Continuing the pre/review of the simple (!?) case...

Continuing: *factorization* of Dedekind zeta-functions into Dirichlet *L*-functions, equivalently, *behavior of primes in extensions*. So far,

$$\begin{aligned} \zeta_{\mathbb{Z}[i]}(s) &= \zeta(s) \cdot L(s,\chi) \qquad \chi(p) = {\binom{-1}{p}}_2 \\ \zeta_{\mathbb{Z}[\sqrt{2}]}(s) &= \zeta(s) \cdot L(s,\chi) \qquad \chi(p) = {\binom{2}{p}}_2 \\ \zeta_{\mathbb{Z}[\sqrt{-2}]}(s) &= \zeta(s) \cdot L(s,\chi) \qquad \chi(p) = {\binom{-2}{p}}_2 \end{aligned}$$

Next, $\mathbb{Z}[\omega]$ with ω an eighth root of unity. First, look at the eighth cyclotomic polynomial $x^4 + 1$.

Comment: The change of variables $x \to x + 1$ gives $x^4 + 4x^3 + 6x^2 + 4x + 2$, so *Eisenstein's criterion and Gauss' Lemma* prove irreducibility of $x^4 + 1$ in $\mathbb{Q}[x]$.

A peculiar feature of the polynomial $x^4 + 1$:

Claim: $x^4 + 1$ is *reducible* modulo every prime *p*.

p = 2 is easy. For p > 2, for $x^4 + 1 = 0$ to have a root in \mathbb{F}_p requires existence of an element of order 8 in \mathbb{F}_p^{\times} , so 8|p-1, and $p = 1 \mod 8$. For $x^4 + 1 = 0$ to have a root in \mathbb{F}_{p^2} requires existence of an element of order 8 in $\mathbb{F}_{p^2} \times$, so $8|p^2 - 1$.

Interestingly-enough, $\mathbb{Z}/8^{\times}$ is not cyclic, but is isomorphic to $\mathbb{Z}/2 \oplus \mathbb{Z}/2$. Thus, $p^2 = 1 \mod 8$ for all odd p. That is, at worst, $x^4 + 1 = 0$ has a root in \mathbb{F}_{p^2} for all odd p. ///

Comment For f a monic polynomial in $\mathbb{Z}[x]$ irreducibility of its image in $\mathbb{F}_p[x]$ certainly implies its irreducibility in $\mathbb{Z}[x]$. We might hope that there'd be a sort of converse, namely, that irreducible monics in $\mathbb{Z}[x]$ would be irreducible mod *some* prime p... but $x^4 + 1$ is a counter-example.

Example: eighth roots of unity

Let $\omega = \frac{1+i}{\sqrt{2}}$ be a primitive eighth root of unity, and $\mathfrak{o} = \mathbb{Z}[\omega]$.

The non-trivial characters mod 8 are $\binom{-1}{p}_2$, $\binom{2}{p}_2$, and $\binom{-2}{p}_2$.

Claim:

$$\zeta_{\mathfrak{o}}(s) = \zeta(s) \cdot L(s, \binom{-1}{p}) \cdot L(s, \binom{2}{p}) \cdot L(s, \binom{-2}{p})$$

Without determining whether \mathfrak{o} is a PID, or what its units are, if/when it becomes necessary, let's be willing to grant that it is a *Dedekind domain*, in that every non-zero ideal factors uniquely into prime ideals.

By Euler's criterion, computing mod p,

$$\binom{-2}{p}_2 = (-2)^{\frac{p-1}{2}} = (-1)^{\frac{p-1}{2}} \cdot 2^{\frac{p-1}{2}} = \binom{-1}{p}_2 \cdot \binom{2}{p}_2$$

The characters of $\mathbb{Z}/8^{\times}$

$p \backslash \chi$	triv	$\binom{-1}{*}$	$\binom{2}{*}$	$\binom{-2}{*}$
$1 \bmod 8$	1	1	1	1
$3 \bmod 8$	1	-1	-1	1
$5 \bmod 8$	1	1	-1	-1
$7 \mod 8$	1	-1	1	-1

For 3, 5, 7 there are exactly two -1's in each row.

As earlier, for rational prime p > 2,

$$\mathfrak{o}/p \approx \mathbb{Z}[x]/\langle x^4 + 1, p \rangle \approx \mathbb{F}_p[x]/\langle x^4 + 1 \rangle$$
$$\approx \begin{cases} \mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p & \text{(for } p = 1 \mod 8) \\ \\ \mathbb{F}_{p^2} \oplus \mathbb{F}_{p^2} & \text{(for } p = 3, 5, 7 \mod 8) \end{cases}$$

Observe: Prime splitting determined by congruence conditions!!!

Since $x^4 + 1 = (x + 1)^4 \mod 2$, for p = 2 something more complicated happens:

$$\mathbb{F}_2[x]/(x+1)^4 \neq \text{product of fields}$$

Indeed, we already saw that, in the PIDs $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$, inside the intermediate fields, 2 is *ramified*. A little later we'll have means to see that the above computation implies 2 is *totally ramified* in the extension $\mathfrak{o} = \mathbb{Z}[\omega]$ of \mathbb{Z} , namely, $2\mathfrak{o} = \mathfrak{p}^4$.

Write
$$\chi_D(p) = {D \choose p}_2$$
 for $D = -1, 2, -2.$

For $p = 1 \mod 8$, applying the ideal norm to $p\mathfrak{o} = \mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3\mathfrak{p}_4$ gives $N\mathfrak{p}_i = p$, so

$$\prod_{\mathfrak{p}|p} \frac{1}{1 - N\mathfrak{p}^{-s}} = \left(\frac{1}{1 - p^{-s}}\right)^4$$
$$= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{\chi_{-1}(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_2(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_{-2}(p)}{p^s}}$$

= Euler *p*-factors from $\zeta(s)$, $L(s, \chi_{-1})$, $L(s, \chi_2)$, $L(s, \chi_{-2})$

For $p = 3, 5, 7 \mod 8$, $p\mathfrak{o} = \mathfrak{p}_1\mathfrak{p}_2$ gives $N\mathfrak{p}_i = p^2$, so

$$\prod_{\mathfrak{p}|p} \frac{1}{1 - N\mathfrak{p}^{-s}} = \left(\frac{1}{1 - p^{-2s}}\right)^2$$

$$= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 + \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 + \frac{1}{p^s}} \quad \text{(in some order!?!)}$$

$$= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{\chi_{-1}(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_2(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_{-2}(p)}{p^s}} \quad \text{(order?)}$$

$$= \text{Euler } p\text{-factors from } \zeta(s), L(s, \chi_{-1}), L(s, \chi_2), L(s, \chi_{-2})$$

We could have treated p = 3, 5, 7 separately, tracking which twoout-of-three characters took values -1, but this would not have accomplished much. Except for the Euler 2-factors, we've proven

$$\zeta_{\mathfrak{o}}(s) = \zeta(s) \cdot L(s, \binom{-1}{p}) \cdot L(s, \binom{2}{p}) \cdot L(s, \binom{-2}{p})$$

Example: fifth roots of unity

Let ω be a primitive fifth root of unity, and $\mathfrak{o} = \mathbb{Z}[\omega]$.

The group $\mathbb{Z}/5^{\times}$ has four characters: the trivial one, an order-two character χ_2 , and two order-four characters χ_1, χ_3 .

(Note: This indexing is incompatible with earlier...)

Claim:

$$\zeta_{\mathfrak{o}}(s) = \zeta(s) \cdot L(s,\chi_1) \cdot L(s,\chi_2) \cdot L(s,\chi_3)$$

Without determining whether \mathfrak{o} is a PID, or what its units are, if necessary, grant that it is a *Dedekind domain*, ...

As earlier, for rational prime p, with $\Phi_5(x) = x^4 + x^3 + x^2 + x + 1$ the fifth cyclotomic polynomial,

$$\circ/p \approx \mathbb{Z}[x]/\langle \Phi_5, p \rangle \approx \mathbb{F}_p[x]/\langle \Phi_5 \rangle$$

$$\approx \begin{cases} \mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p & (\text{for } 5|p-1) \\ \mathbb{F}_{p^2} \oplus \mathbb{F}_{p^2} & (\text{for } 5|p^2-1 \text{ but } 5 \not/ p-1) \\ \mathbb{F}_{p^4} & (\text{for } 5|p^4-1 \text{ but } 5 \not/ p^2-1) \end{cases}$$

$$\approx \begin{cases} \mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p \oplus \mathbb{F}_p & (\text{for } p=1 \text{ mod } 5) \\ \mathbb{F}_{p^2} \oplus \mathbb{F}_{p^2} & (\text{for } p=-1 \text{ mod } 5) \\ \mathbb{F}_{p^4} & (\text{for } p=2,3 \text{ mod } 5) \end{cases}$$

Observe: Prime splitting determined by congruence conditions!!!

For p splitting completely $p\mathfrak{o} = \mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3\mathfrak{p}_4$, norms are $N\mathfrak{p}_i = p$, and

$$\prod_{\mathfrak{p}|p} \frac{1}{1 - N\mathfrak{p}^{-s}} = \left(\frac{1}{1 - p^{-s}}\right)^4$$
$$= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{\chi_1(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_2(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_3(p)}{p^s}}$$

= Euler *p*-factors from $\zeta(s)$, $L(s, \chi_1)$, $L(s, \chi_2)$, $L(s, \chi_3)$

For p splitting half-way $p\mathfrak{o} = \mathfrak{p}_1\mathfrak{p}_2$, norms are $N\mathfrak{p}_i = p^2$, and

$$\prod_{\mathfrak{p}|p} \frac{1}{1 - N\mathfrak{p}^{-s}} = \left(\frac{1}{1 - p^{-2s}}\right)^2$$
$$= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 + \frac{1}{p^s}} \cdot \frac{1}{1 + \frac{1}{p^s}}$$
$$= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{\chi_2(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_1(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_3(p)}{p^s}}$$

= Euler *p*-factors from $\zeta(s)$, $L(s, \chi_2)$, $L(s, \chi_1)$, $L(s, \chi_3)$

... in that order, except that we can't distinguish the order-four characters χ_1, χ_3 .

For p inert $p\mathbf{o} = \mathbf{p}$, the norm is $N\mathbf{p} = p^4$, and

$$\prod_{\mathfrak{p}|p} \frac{1}{1 - N\mathfrak{p}^{-s}} = \frac{1}{1 - p^{-4s}}$$
$$= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 + \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{i}{p^s}} \cdot \frac{1}{1 + \frac{i}{p^s}}$$
$$= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{\chi_2(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_1(p)}{p^s}} \cdot \frac{1}{1 - \frac{\chi_3(p)}{p^s}}$$

= Euler *p*-factors from $\zeta(s)$, $L(s, \chi_2)$, $L(s, \chi_1)$, $L(s, \chi_3)$

... not distinguishing the order-four characters χ_1, χ_3 .

This proves the claimed factorization, except for p = 5. The interested reader might show that $5\mathfrak{o} = (\omega - 1)^4$, and then it's easy to see the complete factorization of the Dedekind zeta.