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Continuing the pre/review ...

Riemann’s explicit formula: complex zeros of zeta functions (and
L-functions) versus properties of primes.

Gauss’ Quadratic Reciprocity via Gauss sums, which are Lagrange
resolvents for cyclotomic fields.

Factorization of Dedekind zeta functions of quadratic extensions of
Q and of cyclotomic fields, as Reciprocity Laws.

Continuing: solving equations mod pn ... and p-adic numbers.
This is Hensel’s Lemma, a version of Newton-Raphson in a
different context. Both completions and projective limits.
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Theorem: (Hensel) For f monic in Z[x], for prime p, if there is
x1 ∈ Z such that f(x1) = 0 mod p but f ′(x1) 6= 0 mod p, then
there is a unique xn mod pn such that f(xn) = 0 mod pn and
xn = x1 mod p. Specifically, with f ′(x1) inverted mod p,

xn+1 = xn −
f(xn)

f ′(x1)
mod pn+1

Proof: Given xn, solve for y mod p so that xn+1 = xn + pny is a
solution mod pn+1. Taylor series:

0 = f(xn+1) = f(xn + pny)

= f(xn) +
f ′(xn)

1!
pny +

f ′′(xn)

2!
(pny)2 + . . . mod pn+1

2n ≥ n+ 1 for n ≥ 1, the equation becomes linear in y.... ///
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The p-adic norm | ∗ |p is defined on Q× by∣∣∣pn · a
b

∣∣∣
p

= p−n (with a, b prime to p, n ∈ Z)

and |0|p = 0. The p-adic metric is made from the norm as usual:
d(x, y) = |x− y|p. Note that |n|p ≤ 1 for all n ∈ Z.

The ring of p-adic integers Zp is the completion of Z with
respect to | ∗ |p.

The field of p-adic rationals Qp is the completion of Q with
respect to | ∗ |p.
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For example, 2-adically,

1 + 2 + 4 + 8 + 16 + . . . = lim
n

(1 + 2 + . . .+ 2n)

= lim
n

1− 2n+1

1− 2
= lim

n

1− limn 2n+1

1− 2
=

1− 0

1− 2
= −1

Repeat warning: Yes, it is possible to write p-adic integers in a
form that makes them look like power series:

α = ao+a1p
1+a2p

2+a3p
3+. . . (with ai ∈ {0, 1, 2, . . . , p− 1})

Even though such representations have occasional use, this is
potentially misleading: no number of xk’s can add up to xk+1,
but adding p pk’s gives pk+1.
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Ultrametric inequality: All p-adic triangles are isosceles!!!

Stronger than the triangle inequality, the ultrametric inequality
holds:

|x± y|p ≤ max
(
|x|p, |y|p) (with equality unless |x|p = |y|p!!!)

To discuss this the p-adic valuation or ord(er) is useful:

ordp(p
` · a
b

) = νp(p
` · a
b

) = ` (with a, b prime to p)

And ordp0 =∞. Then |x|p = p−ordpx.

To see the ultrametric inequality, observe that, for pm the largest
power of p dividing x, and pn the largest power of p dividing y,
taking m ≤ n without loss of generality, pm divides x ± y. If
m < n, then pm is the largest power dividing x± y. That is,

ordp(x± y) ≥ min (ordpx, ordpy)

(with equality unless ordpx = ordpy)

Rewriting in terms of the norm reverses the inequality, giving the
ultrametric inequality.
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Ring structure of Zp

All integers n prime to p become p-adic units!!!

Proof: Let f(x) = nx − 1. Integers a, b with ap + bn = 1
give solution x1 = b to f(x) = 0 mod p. Since f ′(x) = n 6=
0 mod p, Hensel gives a (compatible!) sequence xn such that
nxn = 1 mod pn. The compatibility xn+1 = xn mod pn assures
the sequence is Cauchy, and the limit is the p-adic n−1. ///

Or: computing in Qp, from bn = 1− ap, b−1n−1 = (1− ap)−1 and

n−1 = b · (1− ap)−1 = b · (1 + ap+ a2p2 + a3p3 + . . .) ∈ Zp

For example, to find 11-adic 7−1, from 2 · 11− 3 · 7 = 1,

7−1 = (−3) · (1−2 ·11)−1 = (−3) · (1+2 ·11+4 ·112 +8 ·113 + . . .)
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But wait: zero divisors in Zp? Is Qp really a field?

Use the p-adic norm: if α · β = 0 for p-adic integers α, β, then by
multiplicativity

0 = |0|p = |α · β|p = |α|p · |β|p

This is an equality of rational numbers, so either |α|p = 0 or
|β|p = 0, so either α = 0 or β = 0.

Just to be sure that |α|p = 0⇒ α = 0: the completion is Cauchy
sequences modulo {xn} ∼ {yn} when limn |xn − yn|p = 0. For
non-zero rationals, |p` ab |p → 0 requires ` → +∞ (with a, b prime
to p), and a, b have no impact. Then |p` ab − 0|p → 0, and p` ab → 0
in Qp. That is, the Cauchy sequence is identified with 0.
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Claim: On Q×p the p-adic norm (still) takes only the discrete

values p` with ` ∈ Z.

... in contrast to the usual | ∗ |’s values on R versus on Q.

Proof: By definition, for Cauchy {αn}, | limn αn|p = limn |αn|p.
Let α be the limit. For 0 < ε < |α|p and |αn − α|p < ε, by the
ultrametric inequality

|αn|p = |αn − α+ α|p = max(|αn − α|p, |α|p) = |α|p

Since |αn|p are integer powers of p, so is |α|p. ///

The discreteness of | ∗ |p is hugely different from the usual | ∗ |.
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Claim: The p-adic completion Zp of Z has properties:

Zp = {α ∈ Qp : |α|p ≤ 1} = {α ∈ Qp : |α|p < p}

pZp = {α ∈ Qp : |α|p < 1} = {α ∈ Qp : |α|p ≤ 1
p}

Z×p = {α ∈ Qp : |α|p = 1} = {α ∈ Qp : 1
p < |α|p < p}

Each of these sets is both open and closed.

Proof: Use discreteness of | ∗ |p.

When a Cauchy sequence αn ∈ Q× has limn |αn|p ≤ 1, eventually
|αn|p < p, and then necessarily |αn|p ≤ 1 by discreteness. Thus,
αn ∈ Z from that point, so limn αn ∈ Zp.

[Cont’d]
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For a Cauchy sequence α ∈ Q× with limn |αn|p < 1, by
discreteness eventually |αn|p ≤ 1

p . Thus, eventually αn ∈ pZ.

Thus, eventually αn = p · αn

p with αn/p ∈ Z, exhibiting limn αn as
an element of p · Zp.

For Cauchy sequence α ∈ Q× with limn |αn|p = 1, by discreteness
eventually 1

p < |αn|p < p, so |αn|p = 1, and αn = an
bn

with a, b
prime to p. We’d already noted that such things are p-adic units.

The topology is metric, and the above shows that Zp is both the
closed ball of radius 1 centered at 0, and also the open ball of any
radius r with 1 < r < p.
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Zp and Qp are totally disconnected

That is, given α 6= β ∈ Qp, there are disjoint open-and-closed sets
U 3 α and V 3 β such that U ∪ V = Qp.

... due to the discreteness of the norm/metric/valuation: Let
p` = |α− β|p, and consider a ball centered at α

B = {x ∈ Qp : |α− x|p < p`} = {x ∈ Qp : |α− x|p ≤ p`−1}

That is, the ball is both open and closed, so its complement,
containing β, is both open and closed. ///
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Another viewpoint: Even though the p-adic norm and metric
succeed in making the sequences produced by Hensel’s lemma
convergent, there might seem an element of whim.

One ambiguity is that many different metrics can give the same
topology.

The true state of affairs, addressed candidly, is that Hensel’s
recursion produces a sequence xn fitting into a picture

. . . // xn+1 // . . . // x2 // x1

. . . // Z/pn+1
mod pn // . . . mod p2// Z/p2

mod p // Z/p
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What we want is not so much a metric something-something, but
an object X behind all the Z/pn’s, and x∞ ∈ X,

x∞
))l h c _ [ V

''n l j h f c a _ ] [ Y V T R P %%r
o

l j g d b _ \ Z W T R
O

L
. . . // xn+1 // . . . // x2 // x1

making a commutative diagram (meaning that the outcome
doesn’t depend on what route is traversed)

X
**k g c _ [ W ((m k i g e c a _ ] [ Y W U S &&p

m
k i f d a _ ] Z X U S

Q
N

. . . // Z/pn+1
mod pn // . . . mod p2// Z/p2

mod p // Z/p

We should tell how this X is to interact with other things,
probably topological rings, meaning rings with topologies so that
addition and multiplication are continuous. Hausdorff, for sanity.
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Now map will mean continuous ring hom. Require that, for every
topological ring Y with a collection of compatible maps (meaning
the diagram is commutative)

Y
** (( &&

. . . // Z/pn+1
mod pn // . . . mod p2// Z/p2

mod p // Z/p

there is a unique map Y → X giving a commutative diagram

X
** (( &&

. . . // Z/pn+1
mod pn // . . . mod 2// Z/p2

mod p // Z/p

Y

``@
@

@
@

;;wwwwwwwww

33ggggggggggggggggggggggggggg

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

A topological ring X = limZ/pn meeting these conditions is the
(projective) limit of the Z/pn’s, and is provably the same Zp!!!

Note: each finite ring Z/pn has a unique Hausdorff topology!!!
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How to prove existence of projective limits? In this and many
other situations, limits limnXn are subsets of the (topological)
cartesian products

∏
nXn. Specifically, with

. . . // Xn+1
ϕn+1 // . . . ϕ3 // X2

ϕ2 // X1

a projective limit X = limnXn can be constructed as

X = {{xn} : xn ∈ Xn such that ϕn(xn) = xn−1 for all n}

That is, X consists exactly of compatible sequences

. . . // xn+1
ϕn+1 // . . . ϕ3 // x2

ϕ2 // x1

just as produced by Hensel’s recursion. For continuous ϕn and
compact Hausdorff Xn’s, Tychonoff’s theorem says the product is
compact. Such a projective limit is a closed subset of a compact
Hausdorff space, so is compact. This proves compactness of Zp!!!
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Uniqueness (up to unique isomorphism) of projective limits

The diagrammatic characterization can be used to assure that
there’s no ambiguity in what Zp is, as long as it functions as a
projective limit:

First, claim the only map of X = limnXn to itself, compatible
with the maps of it to the Xn, is the identity. Certainly the
identity map is ok. Then the uniqueness of the dotted arrow

X
(( '' %%

. . . // Xn
ϕn // . . . ϕ3 // X2

ϕ2 // X1

X

``A
A

A
A

=={{{{{{{{

44hhhhhhhhhhhhhhhhhhhhhhh

33ffffffffffffffffffffffffffffffff

proves that the identity is the only compatible map. Next, ...
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Suppose X and X ′ were two projective limits. On one hand, there
is a unique f : X ′ → X giving commutative diagram

X
(( '' %%

. . . // Xn
ϕn // . . . ϕ3 // X2

ϕ2 // X1

X ′

``A
A

A
A

=={{{{{{{{

44iiiiiiiiiiiiiiiiiiiiiii

33ffffffffffffffffffffffffffffffff

On the other hand, reversing the roles of X and X ′, there is a
unique compatible map g : X → X ′ fitting into

X ′
(( '' %%

. . . // Xn
ϕn // . . . ϕ3 // X2

ϕ2 // X1

X

aaB
B

B
B

=={{{{{{{{

44hhhhhhhhhhhhhhhhhhhhhhh

33ffffffffffffffffffffffffffffffff

The composites f ◦ g : X → X and g ◦ f : X ′ → X ′ are also
compatible, so must be the identities on X and X ′, by the first
part. Thus, f, g are mutual inverses. ///
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