Continuing the pre/review of the simple (!?) case...

Examples: Riemann's formula

$$
\sum_{p^{m}<X} \log p=X-(b+1)-\lim _{T \rightarrow \infty} \sum_{|\operatorname{Im}(\rho)|<T} \frac{X^{\rho}}{\rho}+\sum_{n \geq 1} \frac{X^{-2 n}}{2 n}
$$

Gauss' Quadratic Reciprocity:

$$
\binom{q}{p}_{2} \cdot\binom{p}{q}_{2}=(-1)^{\frac{(p-1)(q-1)}{4}}
$$

Continuing: factorization of Dedekind zeta-functions into Dirichlet L-functions. Equivalently, behavior of primes in extensions.

Example: behavior of primes in the extension $\mathbb{Z}[i]$ of \mathbb{Z}

Prime numbers p in \mathbb{Z}, which we'll call rational primes to distinguish them, do not usually stay prime in larger rings: for example

$$
5=(2+i) \cdot(2-i)
$$

Expanding on the two-squares theorem:

Theorem: A rational prime p stays prime in $\mathbb{Z}[i]$ if and only if $p=3 \bmod 4$. A rational prime $p=1 \bmod 4$ factors as $p=p_{1} p_{2}$ with distinct primes p_{i}. The rational prime 2 ramifies, in the sense that $2=(1+i)(1-i)$ and $1+i$ and $1-i$ differ by a unit.

Terminology: Primes that stay prime are inert, and primes that factor (with no factor repeating) are split. A prime that factors and has repeated factors is ramified.

So far, for split p, and for ρ a $\sqrt{-1}$ in \mathbb{F}_{p},

$$
\mathbb{Z}[i] / p \approx \mathbb{F}_{p}[x] /\left\langle x^{2}+1\right\rangle \approx \mathbb{F}_{p}[x] /\langle x-\rho\rangle \oplus \mathbb{F}_{p}[x] /\langle x+\rho\rangle
$$

By the cyclic-ness of $\mathbb{F}_{p}^{\times}, p$ has a $\sqrt{-1}$ exactly when $p=1 \bmod 4$. That is, $p=1 \bmod 4$ is split, specifically, $p \cdot \mathbb{Z}[i]$ is of the form $p_{1} p_{2} \cdot \mathbb{Z}[i]$ for distinct (non-associate) prime elements p_{i} of $\mathbb{Z}[i]$.

Lemma For an ideal I in a PID R, suppose there is an isomorphism

$$
\varphi: R \longrightarrow R / I \approx D_{1} \times D_{2}
$$

to a product of integral domains D_{i} (with $0 \neq 1$ in each). Then $I=\operatorname{ker} \varphi$ is generated by a product $p_{1} p_{2}$ of two distinct (nonassociate) prime elements p_{i}.

Proof: In a principal ideal domain, every non-zero prime ideal is maximal. Let φ_{i} be the further composition of φ with the projection to D_{i}. Then $\operatorname{ker} \varphi_{i}$ of $\varphi_{i}: R \rightarrow D_{i}$ is a prime ideal containing I, and

$$
\operatorname{ker} \varphi=\operatorname{ker} \varphi_{1} \cap \operatorname{ker} \varphi_{2}
$$

$\operatorname{ker} \varphi_{1} \neq \operatorname{ker} \varphi_{2}$, or else $I=\operatorname{ker} \varphi_{1}=\operatorname{ker} \varphi_{2}$ would already be prime, and R / I would be an integral domain, not a product. Let $\operatorname{ker} \varphi_{i}=p_{i} \cdot R$ for non-associate prime elements p_{1}, p_{2} of R. Then
$I=p_{1} R \cap p_{2} R=\left\{r \in R: r=a_{1} p_{1}=a_{2} p_{2}\right.$ for some $\left.a_{1}, a_{2} \in R\right\}$
p_{1} and p_{2} are distinct, so $p_{2} \mid a_{1}$ and $p_{1} \mid a_{2}$, and $I=p_{1} p_{2} \cdot R . \quad / / /$

Description of behaviors in an extension, in terms of behavior in the ground ring, is a reciprocity law.

Quadratic symbol as Dirichlet character: conductor The quadratic symbol that tells whether or not -1 is a square $\bmod p$ is

$$
\left(\frac{-1}{p}\right)_{2}=\left\{\begin{array}{cl}
0 & (p=2) \\
+1 & (\text { when }-1 \text { is a square } \bmod p) \\
-1 & (\text { when }-1 \text { is not a square } \bmod p)
\end{array}\right\}(\text { prime } p)
$$

This quadratic symbol is determined by $p \bmod 4$. That is, the conductor of this symbol is 4 . That is, this quadratic symbol is a Dirichlet character mod 4:

$$
\left(\frac{-1}{p}\right)_{2}=\left\{\begin{array}{cl}
0 & (p=2) \\
+1 & (\text { when } p=1 \bmod 4) \\
-1 & (\text { when } p=3 \bmod 4)
\end{array}\right.
$$

Factoring $\zeta_{\mathbb{Z}[i]}(s)$ The zeta function of $\mathfrak{o}=\mathbb{Z}[i]$ is a sum over non-zero elements of \mathfrak{o} modulo units: (note that the ideal norm is expressible in terms of the Galois norm here)

$$
\zeta_{\mathfrak{o}}(s)=\sum_{0 \neq \alpha \in \mathfrak{o} \bmod \mathfrak{o} \times} \frac{1}{|N \alpha|^{s}}
$$

(Galois norm)

Since $\left|\mathfrak{o}^{\times}\right|=4$, this is also

$$
\zeta_{\mathfrak{o}}(s)=\frac{1}{4} \sum_{0 \neq \alpha \in \mathfrak{o}} \frac{1}{(N \alpha)^{s}}=\frac{1}{4} \sum_{m, n \in \mathbb{Z} \text { not both } 0} \frac{1}{\left(m^{2}+n^{2}\right)^{s}}
$$

Easy estimates prove convergence for $\operatorname{Re}(s)>1$. As in the Euler factorization of $\zeta_{\mathbb{Z}}(s)$, unique factorization in $\mathfrak{o}=\mathbb{Z}[i]$ gives

$$
\zeta_{\mathfrak{o}}(s)=\prod_{\text {primes } \pi \bmod \mathfrak{o} \times} \frac{1}{1-\frac{1}{|N \pi|^{s}}} \quad(\text { for } \operatorname{Re}(s)>1)
$$

With $\chi(p)=\binom{-1}{p}_{2}$, we claim a factorization

$$
\zeta_{\mathfrak{o}}(s)=\zeta_{\mathbb{Z}}(s) \cdot L(s, \chi)
$$

To this end, group the Euler factors according to the rational primes the Gaussian prime divides:

$$
\zeta_{0}(s)=\prod_{\text {rational } p} \prod_{\pi \mid p} \frac{1}{1-\frac{1}{|N \pi|^{s}}}
$$

The prime $p=2$ is ramified: $\pi=1+i$ is the unique prime dividing 2 , and $2=(1+i)^{2} / i$. Since $\chi(2)=0$,

$$
\prod_{\pi \mid 2} \frac{1}{1-\frac{1}{|N \pi|^{s}}}=\frac{1}{1-\frac{1}{|N(1+i)|^{s}}}=\frac{1}{1-\frac{1}{2^{s}}}
$$

$$
=\frac{1}{1-\frac{1}{2^{s}}} \cdot 1=2^{\text {th }} \text { factor of } \zeta_{\mathbb{Z}}(s) \times 2^{\text {th }} \text { factor of } L(s, \chi)
$$

Primes $p=3 \bmod 4$ stay prime in \mathfrak{o}, and $\chi(p)=-1$, so

$$
\begin{aligned}
& \prod_{\pi \mid p} \frac{1}{1-\frac{1}{|N \pi|^{s}}}=\frac{1}{1-\frac{1}{|N p|^{s}}}=\frac{1}{1-\frac{1}{p^{2 s}}}=\frac{1}{1-\frac{1}{p^{s}}} \times \frac{1}{1+\frac{1}{p^{s}}} \\
& =\frac{1}{1-\frac{1}{p^{s}}} \cdot \frac{1}{1-\frac{\chi(p)}{p^{s}}}=p^{t h} \text { factor of } \zeta(s) \times p^{t h} \text { factor of } L(s, \chi)
\end{aligned}
$$

Primes $p=1 \bmod 4$ factor as $p=p_{1} p_{2}$, and $\chi(p)=+1$. Note that $p^{2}=N p=N p_{1} \cdot N p_{2}$, so since the p_{i} are not units, $N p_{i}=p$. Then

$$
\begin{aligned}
& \prod_{\pi \mid p} \frac{1}{1-\frac{1}{|N \pi|^{s}}}=\frac{1}{1-\frac{1}{\left|N p_{1}\right|^{s}}} \times \frac{1}{1-\frac{1}{\left|N p_{2}\right|^{s}}}=\frac{1}{1-\frac{1}{p^{s}}} \times \frac{1}{1-\frac{1}{p^{s}}} \\
& =\frac{1}{1-\frac{1}{p^{s}}} \cdot \frac{1}{1-\frac{\chi(p)}{p^{s}}}=p^{t h} \text { factor of } \zeta_{\mathbb{Z}}(s) \times p^{t h} \text { factor of } L(s, \chi)
\end{aligned}
$$

Putting this together, $\quad \zeta_{\mathfrak{o}}(s)=\zeta_{\mathbb{Z}}(s) \cdot L(s, \chi)$.

Example: extension $\mathbb{Z}[\sqrt{2}]$ of \mathbb{Z}
A little work shows that the ring $\mathfrak{o}=\mathbb{Z}[\sqrt{2}]$ is Euclidean, so a PID.

The group of units \mathfrak{o}^{\times}is highly non-trivial: has non-torsion element $1+\sqrt{2}$. In fact, \mathfrak{o}^{\times}is generated by $1+\sqrt{2}$ and -1 .

Theorem: A rational prime p stays prime in $\mathfrak{o}=\mathbb{Z}[\sqrt{2}]$ if and only if $p=3,5 \bmod 8$. A rational prime $p= \pm 1 \bmod 8$ factors as $p=p_{1} p_{2}$ with distinct primes p_{i}. The rational prime 2 ramifies, in the sense that $2=(\sqrt{2})^{2}$.

Proof: The $p=2$ case is clear. With $p>2$,

$$
\mathfrak{o} / p=\mathbb{Z}[\sqrt{2}] / p \approx \mathbb{Z}[x] /\left\langle x^{2}-2, p\right\rangle \approx \mathbb{F}_{p}[x] /\left\langle x^{2}-2\right\rangle
$$

When 2 is a non-square $\bmod p, x^{2}-2$ is irreducible in $\mathbb{F}_{p}[x]$, and \mathfrak{o} / p is a field, so p is prime. When 2 is a square $\bmod p>2$, there are two distinct square roots ρ_{1}, ρ_{2}, and by Sun-Ze's theorem

$$
\mathbb{F}_{p}[x] /\left\langle x^{2}-2\right\rangle \approx \mathbb{F}_{p}[x] /\left\langle x-\rho_{1}\right\rangle \oplus \mathbb{F}_{p}[x] /\left\langle x-\rho_{2}\right\rangle
$$

The earlier Lemma shows that p factors in \mathfrak{o} as a product of two distinct (non-associate) primes, so p splits.

In fact, taking any representatives ρ in \mathbb{Z} for a square root of $2 \bmod p$, the isomorphism shows that the pairs $p, \rho-\sqrt{2}$ and $p, \rho+\sqrt{2}$ generate the two prime ideals into which $p \cdot \mathfrak{o}$ factors.

Group the Euler factors of the Dedekind zeta function for $\mathfrak{o}=\mathbb{Z}[\sqrt{2}]$ by rational primes:

$$
\zeta_{\mathfrak{o}}(s)=\prod_{p}\left(\prod_{\pi \mid p} \frac{1}{1-|N \pi|^{-s}}\right)=(\text { ramified }) \cdot(\text { split }) \cdot(\text { inert })
$$

The only ramified prime is 2 . Split primes are $p= \pm 1 \bmod 8$, and $p=\pi_{1} \cdot \pi_{2}$ implies

$$
p^{2}=N p=N \pi_{1} \cdot N \pi_{2}
$$

so the norms of any two prime factors are p. Inert primes are $p=3,5 \bmod 8$, they remain prime in \mathfrak{o}, and $N p=p^{2}$. Thus,

$$
\begin{gathered}
\zeta_{\mathfrak{o}}(s)=\prod_{\pi \mid 2} \frac{1}{1-|N \pi|^{-s}} \\
\times \prod_{p=\pi_{1} \pi_{2}} \frac{1}{1-\left|N \pi_{1}\right|^{-s}} \cdot \frac{1}{1-\left|N \pi_{2}\right|^{-s}} \\
\times \prod_{p=3,5 \bmod _{8}} \frac{1}{1-|N p|^{-s}}
\end{gathered}
$$

With $\chi(p)=\binom{2}{p}_{2}$, this is

$$
\begin{aligned}
& \zeta_{\mathfrak{0}}(s)= \frac{1}{1-2^{-s}} \times \prod_{p= \pm 1 \bmod 8} \frac{1}{1-p^{-s}} \cdot \frac{1}{1-p^{-s}} \\
& \times \prod_{p=3,5 \bmod 8} \frac{1}{1-p^{-s}} \cdot \frac{1}{1+p^{-s}} \\
&=\quad \prod_{p} \frac{1}{1-p^{-s}} \cdot \frac{1}{1-\chi(p) p^{-s}}=\zeta(s) \cdot L(s, \chi)
\end{aligned}
$$

Example: eighth roots of unity

Let $\omega=\frac{1+i}{\sqrt{2}}$ be a primitive eighth root of unity, and $\mathfrak{o}=\mathbb{Z}[\omega]$.

The non-trivial characters mod 8 are $\binom{-1}{p}_{2},\binom{2}{p}$, and $\binom{-2}{p}_{2}$. The ring $\mathbb{Z}[\sqrt{-2}]$ is Euclidean. The same argument shows not only

$$
\zeta_{\mathbb{Z}[\sqrt{-2}]}(s)=\zeta(s) \cdot L\left(s,\binom{-2}{p}_{2}\right)
$$

but also Claim:

$$
\zeta_{\mathfrak{o}}(s)=\zeta(s) \cdot L\left(s,\binom{-1}{p}_{2}\right) L\left(s,\binom{2}{p}_{2}\right) \cdot L\left(s,\binom{-2}{p}_{2}\right)
$$

Without determining whether \mathfrak{o} is a PID, or what its units are, let's grant ourselves that it is a Dedekind domain, in that every non-zero ideal factors uniquely into prime ideals.

