Continuing the pre/review of the simple (!?) case...

Examples: Riemann's formula

$$\sum_{p^m < X} \log p = X - (b+1) - \lim_{T \to \infty} \sum_{|\text{Im}(\rho)| < T} \frac{X^{\rho}}{\rho} + \sum_{n \ge 1} \frac{X^{-2n}}{2n}$$

Gauss' Quadratic Reciprocity:

$$\binom{q}{p}_2 \cdot \binom{p}{q}_2 = (-1)^{\frac{(p-1)(q-1)}{4}}$$

Continuing: *factorization* of Dedekind zeta-functions into Dirichlet *L*-functions. Equivalently, *behavior of primes in extensions*.

Example: behavior of primes in the extension $\mathbb{Z}[i]$ of \mathbb{Z}

Prime numbers p in \mathbb{Z} , which we'll call *rational primes* to distinguish them, do not usually *stay prime* in larger rings: for example

$$5 = (2+i) \cdot (2-i)$$

Expanding on the two-squares theorem:

Theorem: A rational prime p stays prime in $\mathbb{Z}[i]$ if and only if $p = 3 \mod 4$. A rational prime $p = 1 \mod 4$ factors as $p = p_1 p_2$ with distinct primes p_i . The rational prime 2 ramifies, in the sense that 2 = (1+i)(1-i) and 1+i and 1-i differ by a unit.

Terminology: Primes that *stay* prime are *inert*, and primes that *factor* (with no factor repeating) are *split*. A prime that factors and has *repeated factors* is *ramified*.

So far, for split p, and for $\rho \neq \sqrt{-1}$ in \mathbb{F}_p ,

$$\mathbb{Z}[i]/p \approx \mathbb{F}_p[x]/\langle x^2 + 1 \rangle \approx \mathbb{F}_p[x]/\langle x - \rho \rangle \oplus \mathbb{F}_p[x]/\langle x + \rho \rangle$$

By the cyclic-ness of \mathbb{F}_p^{\times} , p has a $\sqrt{-1}$ exactly when $p = 1 \mod 4$. That is, $p = 1 \mod 4$ is *split*, specifically, $p \cdot \mathbb{Z}[i]$ is of the form $p_1 p_2 \cdot \mathbb{Z}[i]$ for *distinct* (non-associate) prime elements p_i of $\mathbb{Z}[i]$.

Lemma For an ideal I in a PID R, suppose there is an isomorphism

$$\varphi : R \longrightarrow R/I \approx D_1 \times D_2$$

to a product of integral domains D_i (with $0 \neq 1$ in each). Then $I = \ker \varphi$ is generated by a product $p_1 p_2$ of two distinct (non-associate) prime elements p_i .

Proof: In a principal ideal domain, every non-zero prime ideal is maximal. Let φ_i be the further composition of φ with the projection to D_i . Then ker φ_i of $\varphi_i : R \to D_i$ is a prime ideal containing I, and

$$\ker \varphi \ = \ \ker \varphi_1 \cap \ker \varphi_2$$

 $\ker \varphi_1 \neq \ker \varphi_2$, or else $I = \ker \varphi_1 = \ker \varphi_2$ would already be prime, and R/I would be an integral domain, not a product. Let $\ker \varphi_i = p_i \cdot R$ for non-associate prime elements p_1, p_2 of R. Then

$$I = p_1 R \cap p_2 R = \{ r \in R : r = a_1 p_1 = a_2 p_2 \text{ for some } a_1, a_2 \in R \}$$

 p_1 and p_2 are distinct, so $p_2|a_1$ and $p_1|a_2$, and $I = p_1p_2 \cdot R$. ///

Description of behaviors in an extension, in terms of behavior in the ground ring, is a *reciprocity law*.

Quadratic symbol as Dirichlet character: conductor The quadratic symbol that tells whether or not -1 is a square mod p is

$$\left(\frac{-1}{p}\right)_{2} = \begin{cases} 0 & (p=2) \\ +1 & (\text{when } -1 \text{ is a square mod } p) \\ -1 & (\text{when } -1 \text{ is not a square mod } p) \end{cases} \text{ (prime } p)$$

This quadratic symbol is determined by $p \mod 4$. That is, the *conductor* of this symbol is 4. That is, this quadratic symbol is a *Dirichlet character* mod 4:

$$\left(\frac{-1}{p}\right)_2 = \begin{cases} 0 & (p=2) \\ +1 & (\text{when } p = 1 \mod 4) \\ -1 & (\text{when } p = 3 \mod 4) \end{cases}$$

Factoring $\zeta_{\mathbb{Z}[i]}(s)$ The zeta function of $\mathfrak{o} = \mathbb{Z}[i]$ is a sum over non-zero elements of \mathfrak{o} modulo units: (note that the *ideal* norm is expressible in terms of the *Galois* norm here)

$$\zeta_{\mathfrak{o}}(s) = \sum_{0 \neq \alpha \in \mathfrak{o} \mod \mathfrak{o}^{\times}} \frac{1}{|N\alpha|^s}$$
 (Galois norm)

Since $|\mathfrak{o}^{\times}| = 4$, this is also

$$\zeta_{\mathfrak{o}}(s) = \frac{1}{4} \sum_{0 \neq \alpha \in \mathfrak{o}} \frac{1}{(N\alpha)^s} = \frac{1}{4} \sum_{m,n \in \mathbb{Z} \text{ not both } 0} \frac{1}{(m^2 + n^2)^s}$$

Easy estimates prove convergence for $\operatorname{Re}(s) > 1$. As in the Euler factorization of $\zeta_{\mathbb{Z}}(s)$, unique factorization in $\mathfrak{o} = \mathbb{Z}[i]$ gives

$$\zeta_{\mathfrak{o}}(s) = \prod_{\text{primes } \pi \mod \mathfrak{o}^{\times}} \frac{1}{1 - \frac{1}{|N\pi|^s}} \qquad (\text{for } \operatorname{Re}(s) > 1)$$

With $\chi(p) = {\binom{-1}{p}}_2$, we claim a factorization

$$\zeta_{\mathfrak{o}}(s) = \zeta_{\mathbb{Z}}(s) \cdot L(s, \chi)$$

To this end, group the Euler factors according to the rational primes the Gaussian prime divides:

$$\zeta_{\mathfrak{o}}(s) = \prod_{\text{rational } p} \prod_{\pi|p} \frac{1}{1 - \frac{1}{|N\pi|^s}}$$

The prime p = 2 is ramified: $\pi = 1 + i$ is the unique prime dividing 2, and $2 = (1 + i)^2/i$. Since $\chi(2) = 0$,

$$\prod_{\pi|2} \frac{1}{1 - \frac{1}{|N\pi|^s}} = \frac{1}{1 - \frac{1}{|N(1+i)|^s}} = \frac{1}{1 - \frac{1}{2^s}}$$

 $= \frac{1}{1 - \frac{1}{2^s}} \cdot 1 = 2^{th} \text{ factor of } \zeta_{\mathbb{Z}}(s) \times 2^{th} \text{ factor of } L(s, \chi)$

Primes $p = 3 \mod 4$ stay prime in \mathfrak{o} , and $\chi(p) = -1$, so

$$\prod_{\pi|p} \frac{1}{1 - \frac{1}{|N\pi|^s}} = \frac{1}{1 - \frac{1}{|Np|^s}} = \frac{1}{1 - \frac{1}{p^{2s}}} = \frac{1}{1 - \frac{1}{p^s}} \times \frac{1}{1 + \frac{1}{p^s}}$$
$$= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{\chi(p)}{p^s}} = p^{th} \text{ factor of } \zeta(s) \times p^{th} \text{ factor of } L(s, \chi)$$

Primes $p = 1 \mod 4$ factor as $p = p_1 p_2$, and $\chi(p) = +1$. Note that $p^2 = Np = Np_1 \cdot Np_2$, so since the p_i are not units, $Np_i = p$. Then

$$\prod_{\pi|p} \frac{1}{1 - \frac{1}{|N\pi|^s}} = \frac{1}{1 - \frac{1}{|Np_1|^s}} \times \frac{1}{1 - \frac{1}{|Np_2|^s}} = \frac{1}{1 - \frac{1}{p^s}} \times \frac{1}{1 - \frac{1}{p^s}}$$

$$= \frac{1}{1 - \frac{1}{p^s}} \cdot \frac{1}{1 - \frac{\chi(p)}{p^s}} = p^{th} \text{ factor of } \zeta_{\mathbb{Z}}(s) \times p^{th} \text{ factor of } L(s, \chi)$$

Putting this together, $\zeta_{\mathfrak{o}}(s) = \zeta_{\mathbb{Z}}(s) \cdot L(s, \chi).$

Example: extension $\mathbb{Z}[\sqrt{2}]$ of \mathbb{Z}

A little work shows that the ring $\mathfrak{o} = \mathbb{Z}[\sqrt{2}]$ is *Euclidean*, so a *PID*.

The group of units \mathfrak{o}^{\times} is highly non-trivial: has non-torsion element $1 + \sqrt{2}$. In fact, \mathfrak{o}^{\times} is generated by $1 + \sqrt{2}$ and -1.

Theorem: A rational prime p stays prime in $\mathfrak{o} = \mathbb{Z}[\sqrt{2}]$ if and only if $p = 3,5 \mod 8$. A rational prime $p = \pm 1 \mod 8$ factors as $p = p_1 p_2$ with distinct primes p_i . The rational prime 2 ramifies, in the sense that $2 = (\sqrt{2})^2$. *Proof:* The p = 2 case is clear. With p > 2,

$$\mathfrak{o}/p = \mathbb{Z}[\sqrt{2}]/p \approx \mathbb{Z}[x]/\langle x^2 - 2, p \rangle \approx \mathbb{F}_p[x]/\langle x^2 - 2 \rangle$$

When 2 is a non-square mod p, $x^2 - 2$ is irreducible in $\mathbb{F}_p[x]$, and \mathfrak{o}/p is a field, so p is prime. When 2 is a square mod p > 2, there are two *distinct* square roots ρ_1, ρ_2 , and by Sun-Ze's theorem

$$\mathbb{F}_p[x]/\langle x^2 - 2 \rangle \approx \mathbb{F}_p[x]/\langle x - \rho_1 \rangle \oplus \mathbb{F}_p[x]/\langle x - \rho_2 \rangle$$

The earlier Lemma shows that p factors in \mathfrak{o} as a product of two distinct (non-associate) primes, so p splits. ///

In fact, taking any representatives ρ in \mathbb{Z} for a square root of 2 mod p, the isomorphism shows that the pairs $p, \rho - \sqrt{2}$ and $p, \rho + \sqrt{2}$ generate the two prime ideals into which $p \cdot \mathfrak{o}$ factors.

Group the Euler factors of the Dedekind zeta function for $\mathfrak{o} = \mathbb{Z}[\sqrt{2}]$ by rational primes:

$$\zeta_{\mathfrak{o}}(s) = \prod_{p} \left(\prod_{\pi \mid p} \frac{1}{1 - |N\pi|^{-s}} \right) = (\text{ramified}) \cdot (\text{split}) \cdot (\text{inert})$$

The only ramified prime is 2. Split primes are $p = \pm 1 \mod 8$, and $p = \pi_1 \cdot \pi_2$ implies

$$p^2 = Np = N\pi_1 \cdot N\pi_2$$

so the norms of any two prime factors are p. Inert primes are $p = 3, 5 \mod 8$, they remain prime in \mathfrak{o} , and $Np = p^2$. Thus,

$$\zeta_{\mathfrak{o}}(s) = \prod_{\pi|2} \frac{1}{1 - |N\pi|^{-s}} \\ \times \prod_{p=\pi_1\pi_2} \frac{1}{1 - |N\pi_1|^{-s}} \cdot \frac{1}{1 - |N\pi_2|^{-s}} \\ \times \prod_{p=3,5 \mod 8} \frac{1}{1 - |Np|^{-s}}$$

With $\chi(p) = {\binom{2}{p}}_2$, this is $\zeta_{\mathfrak{o}}(s) = \frac{1}{1-2^{-s}} \times \prod_{p=\pm 1 \mod 8} \frac{1}{1-p^{-s}} \cdot \frac{1}{1-p^{-s}}$ $\times \prod_{p=3,5 \mod 8} \frac{1}{1-p^{-s}} \cdot \frac{1}{1+p^{-s}}$ $= \prod_p \frac{1}{1-p^{-s}} \cdot \frac{1}{1-\chi(p)p^{-s}} = \zeta(s) \cdot L(s,\chi)$

Example: eighth roots of unity

Let $\omega = \frac{1+i}{\sqrt{2}}$ be a primitive eighth root of unity, and $\mathfrak{o} = \mathbb{Z}[\omega]$.

The non-trivial characters mod 8 are $\binom{-1}{p}_2$, $\binom{2}{p}_2$, and $\binom{-2}{p}_2$. The ring $\mathbb{Z}[\sqrt{-2}]$ is Euclidean. The same argument shows not only

$$\zeta_{\mathbb{Z}[\sqrt{-2}]}(s) = \zeta(s) \cdot L(s, \binom{-2}{p}_2)$$

but also Claim:

$$\zeta_{\mathfrak{o}}(s) = \zeta(s) \cdot L(s, \begin{pmatrix} -1\\ p \end{pmatrix}_2) L(s, \begin{pmatrix} 2\\ p \end{pmatrix}_2) \cdot L(s, \begin{pmatrix} -2\\ p \end{pmatrix}_2)$$

Without determining whether \boldsymbol{o} is a PID, or what its units are, let's grant ourselves that it is a *Dedekind domain*, in that every non-zero ideal factors uniquely into prime ideals.