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Continuing the pre/review of the simple (!?) case...

Continuing: factorization of Dedekind zeta-functions into Dirichlet
L-functions, equivalently, behavior of primes in extensions. So far,

ζZ[i](s) = ζ(s) · L(s, χ) χ(p) =
(−1

p

)

2

ζZ[
√

2](s) = ζ(s) · L(s, χ) χ(p) =
(

2
p

)

2

ζZ[
√
−2](s) = ζ(s) · L(s, χ) χ(p) =

(−2
p

)

2

Next, Z[ω] with ω an eighth root of unity. First, look at the
eighth cyclotomic polynomial x4 + 1.

Comment: The change of variables x → x + 1 gives
x4 +4x3 +6x2 +4x+2, so Eisenstein’s criterion and Gauss’ Lemma

prove irreducibility of x4 + 1 in Q[x].
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A peculiar feature of the polynomial x4 + 1:

Claim: x4 + 1 is reducible modulo every prime p.

p = 2 is easy. For p > 2, for x4 + 1 = 0 to have a root in Fp

requires existence of an element of order 8 in F×
p , so 8|p − 1, and

p = 1 mod 8. For x4 + 1 = 0 to have a root in Fp2 requires
existence of an element of order 8 in Fp2×, so 8|p2 − 1.

Interestingly-enough, Z/8× is not cyclic, but is isomorphic toZ/2 ⊕ Z/2. Thus, p2 = 1 mod 8 for all odd p. That is, at worst,
x4 + 1 = 0 has a root in Fp2 for all odd p. ///

Comment For f a monic polynomial in Z[x] irreducibility of
its image in Fp[x] certainly implies its irreducibility in Z[x].
We might hope that there’d be a sort of converse, namely, that
irreducible monics in Z[x] would be irreducible mod some prime
p... but x4 + 1 is a counter-example.
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Example: eighth roots of unity

Let ω = 1+i√
2

be a primitive eighth root of unity, and o = Z[ω].

The non-trivial characters mod 8 are
(−1

p

)

2
,
(

2
p

)

2
, and

(−2
p

)

2
.

Claim:

ζo(s) = ζ(s) · L(s,
(−1

p

)

) · L(s,
(

2
p

)

) · L(s,
(−2

p

)

)

Without determining whether o is a PID, or what its units are,
if/when it becomes necessary, let’s be willing to grant that it is
a Dedekind domain, in that every non-zero ideal factors uniquely

into prime ideals.
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By Euler’s criterion, computing mod p,

(−2

p

)

2

= (−2)
p−1

2 = (−1)
p−1

2 · 2 p−1

2 =

(−1

p

)

2

·
(

2

p

)

2

The characters of Z/8×

p\χ triv
(−1

∗
) (

2
∗
) (−2

∗
)

1 mod 8 1 1 1 1

3 mod 8 1 −1 −1 1

5 mod 8 1 1 −1 −1

7 mod 8 1 −1 1 −1

For 3, 5, 7 there are exactly two −1’s in each row.
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As earlier, for rational prime p > 2,

o/p ≈ Z[x]/〈x4 + 1, p〉 ≈ Fp[x]/〈x4 + 1〉

≈







Fp ⊕Fp ⊕Fp ⊕Fp (for p = 1 mod 8)Fp2 ⊕Fp2 (for p = 3, 5, 7 mod 8)

Observe: Prime splitting determined by congruence conditions!!!

Since x4 + 1 = (x + 1)4 mod 2, for p = 2 something more
complicated happens:F2[x]/(x + 1)4 6= product of fields

Indeed, we already saw that, in the PIDs Z[i] and Z[
√

2], inside
the intermediate fields, 2 is ramified. A little later we’ll have
means to see that the above computation implies 2 is totally

ramified in the extension o = Z[ω] of Z, namely, 2o = p4.
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Write χD(p) =

(

D

p

)

2

for D = −1, 2,−2.

For p = 1 mod 8, applying the ideal norm to po = p1p2p3p4 gives
Npi = p, so

∏

p|p

1

1 − Np−s
=

( 1

1 − p−s

)4

=
1

1 − 1

ps

· 1

1 − χ−1(p)

ps

· 1

1 − χ2(p)

ps

· 1

1 − χ−2(p)

ps

= Euler p-factors from ζ(s), L(s, χ−1), L(s, χ2), L(s, χ−2)
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For p = 3, 5, 7 mod 8, po = p1p2 gives Npi = p2, so

∏

p|p

1

1 − Np−s
=

( 1

1 − p−2s

)2

=
1

1 − 1

ps

· 1

1 +
1

ps

· 1

1 − 1

ps

· 1

1 +
1

ps

(in some order!?!)

=
1

1 − 1

ps

· 1

1 − χ−1(p)

ps

· 1

1 − χ2(p)

ps

· 1

1 − χ−2(p)

ps

(order?)

= Euler p-factors from ζ(s), L(s, χ−1), L(s, χ2), L(s, χ−2)

We could have treated p = 3, 5, 7 separately, tracking which two-
out-of-three characters took values −1, but this would not have
accomplished much. Except for the Euler 2-factors, we’ve proven

ζo(s) = ζ(s) · L(s,
(−1

p

)

) · L(s,
(

2
p

)

) · L(s,
(−2

p

)

)
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Example: fifth roots of unity

Let ω be a primitive fifth root of unity, and o = Z[ω].

The group Z/5× has four characters: the trivial one, an order-two
character χ2, and two order-four characters χ1, χ3.

(Note: This indexing is incompatible with earlier...)

Claim:
ζo(s) = ζ(s) · L(s, χ1) · L(s, χ2) · L(s, χ3)

Without determining whether o is a PID, or what its units are, if
necessary, grant that it is a Dedekind domain, ...
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As earlier, for rational prime p, with Φ5(x) = x4 + x3 + x2 + x + 1
the fifth cyclotomic polynomial,

o/p ≈ Z[x]/〈Φ5, p〉 ≈ Fp[x]/〈Φ5〉

≈



















Fp ⊕Fp ⊕Fp ⊕Fp (for 5|p − 1)Fp2 ⊕Fp2 (for 5|p2 − 1 but 5 6 | p − 1)Fp4 (for 5|p4 − 1 but 5 6 | p2 − 1)

≈



















Fp ⊕Fp ⊕Fp ⊕Fp (for p = 1 mod 5)Fp2 ⊕Fp2 (for p = −1 mod 5)Fp4 (for p = 2, 3 mod 5)

Observe: Prime splitting determined by congruence conditions!!!
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For p splitting completely po = p1p2p3p4, norms are Npi = p, and

∏

p|p

1

1 − Np−s
=

( 1

1 − p−s

)4

=
1

1 − 1

ps

· 1

1 − χ1(p)

ps

· 1

1 − χ2(p)

ps

· 1

1 − χ3(p)

ps

= Euler p-factors from ζ(s), L(s, χ1), L(s, χ2), L(s, χ3)
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For p splitting half-way po = p1p2, norms are Npi = p2, and

∏

p|p

1

1 − Np−s
=

( 1

1 − p−2s

)2

=
1

1 − 1

ps

· 1

1 − 1

ps

· 1

1 +
1

ps

· 1

1 +
1

ps

=
1

1 − 1

ps

· 1

1 − χ2(p)

ps

· 1

1 − χ1(p)

ps

· 1

1 − χ3(p)

ps

= Euler p-factors from ζ(s), L(s, χ2), L(s, χ1), L(s, χ3)

... in that order, except that we can’t distinguish the order-four
characters χ1,χ3.



Garrett 09-21-2011 12

For p inert po = p, the norm is Np = p4, and

∏

p|p

1

1 − Np−s
=

1

1 − p−4s

=
1

1 − 1

ps

· 1

1 +
1

ps

· 1

1 − i

ps

· 1

1 +
i

ps

=
1

1 − 1

ps

· 1

1 − χ2(p)

ps

· 1

1 − χ1(p)

ps

· 1

1 − χ3(p)

ps

= Euler p-factors from ζ(s), L(s, χ2), L(s, χ1), L(s, χ3)

... not distinguishing the order-four characters χ1,χ3.

This proves the claimed factorization, except for p = 5. The
interested reader might show that 5o = (ω − 1)4, and then it’s
easy to see the complete factorization of the Dedekind zeta.


