diagram


A topological ring $X=\lim \mathbb{Z} / p^{n}$ meeting these conditions is the (projective) limit of the $\mathbb{Z} / p^{n}$ 's, and is provably the same $\mathbb{Z}_{p}$ !!!

Note: each finite ring $\mathbb{Z} / p^{n}$ has a unique Hausdorff topology!!!

How to prove existence of projective limits? In this and many other situations, limits $\lim _{n} X_{n}$ are subsets of the (topological) cartesian products $\prod_{n} X_{n}$. Specifically, with

$$
\cdots \longrightarrow X_{n+1} \xrightarrow{\varphi_{n+1}} \cdots \xrightarrow{\varphi_{3}} X_{2} \xrightarrow{\varphi_{2}} X_{1}
$$

a projective limit $X=\lim _{n} X_{n}$ can be constructed as

$$
X=\left\{\left\{x_{n}\right\}: x_{n} \in X_{n} \text { such that } \varphi_{n}\left(x_{n}\right)=x_{n-1} \text { for all } n\right\}
$$

That is, $X$ consists exactly of compatible sequences

$$
\cdots \longrightarrow x_{n+1} \xrightarrow{\varphi_{n+1}} \cdots \xrightarrow{\varphi_{3}} x_{2} \xrightarrow{\varphi_{2}} x_{1}
$$

just as produced by Hensel's recursion. For continuous $\varphi_{n}$ and compact Hausdorff $X_{n}$ 's, Tychonoff's theorem says the product is compact. Such a projective limit is a closed subset of a compact Hausdorff space, so is compact. This proves compactness of $\mathbb{Z}_{p}!!!$

Uniqueness (up to unique isomorphism) of projective limits

The diagrammatic characterization can be used to assure that there's no ambiguity in what $\mathbb{Z}_{p}$ is, as long as it functions as a projective limit:

First, claim the only map of $X=\lim _{n} X_{n}$ to itself, compatible with the maps of it to the $X_{n}$, is the identity. Certainly the identity map is ok. Then the uniqueness of the dotted arrow

proves that the identity is the only compatible map. Next, ...

Suppose $X$ and $X^{\prime}$ were two projective limits. On one hand, there is a unique $f: X^{\prime} \rightarrow X$ giving commutative diagram


On the other hand, reversing the roles of $X$ and $X^{\prime}$, there is a unique compatible map $g: X \rightarrow X^{\prime}$ fitting into


The composites $f \circ g: X \rightarrow X$ and $g \circ f: X^{\prime} \rightarrow X^{\prime}$ are also compatible, so must be the identities on $X$ and $X^{\prime}$, by the first part. Thus, $f, g$ are mutual inverses.

