Continuing the pre/review of the simple (!?) case...

Continuing: factorization of Dedekind zeta-functions into Dirichlet L-functions, equivalently, behavior of primes in extensions. So far,

$$
\begin{aligned}
& \zeta_{\mathbb{Z}[i]}(s)=\zeta(s) \cdot L(s, \chi) \quad \chi(p)=\binom{-1}{p}_{2} \\
& \zeta_{\mathbb{Z}[\sqrt{2}]}(s)=\zeta(s) \cdot L(s, \chi) \quad \chi(p)=\binom{2}{p}_{2} \\
& \zeta_{\mathbb{Z}[\sqrt{-2}]}(s)=\zeta(s) \cdot L(s, \chi) \quad \chi(p)=\binom{-2}{p}_{2}
\end{aligned}
$$

Next, $\mathbb{Z}[\omega]$ with ω an eighth root of unity. First, look at the eighth cyclotomic polynomial $x^{4}+1$.

Comment: The change of variables $x \rightarrow x+1$ gives $x^{4}+4 x^{3}+6 x^{2}+4 x+2$, so Eisenstein's criterion and Gauss' Lemma prove irreducibility of $x^{4}+1$ in $\mathbb{Q}[x]$.

A peculiar feature of the polynomial $x^{4}+1$:

Claim: $x^{4}+1$ is reducible modulo every prime p.
$p=2$ is easy. For $p>2$, for $x^{4}+1=0$ to have a root in \mathbb{F}_{p} requires existence of an element of order 8 in \mathbb{F}_{p}^{\times}, so $8 \mid p-1$, and $p=1 \bmod 8$. For $x^{4}+1=0$ to have a root in $\mathbb{F}_{p^{2}}$ requires existence of an element of order 8 in $\mathbb{F}_{p^{2}} \times$, so $8 \mid p^{2}-1$.

Interestingly-enough, $\mathbb{Z} / 8^{\times}$is not cyclic, but is isomorphic to $\mathbb{Z} / 2 \oplus \mathbb{Z} / 2$. Thus, $p^{2}=1 \bmod 8$ for all odd p. That is, at worst, $x^{4}+1=0$ has a root in $\mathbb{F}_{p^{2}}$ for all odd p.

Comment For f a monic polynomial in $\mathbb{Z}[x]$ irreducibility of its image in $\mathbb{F}_{p}[x]$ certainly implies its irreducibility in $\mathbb{Z}[x]$. We might hope that there'd be a sort of converse, namely, that irreducible monics in $\mathbb{Z}[x]$ would be irreducible mod some prime $p \ldots$ but $x^{4}+1$ is a counter-example.

Example: eighth roots of unity

Let $\omega=\frac{1+i}{\sqrt{2}}$ be a primitive eighth root of unity, and $\mathfrak{o}=\mathbb{Z}[\omega]$.
The non-trivial characters mod 8 are $\binom{-1}{p}_{2},\binom{2}{p}_{2}$, and $\binom{-2}{p}_{2}$.

Claim:

$$
\zeta_{0}(s)=\zeta(s) \cdot L\left(s,\binom{-1}{p}\right) \cdot L\left(s,\binom{2}{p}\right) \cdot L\left(s,\binom{-2}{p}\right)
$$

Without determining whether \mathfrak{o} is a PID, or what its units are, if/when it becomes necessary, let's be willing to grant that it is a Dedekind domain, in that every non-zero ideal factors uniquely into prime ideals.

By Euler's criterion, computing mod p,

$$
\binom{-2}{p}_{2}=(-2)^{\frac{p-1}{2}}=(-1)^{\frac{p-1}{2}} \cdot 2^{\frac{p-1}{2}}=\binom{-1}{p}_{2} \cdot\binom{2}{p}_{2}
$$

The characters of $\mathbb{Z} / 8^{\times}$

$p \backslash \chi$	triv	$\binom{-1}{*}$	$\binom{2}{*}$	$\binom{-2}{*}$
$1 \bmod 8$	1	1	1	1
$3 \bmod 8$	1	-1	-1	1
$5 \bmod 8$	1	1	-1	-1
$7 \bmod 8$	1	-1	1	-1

For $3,5,7$ there are exactly two -1 's in each row.

As earlier, for rational prime $p>2$,

$$
\begin{aligned}
& \mathfrak{o} / p \approx \mathbb{Z}[x] /\left\langle x^{4}+1, p\right\rangle \approx \mathbb{F}_{p}[x] /\left\langle x^{4}+1\right\rangle \\
& \approx\left\{\begin{array}{cl}
\mathbb{F}_{p} \oplus \mathbb{F}_{p} \oplus \mathbb{F}_{p} \oplus \mathbb{F}_{p} & (\text { for } p=1 \bmod 8) \\
\mathbb{F}_{p^{2}} \oplus \mathbb{F}_{p^{2}} & (\text { for } p=3,5,7 \bmod 8)
\end{array}\right.
\end{aligned}
$$

Observe: Prime splitting determined by congruence conditions!!!

Since $x^{4}+1=(x+1)^{4} \bmod 2$, for $p=2$ something more complicated happens:

$$
\mathbb{F}_{2}[x] /(x+1)^{4} \neq \text { product of fields }
$$

Indeed, we already saw that, in the PIDs $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$, inside the intermediate fields, 2 is ramified. A little later we'll have means to see that the above computation implies 2 is totally ramified in the extension $\mathfrak{o}=\mathbb{Z}[\omega]$ of \mathbb{Z}, namely, $2 \mathfrak{o}=\mathfrak{p}^{4}$.

Write $\chi_{D}(p)=\binom{D}{p}_{2}$ for $D=-1,2,-2$.

For $p=1 \bmod 8$, applying the ideal norm to $p \mathfrak{o}=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{p}_{3} \mathfrak{p}_{4}$ gives $N \mathfrak{p}_{i}=p$, so

$$
\begin{gathered}
\prod_{\mathfrak{p} \mid p} \frac{1}{1-N \mathfrak{p}^{-s}}=\left(\frac{1}{1-p^{-s}}\right)^{4} \\
=\frac{1}{1-\frac{1}{p^{s}}} \cdot \frac{1}{1-\frac{\chi-1(p)}{p^{s}}} \cdot \frac{1}{1-\frac{\chi_{2}(p)}{p^{s}}} \cdot \frac{1}{1-\frac{\chi_{-2}(p)}{p^{s}}}
\end{gathered}
$$

$=$ Euler p-factors from $\zeta(s), L\left(s, \chi_{-1}\right), L\left(s, \chi_{2}\right), L\left(s, \chi_{-2}\right)$

For $p=3,5,7 \bmod 8, p \mathfrak{o}=\mathfrak{p}_{1} \mathfrak{p}_{2}$ gives $N \mathfrak{p}_{i}=p^{2}$, so

$$
\begin{aligned}
& \prod_{\mathfrak{p} \mid p} \frac{1}{1-N \mathfrak{p}^{-s}}=\left(\frac{1}{1-p^{-2 s}}\right)^{2} \\
= & \frac{1}{1-\frac{1}{p^{s}}} \cdot \frac{1}{1+\frac{1}{p^{s}}} \cdot \frac{1}{1-\frac{1}{p^{s}}} \cdot \frac{1}{1+\frac{1}{p^{s}}} \quad \text { (in some order!?!) } \\
= & \frac{1}{1-\frac{1}{p^{s}}} \cdot \frac{1}{1-\frac{\chi_{-1}(p)}{p^{s}}} \cdot \frac{1}{1-\frac{\chi_{2}(p)}{p^{s}}} \cdot \frac{1}{1-\frac{\chi-2(p)}{p^{s}}} \quad \text { (order?) } \\
= & \text { Euler } p \text {-factors from } \zeta(s), L\left(s, \chi_{-1}\right), L\left(s, \chi_{2}\right), L\left(s, \chi_{-2}\right)
\end{aligned}
$$

We could have treated $p=3,5,7$ separately, tracking which two-out-of-three characters took values -1 , but this would not have accomplished much. Except for the Euler 2-factors, we've proven

$$
\zeta_{\mathfrak{o}}(s)=\zeta(s) \cdot L\left(s,\binom{-1}{p}\right) \cdot L\left(s,\binom{2}{p}\right) \cdot L\left(s,\binom{-2}{p}\right)
$$

Example: fifth roots of unity

Let ω be a primitive fifth root of unity, and $\mathfrak{o}=\mathbb{Z}[\omega]$.

The group $\mathbb{Z} / 5^{\times}$has four characters: the trivial one, an order-two character χ_{2}, and two order-four characters χ_{1}, χ_{3}.
(Note: This indexing is incompatible with earlier...)

Claim:

$$
\zeta_{\mathfrak{o}}(s)=\zeta(s) \cdot L\left(s, \chi_{1}\right) \cdot L\left(s, \chi_{2}\right) \cdot L\left(s, \chi_{3}\right)
$$

Without determining whether \mathfrak{o} is a PID, or what its units are, if necessary, grant that it is a Dedekind domain, ...

As earlier, for rational prime p, with $\Phi_{5}(x)=x^{4}+x^{3}+x^{2}+x+1$ the fifth cyclotomic polynomial,

$$
\begin{gathered}
\mathfrak{o} / p \approx \mathbb{Z}[x] /\left\langle\Phi_{5}, p\right\rangle \approx \mathbb{F}_{p}[x] /\left\langle\Phi_{5}\right\rangle \\
\approx\left\{\begin{array}{cl}
\mathbb{F}_{p} \oplus \mathbb{F}_{p} \oplus \mathbb{F}_{p} \oplus \mathbb{F}_{p} & (\text { for } 5 \mid p-1) \\
\mathbb{F}_{p^{2}} \oplus \mathbb{F}_{p^{2}} & \left(\text { for } 5 \mid p^{2}-1 \text { but } 5 \nmid p-1\right) \\
\mathbb{F}_{p^{4}} & \left(\text { for } 5 \mid p^{4}-1 \text { but } 5 \nmid p^{2}-1\right)
\end{array}\right. \\
\approx\left\{\begin{array}{cl}
\mathbb{F}_{p} \oplus \mathbb{F}_{p} \oplus \mathbb{F}_{p} \oplus \mathbb{F}_{p} & (\text { for } p=1 \bmod 5) \\
\mathbb{F}_{p^{2}} \oplus \mathbb{F}_{p^{2}} & (\text { for } p=-1 \bmod 5) \\
\mathbb{F}_{p^{4}} & (\text { for } p=2,3 \bmod 5)
\end{array}\right.
\end{gathered}
$$

Observe: Prime splitting determined by congruence conditions!!!

For p splitting completely $p \mathfrak{o}=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{p}_{3} \mathfrak{p}_{4}$, norms are $N \mathfrak{p}_{i}=p$, and

$$
\begin{gathered}
\prod_{\mathfrak{p} \mid p} \frac{1}{1-N \mathfrak{p}^{-s}}=\left(\frac{1}{1-p^{-s}}\right)^{4} \\
=\frac{1}{1-\frac{1}{p^{s}}} \cdot \frac{1}{1-\frac{\chi_{1}(p)}{p^{s}}} \cdot \frac{1}{1-\frac{\chi_{2}(p)}{p^{s}}} \cdot \frac{1}{1-\frac{\chi_{3}(p)}{p^{s}}}
\end{gathered}
$$

$=$ Euler p-factors from $\zeta(s), L\left(s, \chi_{1}\right), L\left(s, \chi_{2}\right), L\left(s, \chi_{3}\right)$

For p splitting half-way $p \mathfrak{o}=\mathfrak{p}_{1} \mathfrak{p}_{2}$, norms are $N \mathfrak{p}_{i}=p^{2}$, and

$$
\begin{gathered}
\prod_{\mathfrak{p} \mid p} \frac{1}{1-N \mathfrak{p}^{-s}}=\left(\frac{1}{1-p^{-2 s}}\right)^{2} \\
=\frac{1}{1-\frac{1}{p^{s}}} \cdot \frac{1}{1-\frac{1}{p^{s}}} \cdot \frac{1}{1+\frac{1}{p^{s}}} \cdot \frac{1}{1+\frac{1}{p^{s}}} \\
=\frac{1}{1-\frac{1}{p^{s}}} \cdot \frac{1}{1-\frac{\chi_{2}(p)}{p^{s}}} \cdot \frac{1}{1-\frac{\chi_{1}(p)}{p^{s}}} \cdot \frac{1}{1-\frac{\chi_{3}(p)}{p^{s}}} \\
=\text { Euler } p \text {-factors from } \zeta(s), L\left(s, \chi_{2}\right), L\left(s, \chi_{1}\right), L\left(s, \chi_{3}\right)
\end{gathered}
$$

... in that order, except that we can't distinguish the order-four characters χ_{1}, χ_{3}.

For p inert $p \mathfrak{o}=\mathfrak{p}$, the norm is $N \mathfrak{p}=p^{4}$, and

$$
\begin{gathered}
\prod_{\mathfrak{p} \mid p} \frac{1}{1-N \mathfrak{p}^{-s}}=\frac{1}{1-p^{-4 s}} \\
=\frac{1}{1-\frac{1}{p^{s}}} \cdot \frac{1}{1+\frac{1}{p^{s}}} \cdot \frac{1}{1-\frac{i}{p^{s}}} \cdot \frac{1}{1+\frac{i}{p^{s}}} \\
=\frac{1}{1-\frac{1}{p^{s}}} \cdot \frac{1}{1-\frac{\chi_{2}(p)}{p^{s}}} \cdot \frac{1}{1-\frac{\chi_{1}(p)}{p^{s}}} \cdot \frac{1}{1-\frac{\chi_{3}(p)}{p^{s}}} \\
=\text { Euler } p \text {-factors from } \zeta(s), L\left(s, \chi_{2}\right), L\left(s, \chi_{1}\right), L\left(s, \chi_{3}\right)
\end{gathered}
$$

... not distinguishing the order-four characters χ_{1}, χ_{3}.

This proves the claimed factorization, except for $p=5$. The interested reader might show that $5 \mathfrak{o}=(\omega-1)^{4}$, and then it's easy to see the complete factorization of the Dedekind zeta.

