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Continuing the pre/review of the simple (!?) case...

So far, we have sketched the connection between prime numbers,
and zeros of the zeta function, given by Riemann’s formula

∑
pm<X

log p = X − (b+ 1) − lim
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ρ
+
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A different example (though connected to zeta functions and L-
functions at a deeper level!) is Gauss’ Quadratic Reciprocity:(
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We’ll reprise the latter, and then look at factorization of Dedekind
zeta-functions into Dirichlet L-functions.
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Reprise of end of the Quadratic Reciprocity discussion: from the
Cancellation Lemma, g(χ)2 = q · (−1)q−1, and then

Using g(χ)2 = χ(−1)q and plugging into Euler’s criterion:
computing mod p in Z[e2πi/q], noting that apparently q and g(χ)
are invertible there (!),(
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Again using
(
p
j

)
= 0 mod p for 0 < j < p,

g(χ)p =
∑

b mod q

χ(b)p · ψ(p · b) =
∑

b mod q

χ(b) · ψ(p · b)

=
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b mod q
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)
2
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Thus, in Z[e2πi/q] mod p,(
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Since these values are ±1, their equality in Z[e2πi/q] mod p for
p > 2 gives their equality as numbers in {±1}. ///
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Factorization of Dedekind zeta functions As noted earlier,
Dirichlet’s 1837 theorem on primes in arithmetic progressions
a + `N needs a non-vanishing result for L-functions, namely,
L(1, χ) 6= 0 for Dirichlet characters χ mod N .

Dirichlet proved this in simple cases by showing that these L-
functions are factors in Dedekind zeta functions ζo(s) of rings of
integers o = Z[ω] with ω an N th root of unity, and using simple
properties of the zeta functions ζo(s).

To describe Dedekind zetas, for an ideal a of suitable o, let the
ideal norm be Na = card(o/a). Then

ζo(s) =
∑
a6=0

1

(Na)s

In suitable o, every non-zero ideal factors uniquely into prime
ideals (not necessarily prime numbers) (one says these are
Dedekind domains), so the zeta function has an Euler product

ζo(s) =
∑
a6=0

1

(Na)s
=

∏
p prime

1

1−Np−s
(for Re(s) > 1)
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For o = Z[ω], the factorization is equivalent to understanding the
behavior of rational primes in the extension ring Z[ω] of Z: do
they stay prime, or do they factor as products of primes in Z[ω]?

Letting ω be a primitive qth root of unity for q prime, and Φq the
qth cyclotomic polynomial,

Z[ω]/p ≈
(
Z[x]/Φq

)
/p ≈

(
Z[x]/p

)
/Φq

≈ Fp[x]/Φq ≈ Fp[x]/ϕ1 ⊕ . . .⊕ Fp[x]/ϕm

where ϕi are irreducible factors of Φq in Fp[x].

On the other hand, assuming the Dedekind-domain property, and
that p = P1 . . .Pn with distinct Pi, then by Sun-Ze’s theorem

Z[ω]/p ≈ Z[ω]/P1 ⊕ . . .⊕ Z[ω]/Pn

Thus,

Fp[x]/ϕ1 ⊕ . . .⊕ Fp[x]/ϕm ≈ Z[ω]/P1 ⊕ . . .⊕ Z[ω]/Pn
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A factorization of a zeta function of an extension as a product of
Dirichlet L-functions of the base ring is a type of reciprocity
law. The first reciprocity law was quadratic reciprocity,
conjectured by Legendre and Gauss, and proven by Gauss in 1799.
In the mid-19th century, Eisenstein proved cubic and quartic
reciprocity. About 1928, Takagi and Artin proved a general
reciprocity law, called classfield theory, for abelian field extensions.
In the late 1960’s, Langlands formulated conjectures including
reciprocity laws for non-abelian extensions.

Since the rings Z[ω] are rarely principal ideal domains, examples
where the rings involved are principal ideal domains are best to
have at first.

The easiest proofs of PID-ness are by Euclidean-ness.
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Gaussian integers o = Z[i]

Let σ : Q(i)→ Q(i) be the non-trivial automorphism

σ : a+ bi −→ a− bi (with a, b ∈ Q)

The automorphism σ stabilizes o. Let N : Q(i)→ Q be the norm

N(a+ bi) = (a+ bi) · (a+ bi)σ = (a+ bi)(a− bi) = a2 + b2

The norm maps Q(i) → Q, and o → Z. Since σ is a field
automorphism, the norm is multiplicative:

N(αβ) = (αβ) · (αβ)σ = αασ · ββσ = Nα ·Nβ

Units o× For αβ = 1 in o, taking norms gives Nα ·Nβ = 1. Since
the norm maps o → Z, Nα = ±1. Since the norm is of the form
a2 + b2, it must be 1. That is, the norm of a unit in the Gaussian
integers is 1. It is easy to determine all the units: solve a2 +b2 = 1
for integers a, b, finding the four units

o× = {1, −1, i, −i}
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Euclidean-ness We claim that the Gaussian integers o form a
Euclidean ring: given α, β in o with β 6= 0, we can divide α by β
with an integer remainder smaller than β. That is, given α, β with
β 6= 0, there is q ∈ o such that

N(α− q · β) < Nβ (given α, β 6= 0, for some q ∈ o)

The inequality is equivalent to the inequality obtained by dividing
through by Nβ, using the multiplicativity:

N(
α

β
− q) < N(1) = 1

That is, given γ = α/β ∈ Q(i), there should be q ∈ o such that
N(γ−q) < 1. Indeed, let γ = a+bi with a, b ∈ Q, and let a′, b′ ∈ Z
be the closest integers to a, b, respectively. (If a or b falls exactly
half-way between integers, choose either.) Then |a − a′| ≤ 1

2 and
|b− b′| ≤ 1

2 , and

N(γ − q) = (a− a′)2 + (b− b′)2 ≤ ( 1
2 )2 + ( 1

2 )2 = 1
4 + 1

4 < 1

This proves the Euclidean-ness, and PID-ness, and UFD-ness.
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Behavior of primes in the extension Z[i] of Z Prime numbers
p in Z, which we’ll call rational primes to distinguish them, do
not usually stay prime in larger rings. For example, the prime 5
factors:

5 = (2 + i) · (2− i)

The norms of 2± i are both 5, so these are not units.

Expanding on the two-squares theorem:

Theorem: A rational prime p stays prime in Z[i] if and only if
p = 3 mod 4. A rational prime p = 1 mod 4 factors as p = p1p2
with distinct primes pi. The rational prime 2 ramifies, in the sense
that 2 = (1 + i)(1− i) and 1 + i and 1− i differ by a unit.

Terminology: Primes that stay prime are inert, and primes that
factor (with no factor repeating) are split. A prime that factors
and has repeated factors is ramified.
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Proof: The case of 2 is clear. An ideal I in a commutative ring R
is prime if and only if R/I is an integral domain. Again,

Z[i]/〈p〉 ≈ Z[x]/〈x2 + 1, p〉 ≈
(
Z[x]/〈p〉

)
/〈x2 + 1〉

≈ Fp[x]/〈x2 + 1〉

This is a quadratic field extension of Fp if and only if x2 + 1 is
irreducible in Fp. For odd p, this happens if and only if there is
no primitive fourth root of unity in Fp. Since F×p is cyclic of order
p − 1, there is a primitive fourth root of unity in Fp if and only if
4|p − 1. That is, if p = 3 mod 4, x2 + 1 is irreducible in Fp, and p
stays prime in Z[i].

When p = 1 mod 4, Fp contains primitive fourth roots of unity, so
there are α, β ∈ Fp such that x2+1 = (x−α)(x−β). The derivative
of x2 + 1 is 2x, and 2 is invertible mod p, so gcd(x2 + 1, 2x) = 1 in
Fp[x]. Thus, α 6= β. Thus, by Sun-Ze’s theorem

Z[i]/〈p〉 ≈ Fp[x]

〈x2 + 1〉
≈ Fp[x]

〈x− α〉
× Fp[x]

〈x− β〉
≈ Fp × Fp

[continued]


