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Continuing the review of the simple (!?) case of number theory
over Z:

So far, we have sketched the connection between prime numbers,
and zeros of the zeta function, given by Riemann’s formula

∑

pm<X

log p = X − (b+ 1) − lim
T→∞

∑

|Im(ρ)|<T

Xρ

ρ
+

∑

n≥1

X−2n

2n

with finite LHS, and infinite RHS... and noted that ideas from
complex variables and Fourier analysis are needed to make this
legitimate. A similar discussion applies to many other zeta
functions and L-functions, such as those used by Dirichlet to prove
the primes-in-arithmetic progressions theorem.

A different example (though connected to zeta functions and L-
functions at a deeper level!) is Gauss’ Quadratic Reciprocity.
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Fermat’s two-squares theorem: a prime number p is
expressible as p = a2 + b2 if and only if p = 1 mod 4 (or p = 2):

Yes, one direction is easy: the squares mod 4 are 0, 1. The ring of
Gaussian integers Z[i] is Euclidean, so is a PID. The Galois norm
N from Q(i) to Q is N(a+ bi) = a2 + b2.

A prime is expressible as p = (a+ bi)(a− bi), if and only if it is not

prime in Z[i], if and only if Z[i]/pZ[i] is not an integral domain.
ComputeZ[i]/p ≈

(Z[x]/〈x2 + 1〉
)

/p ≈
(Z[x]/p

)

/〈x2 + 1〉 ≈ Fp[x]/〈x2 + 1〉

The latter is not an integral domain if and only if there is a fourth
root of unity

√
−1 in Fp. Since F×

p is cyclic, presence of
√
−1 is

equivalent to p = 1 mod 4 (or p = 2. ///
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√

2] is Euclidean, and the same argument shows

p = a2 − 2b2 ⇐⇒ 2 is a square mod p

When is 2 a square mod p? (for p > 2)

A main feature of finite fields is the cyclic-ness of multiplicative
groups, from which arises Euler’s criterion

b ∈ F×
p is a square ⇐⇒ b

p−1
2 = 1 mod p

Also, there is a handy connection between roots of unity and 2:

(1 + i)2 = 2i =⇒ 2 = −i(1 + i)2

Computing in the ring Z[i]/p (!), using
(

p
j

)

= 0 for 0 < j < p,

2
p−1
2 =

(

− i(1 + i)2
)

p−1
2 = (−i) p−1

2
(1 + i)p

1 + i
= (−i) p−1

2
1 + ip

1 + i

Quasi-astonishingly, this depends only on p mod 8, and

2 is a square mod p ⇐⇒ p = ±1 mod 8
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When is q a square mod p, for odd primes p 6= q?

Amazingly, the answer depends only on p mod 4q.

The quadratic symbol is

(

b

p

)

2

=







0 for b = 0 mod p
1 for b nonzero square mod p

−1 for b nonzero non-square mod p

Gauss’ Law of Quadratic Reciprocity is

(

q

p

)

2

·
(

p

q

)

2

= (−1)
(p−1)(q−1)

4

This is arguably the historically-first non-trivial theorem in
number theory.
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Again, the cyclicness of F×
p shows that exactly half the non-zero

things mod p are squares, and Euler’s criterion

b ∈ F×
p is a square ⇐⇒ b

p−1
2 = 1 mod p

also shows that b →
(

b
p

)

2
is a group homomorphism F×

p → {±1}.
For brevity, write χ(b) =

(

b
q

)

2
.

The surprise is that every prime q is expressible, systematically in
terms of roots of unity. Fix a group homomorphism ψ(b) = e2πib/q

on the additive group of Fq. The quadratic Gauss sum mod q is

g(χ) =
∑

b mod q

χ(b) · ψ(b)

Obviously, this is a weighted average of qth roots of unity, with
weights ±1 (or 0). Such Gauss sums with more general characters

χ on F×
p are useful, too, but we just want the quadratic character

for now.
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The Galois group of Q(e2πi/q) over Q is isomorphic to Z/q×, and
ℓ ∈ Z/q× acts on qth roots of unity by σℓ : e2πi/q → e2πiℓ/q .
Certainly the quadratic Gauss sum

g(χ) =
∑

b mod q

χ(b) · ψ(b)

lies in Q(e2πi/q). By a change of variables (replacing b by ℓ−1b),

σℓ g(χ) =
∑

b mod q

χ(b) · ψ(ℓb) =
∑

b mod q

χ(ℓ−1b) · ψ(b)

= χ(ℓ) ·
∑

b mod q

χ(b) · ψ(b) = χ(ℓ) · g(χ)

With hindsight, since χ is multiplicative, this equivariance is really
designed into the Gauss sum.

Then σℓ (g(χ)2) = χ(ℓ)2 · g(χ)2 = g(χ)2, so by Galois theory
g(χ)2 ∈ Q !?!?

Claim: g(χ)2 = q · (−1)q−1
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Compute directly, keeping track of the trick that χ(0) = 0:

g(χ)2 =
∑

a 6=0,b 6=0

χ(a)χ(b)ψ(a+ b) =
∑

a 6=0,b 6=0

χ(ab)χ(b)ψ(ab+ b)

=
∑

a 6=0,b 6=0

χ(a)ψ((a+1)b) =
∑

a 6=0,−1, b 6=0

χ(a)ψ((a+1)b)+χ(−1)
∑

b 6=0

1

To simplify all this, use the Cancellation Lemma: for α : H → C×

a group homorphism from a finite group H to C×,

∑

h∈H

α(h) =

{

|H| for α identically 1
0 for α not identically 1

Proven by change-of-variables: for α not trivial, let α(ho) 6= 1, and

∑

h∈H

α(h) =
∑

h∈H

α(hho) = α(ho)
∑

h∈H

α(h)

So (1 − α(ho))
∑

h∈H α(h) = 0. ///
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Thus, since b → ψ(c · b) is a group hom Fq to C×, non-trivial for
c ∈ F×

q , for a+ 1 6= 0, we can evaluate inner sums over b:

∑

b 6=0

ψ((a+ 1)b) =
∑

all b

ψ((a+ 1)b) − ψ((a+ 1)0) = 0 − 1 = −1

Thus,
∑

a 6=0,−1, b 6=0

χ(a)ψ((a+ 1)b) + χ(−1)
∑

b 6=0

1

=
∑

a 6=0,−1

χ(a) · (−1) + χ(−1) · (q − 1)

= −
∑

a 6=0

χ(a) + χ(−1) + χ(−1) · (q − 1) = 0 + χ(−1)q = χ(−1)q

That is, g(χ)2 = χ(−1)q. ///



Garrett 09-14-2011 9

Using g(χ)2 = χ(−1)q and plugging into Euler’s criterion:
computing mod p in Z[e2πi/q], noting that apparently q and g(χ)
are invertible there (!),

(

q

p

)

2

= q
p−1
2 =

(

(−1)
q−1
2 · g(χ)2

)

p−1
2 = (−1)

(p−1)(q−1)
4 · g(χ)p

g(χ)

Again using
(

p
j

)

= 0 mod p for 0 < j < p,

g(χ)p =
∑

b mod q

χ(b)p · ψ(p · b) =
∑

b mod q

χ(b) · ψ(p · b)

=
∑

b mod q

χ(bp−1) · ψ(b) =

(

p

q

)

2

· g(χ) mod p

Thus, in Z[e2πi/q] mod p,

(

q

p

)

2

= (−1)
(p−1)(q−1)

4 · g(χ)p

g(χ)

= (−1)
(p−1)(q−1)

4 ·
(

p
q

)

2
· g(χ)

g(χ)
= (−1)

(p−1)(q−1)
4 ·

(

p

q

)

2

Since these values are ±1, their equality in Z[e2πi/q] mod p for
p > 2 gives their equality as numbers in {±1}. ///


