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Continuing the pre/review of the simple (!?) case... Some
themes so far:

Riemann’s explicit formula connects complex zeros of meromorphic
continuations of zeta functions (and L-functions) to tangible,
finitistic properties of primes.

Gauss’ Quadratic Reciprocity is proven via Gauss sums, which are
Lagrange resolvents for cyclotomic fields.

Dedekind zeta functions of quadratic extensions of Q, and of
cyclotomic fields, factor into products of Dedekind L-functions.
These, too, are Reciprocity Laws.

Next: Solving equations mod pn ... and p-adic numbers. This
is Hensel’s Lemma, a version of Newton-Raphson in a different
context.
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Recall: solving linear equations mod N

We need just a simple case: for gcd(a,N) = 1, for the equation

ax+ b = 0 mod N

a solution x ∈ Z exists, and is unique up to multiples of N . Proof:
recall (!) that there are integers c, d such that

gcd(a,N) = c · a+ d ·N

Since the gcd is 1, this is 1 = ca + dN . Thus, we have an inverse
c = a−1 mod N for a mod N . This gives existence and uniqueness
all at once:

ax+ b = 0 mod N ⇐⇒ x = −a−1b mod N

Comment: The case N prime is conceptually simpler, since
Z/p is provably a field. However, indeed, some part of the above
discussion is exactly what proves Z/p is a field.
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Example: Solving x2 + 1 = 0 mod 5n for large n.

Since 4|5 − 1 and F×5 is cyclic, there exists an integer solution
x1 mod 5. In fact, x1 = 2 or 3 mod 5.

Next, given x1, try to adjust it by multiples of 5 to obtain a
solution x2 mod 52: let x2 = x1 + 5y and solve for y:

0 = x22 + 1 = (x1 + 5y)2 + 1 = x21 + 10x1y + 52y2 + 1 mod 52

The y2 term has coefficient 0 mod 52, so this becomes a linear
equation in y:

0 = x21 + 10x1y + 1 mod 52

By design, x21 + 1 is divisible by 5, so we can divide through by 5:

x21 + 1

5
+ 2x1y = 0 mod 5

Since 2x1 is invertible mod 5, there is a unique solution y mod 5.
Thus, there is unique x2 mod 52 such that both x2 = x1 mod 5
and x22 + 1 = 0 mod 52.
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Induction to get a solution xn+1 mod 5n+1 from a solution
xn mod 5n. Try to adjust xn by a multiple of 5n: xn+1 = xn+5ny.
Solve for y:

0 = x2n+1 + 1 = x2n + 2 · 5nxny + 52ny2 + 1 mod 5n+1

Again, the coefficient of y2 is 0 mod 5n+1, since 2n ≥ n+ 1 for n ≥
1, giving a linear equation in y. By induction, x2n + 1 = 0 mod 52,
so divide through by 5n:

x2n + 1

5n
+ 2xny = 0 mod 5

For that matter, by induction, xn = x1 mod 5, so

y = −(2x1)−1 · x
2
n + 1

5n
mod 5
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A somewhat-more-general case:

Theorem: (Hensel) For f monic in Z[x], for prime p, if there is
x1 ∈ Z such that f(x1) = 0 mod p but f ′(x1) 6= 0 mod p, then
there is a unique xn mod pn such that f(xn) = 0 mod pn and
xn = x1 mod p. Specifically, with f ′(x1) inverted mod p,

xn+1 = xn −
f(xn)

f ′(x1)
mod pn+1

Proof: As in the example, given xn, solve for y mod p so that
xn+1 = xn + pny is a solution mod pn+1. Taylor series for
polynomials are legitimate:

0 = f(xn+1) = f(xn + pny)

= f(xn) +
f ′(xn)

1!
pny +

f ′′(xn)

2!
(pny)2 + . . . mod pn+1
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The sum is finite, but division by factorials...? In fact, for f ∈
Z[x], f (k)(x) has coefficients divisible by k!(!) It suffices to prove
this for monomials:

dk

dxk
xn = n(n− 1)(n− 2) . . . (n− k + 1) · xn−k

Hopefully, we recognize

n(n− 1)(n− 2) . . . (n− k + 1)

k!
=

n!

(n− k)! k!

= binomial coefficient ∈ Z

As 2n ≥ n+ 1 for n ≥ 1, the equation becomes linear in y:

0 = f(xn+1) = f(xn + pny) = f(xn) +
f ′(xn)

1!
pny mod pn+1
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Inductively, xn = x1 mod p, so f ′(xn) = f(x1) mod p. Thus, it is
invertible mod p, and mod pn+1. Then

pny = − f(xn)

f ′(xn)
mod pn+1

Using f(xn) = 0 mod pn,

y = − f(xn)

pn · f ′(x1)
mod p

Thus,

xn+1 = xn + pny = xn −
f(xn)

f ′(xn)
= xn −

f(xn)

f ′(x1)
mod pn+1

Done.
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The sequence of solutions xn+1 looks like

x1 = x1
x2 = x1 + py1
x3 = x1 + py1 + p2y2
x4 = x1 + py1 + p2y2 + p3y3

. . .

The adjustments yi can be in the range {0, 1, 2, . . . , p − 1} if we
want.

From xn we can recover all the earlier ones: xn−1, xn−2, . . . , x2, x1,
at least modulo the respective pk’s.

It would be conceptually economical if the sequence x1, x2, x3, . . .
had a limit, x∞, which somehow solved the equation modulo p∞,
from which we could recover solutions modulo pn for all finite n.
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There are at least two different-looking ways to make the limiting
process legitimate.

The more popular, more accessible approach is by making up a
metric, the p-adic metric d(−,−), coming from the p-adic norm
| ∗ |p, in which pn get smaller as n gets larger. Then the
p-adic integers Zp are the completion of Z with respect to
the p-adic metric, and the p-adic rational numbers Qp are the
completion of Q. We’ll do this first.

The other approach, perhaps less popular, because it is less
elementary, is nevertheless more revealing of the true workings
of p-adic numbers and other things arising in a similar fashion: Zp

is the (projective) limit of the Z/pn. We’ll look at this second.
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The p-adic norm | ∗ |p is defined on Q by∣∣∣pn · a
b

∣∣∣
p

= p−n (with a, b prime to p, n ∈ Z)

The p-adic metric is made from the norm in the same way that
the usual (”real”) metric on Q is made from the usual absolute
value: d(x, y) = |x − y|p. It is obviously symmetric and reflexive,
but the triangle inequality

d(x, z) ≤ d(x, y) + d(y, z)

takes a bit of thought. Yes, |k|p ≤ 1 for all k ∈ Z. Examples:

|5|2 = 1 |5|5 = 1
5 |5|3 = 1

|10|2 = 1
2 |10|5 = 1

5 |10|3 = 1

| 23 |2 = 1
2 | 23 |5 = 1 | 23 |3 = 3

| 3518 |2 = 2 | 3518 |5 = 1
5 | 3518 |3 = 9
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A metric space is complete if every Cauchy sequence has a limit.

The completion X̃, d̃ of a metric space X, d can be characterized as
a complete metric space with an inclusion j : X → X̃ preserving
the metric, that is, d̃(jx, jy) = d(x, y), and such that X is dense,

that is, every point of X̃ is a limit of a Cauchy sequence in X.

Completions X̃ are proven to exist by giving a construction:
X̃ is Cauchy sequences in X modulo the equivalence relation
{xn} ∼ {yn} when limn d(xn, yn) = 0. The metric on this model is
d̃({xn}, {yn}) = limn d(xn, yn). There are things to be checked to
certify that this construction succeeds in making a completion.

Another characterization of the completion j : X → X̃, which
makes it easy to prove uniqueness, is that any metric-preserving
map f : X → Y to a complete metric space Y factors through
j : X → X̃, in the sense that there is a unique metric-preserving
F : X̃ → Y such that

X̃
F

��?
?

?
?

X

j

OO

f // Y

(metric-preserving maps)



Garrett 09-23-2011 12

The ring of p-adic integers Zp is the completion of Z with
respect to | ∗ |p.

The field of p-adic rationals Qp is the completion of Q with
respect to | ∗ |p.

We’ll also want to be sure that addition, multiplication, and
inversion (of non-zero things) are continuous on Q in the p-adic
metric, so that it is legitimate to extend by continuity to define
addition and multiplication on Qp:

(limn an) · (limn bn) = limn(an · bn)

(limn an) + (limn bn) = limn(an + bn)

(limn an)−1 = limn(a−1n )
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By design, the sequence of solutions xn to f(xn) = 0 mod pn,

x1 = x1
x2 = x1 + py1
x3 = x1 + py1 + p2y2
x4 = x1 + py1 + p2y2 + p3y3

. . .

(with x1, yi in Z)

is Cauchy in the p-adic metric: for m ≤ n,

|xn − xm|p = |pm+1ym+1 + . . . pnyn|p

= |pm+1|p · |ym+1 + . . . pn−m−1yn|p ≤ |pm+1|p · 1 =
1

pm+1

since ym+1 + . . . pn−m−1yn ∈ Z!!!
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For example, 2-adically,

1 + 2 + 4 + 8 + 16 + . . . = lim
n

(1 + 2 + . . .+ 2n)

= lim
n

1− 2n+1

1− 2
=

1− 0

1− 2
= −1

Generally, p-adically,

1 + p+ p2 + p3 + . . . =
1

1− p

In contrast, the usual exponential series

ex = 1 +
x

1!
+
x2

2!
+ . . .

converges p-adically only for |x|p small, because the factorials
hurt, rather than help the convergence.
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Warning: Yes, it is possible to write p-adic integers in a form
that makes them look like power series:

α = ao+a1p
1+a2p

2+a3p
3+. . . (with ai ∈ {0, 1, 2, . . . , p− 1})

In fact, this is what Hensel originally emphasized. However,
neither addition nor multiplication treat such expressions as power
series: the basic discrepancy is that no number of xk’s can add up
to xk+1, but adding p pk’s gives pk+1.

Hensel’s analogy to power series is correct, but not quite in the
naive way one might think.

Therefore, while the possibility of such expressions is genuine, they
do not reflect the behavior of p-adic numbers very well!!!
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Another viewpoint: Even though the p-adic norm and metric
succeed in making the sequences produced by Hensel’s lemma
convergent, there might seem an elementy of whimsicality.

One ambiguity is that many different metrics can give the same
topology.

The true state of affairs, addressed candidly, is that Hensel’s
recursion produces a sequence xn fitting into a picture

. . . // xn+1 // . . . // x2 // x1

. . . // Z/pn+1
mod pn

// . . . mod p2

// Z/p2
mod p // Z/p


