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Continuing the pre/review of the simple (17) case...

So far, we have sketched the connection between prime numbers,
and zeros of the zeta function, given by Riemann’s formula

—2n
Z logp = X — (b+1) —Tlgnoo Z X’ JrZXQn

pm <X (<t P a>

A different example (though connected to zeta functions and L-
functions at a deeper level!) is Gauss’ Quadratic Reciprocity:

(Z)g @2 = ()T

We’ll reprise the latter, and then look at factorization of Dedekind
zeta-functions into Dirichlet L-functions.
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Reprise of end of the Quadratic Reciprocity discussion: from the
Cancellation Lemma, g(x)? = ¢+ (—1)¢"!, and then

Using g(x)*> = x(—1)q and plugging into Euler’s criterion:
computing mod p in Z[e?>""/4], noting that apparently ¢ and g(x)
are invertible there (!),

<Z> = 0T = ()T gD T = (4)%,9()&

Again using (?) = 0 mod p for 0 < j < p,

gx)? = Y x®P-v(p-b) = > x(b)-b(p-b)

b mod q b mod q

= 3 X -w0) = (p)2-9<x> mod 7

b mod ¢ q

Thus, in Z[e*™/9] mod p,

(q)2 N g(x)?

p

B (p=1)(a=1) (Z)Q'Q(X) __yle=ne-n  (p
-y oY (2),

Since these values are 41, their equality in Z[e*™/9] mod p for

2

p > 2 gives their equality as numbers in {£1}. ///
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Factorization of Dedekind zeta functions As noted earlier,
Dirichlet’s 1837 theorem on primes in arithmetic progressions
a + ¢N needs a non-vanishing result for L-functions, namely,
L(1, x) # 0 for Dirichlet characters y mod N.

Dirichlet proved this in simple cases by showing that these L-
functions are factors in Dedekind zeta functions (,(s) of rings of
integers 0 = Z[w] with w an N*" root of unity, and using simple
properties of the zeta functions (,(s).

To describe Dedekind zetas, for an ideal a of suitable o, let the
ideal norm be Na = card(o/a). Then

1
Gols) = D (Na)s

a#0

In suitable o, every non-zero ideal factors uniquely into prime
ideals (not necessarily prime numbers) (one says these are
Dedekind domains), so the zeta function has an Euler product

1 1
Cal(s) = Z N H TN (for Re(s) > 1)

a#0

p prime

3
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For 0 = Z|w], the factorization is equivalent to understanding the

behavior of rational primes in the extension ring Z[w] of Z: do
they stay prime, or do they factor as products of primes in Z[w]?

Letting w be a primitive ¢*" root of unity for ¢ prime, and ®, the
¢'" cyclotomic polynomial,

Zlwl/p ~ (Z[x]/®q)/p ~ (Z[z]/p)/q

~ F,lz]/®, = Fplz]/o1® ... ©Fplz]/om

where ¢; are irreducible factors of @, in F)[x].

On the other hand, assuming the Dedekind-domain property, and
that p =93 ...B,, with distinct 3;, then by Sun-Ze’s theorem

Ziwl/p = Zlw]/PB1® ... & Lw]| /By

Thus,

Fplel/o1 @ ... @ Fpla]/om ~ Zw]/PBr1 @ ... © Zw]/Bx

4
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A factorization of a zeta function of an extension as a product of
Dirichlet L-functions of the base ring is a type of reciprocity
law. The first reciprocity law was quadratic reciprocity,
conjectured by Legendre and Gauss, and proven by Gauss in 1799.
In the mid-19th century, Eisenstein proved cubic and quartic
reciprocity. About 1928, Takagi and Artin proved a general
reciprocity law, called classfield theory, for abelian field extensions.
In the late 1960’s, Langlands formulated conjectures including
reciprocity laws for non-abelian extensions.

Since the rings Z[w] are rarely principal ideal domains, examples
where the rings involved are principal ideal domains are best to
have at first.

The easiest proofs of PID-ness are by Euclidean-ness.
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Gaussian integers o = Z|i|

Let o : Q(i) — Q(7) be the non-trivial automorphism
o:a+bi — a—bi (with a,b € Q)
The automorphism o stabilizes 0. Let N : Q(i) — Q be the norm
N(a+bi) = (a+bi) (a+bi)° = (a+bi)(a—bi) = a® +b°

The norm maps Qi) — @Q, and 0 — Z. Since o is a field
automorphism, the norm is multiplicative:

N(aB) = (af)- (af)” = aa” 8" = Na-Nj

Units 0* For af =1 in o, taking norms gives Na - N3 = 1. Since
the norm maps o0 — Z, Na = +1. Since the norm is of the form
a’® + b?, it must be 1. That is, the norm of a unit in the Gaussian
integers is 1. It is easy to determine all the units: solve a?+b* =1
for integers a, b, finding the four units

o* = {1, -1, i, —i}
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Euclidean-ness We claim that the Gaussian integers o form a
FEuclidean ring: given «, § in o with § # 0, we can divide a by
with an integer remainder smaller than . That is, given «, 8 with
B # 0, there is ¢ € 0 such that

N(a—q-8) < Np (given «, B # 0, for some ¢ € o)

The inequality is equivalent to the inequality obtained by dividing
through by N3, using the multiplicativity:
o

N(5—a) < N(1) = 1

That is, given v = /8 € Q(1), there should be g € o such that
N(y—q) < 1. Indeed, let v = a+bi with a,b € Q, and let a’, b’ € Z
be the closest integers to a, b, respectively. (If a or b falls exactly
half-way between integers, choose either.) Then |a — a/| < 3 and

b—b| <1 and
Ne—a) = (a—a)?+b-b7 < 3P+ (3 = +1 <1

This proves the Euclidean-ness, and PID-ness, and UFD-ness.
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Behavior of primes in the extension Z[i] of Z Prime numbers
p in Z, which we’ll call rational primes to distinguish them, do
not usually stay prime in larger rings. For example, the prime 5
factors:

5 = (241) (2—1)

The norms of 2 £ ¢ are both 5, so these are not units.
Expanding on the two-squares theorem:

Theorem: A rational prime p stays prime in Z[é] if and only if

p = 3 mod 4. A rational prime p = 1 mod 4 factors as p = pi1ps
with distinct primes p;. The rational prime 2 ramifies, in the sense
that 2 = (1414)(1 —¢) and 1 + ¢ and 1 — 7 differ by a unit.

Terminology: Primes that stay prime are inert, and primes that
factor (with no factor repeating) are split. A prime that factors
and has repeated factors is ramified.
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Proof: The case of 2 is clear. An ideal I in a commutative ring R
is prime if and only if R/I is an integral domain. Again,

Z0/p) ~ 2/ (@®+ 1p) ~ (Zlel/(p)) /(e + 1)

~ Fyl]/(2” + 1)

This is a quadratic field extension of F,, if and only if 22 + 1 is
irreducible in F,,. For odd p, this happens if and only if there is
no primitive fourth root of unity in F,. Since F is cyclic of order
p — 1, there is a primitive fourth root of unity in [F), if and only if
4]p — 1. That is, if p = 3 mod 4, % + 1 is irreducible in F,, and p
stays prime in Z[i].

When p = 1 mod 4, F,, contains primitive fourth roots of unity, so
there are «, B € F,, such that 22+1 = (z—a)(z—3). The derivative
of 22 + 1 is 2z, and 2 is invertible mod p, so ged(z? + 1,22) =1 in
F,[x]. Thus, o # . Thus, by Sun-Ze’s theorem

Zlil/{p) ~ % ~ <fzo_[xi> x <;Fp_[xé> ~ F, x F,

[continued]




