Continuing the pre/review of the simple (!?) case...

So far, we have sketched the connection between prime numbers, and zeros of the zeta function, given by Riemann's formula

$$
\sum_{p^{m}<X} \log p=X-(b+1)-\lim _{T \rightarrow \infty} \sum_{|\operatorname{Im}(\rho)|<T} \frac{X^{\rho}}{\rho}+\sum_{n \geq 1} \frac{X^{-2 n}}{2 n}
$$

A different example (though connected to zeta functions and Lfunctions at a deeper level!) is Gauss' Quadratic Reciprocity:

$$
\binom{q}{p}_{2} \cdot\binom{p}{q}_{2}=(-1)^{\frac{(p-1)(q-1)}{4}}
$$

We'll reprise the latter, and then look at factorization of Dedekind zeta-functions into Dirichlet L-functions.

Reprise of end of the Quadratic Reciprocity discussion: from the Cancellation Lemma, $g(\chi)^{2}=q \cdot(-1)^{q-1}$, and then

Using $g(\chi)^{2}=\chi(-1) q$ and plugging into Euler's criterion: computing mod p in $\mathbb{Z}\left[e^{2 \pi i / q}\right]$, noting that apparently q and $g(\chi)$ are invertible there (!),

$$
\binom{q}{p}_{2}=q^{\frac{p-1}{2}}=\left((-1)^{\frac{q-1}{2}} \cdot g(\chi)^{2}\right)^{\frac{p-1}{2}}=(-1)^{\frac{(p-1)(q-1)}{4}} \cdot \frac{g(\chi)^{p}}{g(\chi)}
$$

Again using $\binom{p}{j}=0 \bmod p$ for $0<j<p$,

$$
\begin{aligned}
g(\chi)^{p} & =\sum_{b \bmod q} \chi(b)^{p} \cdot \psi(p \cdot b)=\sum_{b \bmod q} \chi(b) \cdot \psi(p \cdot b) \\
& =\sum_{b \bmod q} \chi\left(b p^{-1}\right) \cdot \psi(b)=\binom{p}{q}_{2} \cdot g(\chi) \bmod p
\end{aligned}
$$

Thus, in $\mathbb{Z}\left[e^{2 \pi i / q}\right] \bmod p$,

$$
\begin{gathered}
\binom{q}{p}_{2}=(-1)^{\frac{(p-1)(q-1)}{4}} \cdot \frac{g(\chi)^{p}}{g(\chi)} \\
=(-1)^{\frac{(p-1)(q-1)}{4}} \cdot \frac{\binom{p}{q}_{2} \cdot g(\chi)}{g(\chi)}=(-1)^{\frac{(p-1)(q-1)}{4}} \cdot\binom{p}{q}_{2}
\end{gathered}
$$

Since these values are ± 1, their equality in $\mathbb{Z}\left[e^{2 \pi i / q}\right] \bmod p$ for $p>2$ gives their equality as numbers in $\{ \pm 1\}$.

Factorization of Dedekind zeta functions As noted earlier, Dirichlet's 1837 theorem on primes in arithmetic progressions $a+\ell N$ needs a non-vanishing result for L-functions, namely, $L(1, \chi) \neq 0$ for Dirichlet characters $\chi \bmod N$.

Dirichlet proved this in simple cases by showing that these L functions are factors in Dedekind zeta functions $\zeta_{\mathfrak{o}}(s)$ of rings of integers $\mathfrak{o}=\mathbb{Z}[\omega]$ with ω an $N^{t h}$ root of unity, and using simple properties of the zeta functions $\zeta_{\mathfrak{o}}(s)$.

To describe Dedekind zetas, for an ideal \mathfrak{a} of suitable \mathfrak{o}, let the ideal norm be $N \mathfrak{a}=\operatorname{card}(\mathfrak{o} / \mathfrak{a})$. Then

$$
\zeta_{\mathfrak{o}}(s)=\sum_{\mathfrak{a} \neq 0} \frac{1}{(N \mathfrak{a})^{s}}
$$

In suitable \mathfrak{o}, every non-zero ideal factors uniquely into prime ideals (not necessarily prime numbers) (one says these are Dedekind domains), so the zeta function has an Euler product

$$
\zeta_{\mathfrak{o}}(s)=\sum_{\mathfrak{a} \neq 0} \frac{1}{(N \mathfrak{a})^{s}}=\prod_{\mathfrak{p} \text { prime }} \frac{1}{1-N \mathfrak{p}^{-s}} \quad(\text { for } \operatorname{Re}(s)>1)
$$

For $\mathfrak{o}=\mathbb{Z}[\omega]$, the factorization is equivalent to understanding the behavior of rational primes in the extension ring $\mathbb{Z}[\omega]$ of \mathbb{Z} : do they stay prime, or do they factor as products of primes in $\mathbb{Z}[\omega]$?

Letting ω be a primitive $q^{t h}$ root of unity for q prime, and Φ_{q} the $q^{t h}$ cyclotomic polynomial,

$$
\begin{aligned}
& \mathbb{Z}[\omega] / p \approx\left(\mathbb{Z}[x] / \Phi_{q}\right) / p \approx(\mathbb{Z}[x] / p) / \Phi_{q} \\
\approx & \mathbb{F}_{p}[x] / \Phi_{q} \approx \mathbb{F}_{p}[x] / \varphi_{1} \oplus \ldots \oplus \mathbb{F}_{p}[x] / \varphi_{m}
\end{aligned}
$$

where φ_{i} are irreducible factors of Φ_{q} in $\mathbb{F}_{p}[x]$.

On the other hand, assuming the Dedekind-domain property, and that $p=\mathfrak{P}_{1} \ldots \mathfrak{P}_{n}$ with distinct \mathfrak{P}_{i}, then by Sun-Ze's theorem

$$
\mathbb{Z}[\omega] / p \approx \mathbb{Z}[\omega] / \mathfrak{P}_{1} \oplus \ldots \oplus \mathbb{Z}[\omega] / \mathfrak{P}_{n}
$$

Thus,

$$
\mathbb{F}_{p}[x] / \varphi_{1} \oplus \ldots \oplus \mathbb{F}_{p}[x] / \varphi_{m} \approx \mathbb{Z}[\omega] / \mathfrak{P}_{1} \oplus \ldots \oplus \mathbb{Z}[\omega] / \mathfrak{P}_{n}
$$

A factorization of a zeta function of an extension as a product of Dirichlet L-functions of the base ring is a type of reciprocity law. The first reciprocity law was quadratic reciprocity, conjectured by Legendre and Gauss, and proven by Gauss in 1799. In the mid-19th century, Eisenstein proved cubic and quartic reciprocity. About 1928, Takagi and Artin proved a general reciprocity law, called classfield theory, for abelian field extensions. In the late 1960's, Langlands formulated conjectures including reciprocity laws for non-abelian extensions.

Since the rings $\mathbb{Z}[\omega]$ are rarely principal ideal domains, examples where the rings involved are principal ideal domains are best to have at first.

The easiest proofs of PID-ness are by Euclidean-ness.

Gaussian integers $\mathfrak{o}=\mathbb{Z}[i]$

Let $\sigma: \mathbb{Q}(i) \rightarrow \mathbb{Q}(i)$ be the non-trivial automorphism

$$
\sigma: a+b i \longrightarrow a-b i \quad \text { (with } a, b \in \mathbb{Q})
$$

The automorphism σ stabilizes \mathfrak{o}. Let $N: \mathbb{Q}(i) \rightarrow \mathbb{Q}$ be the norm

$$
N(a+b i)=(a+b i) \cdot(a+b i)^{\sigma}=(a+b i)(a-b i)=a^{2}+b^{2}
$$

The norm maps $\mathbb{Q}(i) \rightarrow \mathbb{Q}$, and $\mathfrak{o} \rightarrow \mathbb{Z}$. Since σ is a field automorphism, the norm is multiplicative:

$$
N(\alpha \beta)=(\alpha \beta) \cdot(\alpha \beta)^{\sigma}=\alpha \alpha^{\sigma} \cdot \beta \beta^{\sigma}=N \alpha \cdot N \beta
$$

Units \mathfrak{o}^{\times}For $\alpha \beta=1$ in \mathfrak{o}, taking norms gives $N \alpha \cdot N \beta=1$. Since the norm maps $\mathfrak{o} \rightarrow \mathbb{Z}, N \alpha= \pm 1$. Since the norm is of the form $a^{2}+b^{2}$, it must be 1. That is, the norm of a unit in the Gaussian integers is 1 . It is easy to determine all the units: solve $a^{2}+b^{2}=1$ for integers a, b, finding the four units

$$
\mathfrak{o}^{\times}=\{1,-1, i,-i\}
$$

Euclidean-ness We claim that the Gaussian integers \mathfrak{o} form a Euclidean ring: given α, β in \mathfrak{o} with $\beta \neq 0$, we can divide α by β with an integer remainder smaller than β. That is, given α, β with $\beta \neq 0$, there is $q \in \mathfrak{o}$ such that

$$
N(\alpha-q \cdot \beta)<N \beta \quad(\text { given } \alpha, \beta \neq 0, \text { for some } q \in \mathfrak{o})
$$

The inequality is equivalent to the inequality obtained by dividing through by $N \beta$, using the multiplicativity:

$$
N\left(\frac{\alpha}{\beta}-q\right)<N(1)=1
$$

That is, given $\gamma=\alpha / \beta \in \mathbb{Q}(i)$, there should be $q \in \mathfrak{o}$ such that $N(\gamma-q)<1$. Indeed, let $\gamma=a+b i$ with $a, b \in \mathbb{Q}$, and let $a^{\prime}, b^{\prime} \in \mathbb{Z}$ be the closest integers to a, b, respectively. (If a or b falls exactly half-way between integers, choose either.) Then $\left|a-a^{\prime}\right| \leq \frac{1}{2}$ and $\left|b-b^{\prime}\right| \leq \frac{1}{2}$, and

$$
N(\gamma-q)=\left(a-a^{\prime}\right)^{2}+\left(b-b^{\prime}\right)^{2} \leq\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{1}{4}+\frac{1}{4}<1
$$

This proves the Euclidean-ness, and PID-ness, and UFD-ness.

Behavior of primes in the extension $\mathbb{Z}[i]$ of \mathbb{Z} Prime numbers p in \mathbb{Z}, which we'll call rational primes to distinguish them, do not usually stay prime in larger rings. For example, the prime 5 factors:

$$
5=(2+i) \cdot(2-i)
$$

The norms of $2 \pm i$ are both 5 , so these are not units.

Expanding on the two-squares theorem:

Theorem: A rational prime p stays prime in $\mathbb{Z}[i]$ if and only if $p=3 \bmod 4$. A rational prime $p=1 \bmod 4$ factors as $p=p_{1} p_{2}$ with distinct primes p_{i}. The rational prime 2 ramifies, in the sense that $2=(1+i)(1-i)$ and $1+i$ and $1-i$ differ by a unit.

Terminology: Primes that stay prime are inert, and primes that factor (with no factor repeating) are split. A prime that factors and has repeated factors is ramified.

Proof: The case of 2 is clear. An ideal I in a commutative ring R is prime if and only if R / I is an integral domain. Again,

$$
\begin{gathered}
\mathbb{Z}[i] /\langle p\rangle \approx \mathbb{Z}[x] /\left\langle x^{2}+1, p\right\rangle \approx(\mathbb{Z}[x] /\langle p\rangle) /\left\langle x^{2}+1\right\rangle \\
\approx \mathbb{F}_{p}[x] /\left\langle x^{2}+1\right\rangle
\end{gathered}
$$

This is a quadratic field extension of \mathbb{F}_{p} if and only if $x^{2}+1$ is irreducible in \mathbb{F}_{p}. For odd p, this happens if and only if there is no primitive fourth root of unity in \mathbb{F}_{p}. Since \mathbb{F}_{p}^{\times}is cyclic of order $p-1$, there is a primitive fourth root of unity in \mathbb{F}_{p} if and only if $4 \mid p-1$. That is, if $p=3 \bmod 4, x^{2}+1$ is irreducible in \mathbb{F}_{p}, and p stays prime in $\mathbb{Z}[i]$.

When $p=1 \bmod 4, \mathbb{F}_{p}$ contains primitive fourth roots of unity, so there are $\alpha, \beta \in \mathbb{F}_{p}$ such that $x^{2}+1=(x-\alpha)(x-\beta)$. The derivative of $x^{2}+1$ is $2 x$, and 2 is invertible $\bmod p$, so $\operatorname{gcd}\left(x^{2}+1,2 x\right)=1$ in $\mathbb{F}_{p}[x]$. Thus, $\alpha \neq \beta$. Thus, by Sun-Ze's theorem

$$
\mathbb{Z}[i] /\langle p\rangle \approx \frac{\mathbb{F}_{p}[x]}{\left\langle x^{2}+1\right\rangle} \approx \frac{\mathbb{F}_{p}[x]}{\langle x-\alpha\rangle} \times \frac{\mathbb{F}_{p}[x]}{\langle x-\beta\rangle} \approx \mathbb{F}_{p} \times \mathbb{F}_{p}
$$

[continued]

