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Continuing the review of the simple (!7) case of number theory
over 7Z:

So far, we have sketched the connection between prime numobers,
and zeros of the zeta function, given by Riemann’s formula

> logp = X — (b+1) ~ Jim_ > £+ZX2_SH

pm<X <t P >

with finite LHS, and infinite RHS... and noted that ideas from
complex variables and Fourier analysis are needed to make this
legitimate. A similar discussion applies to many other zeta
functions and L-functions, such as those used by Dirichlet to prove
the primes-in-arithmetic progressions theorem.

A different example (though connected to zeta functions and L-
functions at a deeper level!) is Gauss’ Quadratic Reciprocity.



Garrett 09-14-2011 2

Fermat’s two-squares theorem: a prime number p is
expressible as p = a? + b? if and only if p = 1 mod 4 (or p = 2):

Yes, one direction is easy: the squares mod 4 are 0,1. The ring of
Gaussian integers Z[i] is Euclidean, so is a PID. The Galois norm
N from Qi) to Q is N(a + bi) = a® + b*.

A prime is expressible as p = (a+ bi)(a — bi), if and only if it is not
prime in Z[i], if and only if Z[i]/pZ][i] is not an integral domain.
Compute

Zli)/p ~ (Zz]/(2* + 1)) /p = (Z[2]/p) /(a® + 1) = Fpla]/(2* + 1)

The latter is not an integral domain if and only if there is a fourth
root of unity v/—1 in IF,. Since F} is cyclic, presence of /—1 is
equivalent to p =1 mod 4 (or p = 2. ///
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Z[v/2] is Euclidean, and the same argument shows
p = a®—2b° <= 2is asquare mod p

When is 2 a square mod p? (for p > 2)

A main feature of finite fields is the cyclic-ness of multiplicative
groups, from which arises Fuler’s criterion

beF) is asquare <= b= =1modp
Also, there is a handy connection between roots of unity and 2:
(1+i)? =2 = 2= —i(l+1i)’
Computing in the ring Z[i] /p (!), using (f) =0for 0 < j<p,

P— p—1 p—1 (1 )P p—1 1 P
2 > = (—i(1+i)2) 2 = (—1) 21( + i) = (—1) o 1—:_2_
1

Quasi-astonishingly, this depends only on p mod 8, and

2isasquare mod p <= p==+1modS8

3
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When is g a square mod p, for odd primes p # q7
Amazingly, the answer depends only on p mod 4q.

The quadratic symbol is

b 0 for b=0modp
( ) = 1 for b nonzero square mod p
P/ 2 —1 for b nonzero non-square mod p

Gauss’ Law of Quadratic Reciprocity is

(Z>2' <S>2 = (T

This is arguably the historically-first non-trivial theorem in
number theory.
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Again, the cyclicness of IF; shows that ezactly half the non-zero
things mod p are squares, and Euler’s criterion

beF) is asquare <= b= =1modp

also shows that b — (2)2 is a group homomorphism I — {£1}.

For brevity, write x(b) = (2)2.

The surprise is that every prime ¢ is expressible, systematically in
terms of roots of unity. Fix a group homomorphism v (b) = e27%/4
on the additive group of IF,. The quadratic Gauss sum mod q is

b mod ¢

Obviously, this is a weighted average of ¢! roots of unity, with
weights £1 (or 0). Such Gauss sums with more general characters
X on ]F;f are useful, too, but we just want the quadratic character
for now.
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The Galois group of ©Q(e?™/1) over () is isomorphic to Z/q*, and

{ € 7Z/q* acts on ¢'" roots of unity by o, : e?™/1 — e27mit/a,
Certainly the quadratic Gauss sum

b mod ¢

lies in Q(e?™"/9). By a change of variables (replacing b by £~1b),

org(x) = Y, x(b) = > x(t7'b)-v(b)

b mod ¢ b mod ¢

b mod q

With hindsight, since x is multiplicative, this equivariance is really
designed into the Gauss sum.

Then o¢ (9(x)?) = x(€)* - 9(x)® = g9(x)? so by Galois theory
g(x)? e @ 171?

Claim: g(x)?=¢-(-1)7!
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Compute directly, keeping track of the trick that x(0) = 0:

9()* = > x(@)x(®)ypla+b) = > x(ab)x(b)p(ab+0b)

a#0,b£0 a#0,b£0
> x@y((a+1)d) = > x(a)v((a+1)b)+x(-1) ) 1
a#0,b#£0 a#0,—1, b0 b£0

To simplify all this, use the Cancellation Lemma: for o : H — C*
a group homorphism from a finite group H to C*,

Z N { |H| for « identically 1

for a not identically 1
heH

Proven by change-of-variables: for a not trivial, let a(h,) # 1, and

> a(h) = > a(hhy) = alh) Y  a(h)

heH heH heH

So (1 = a(ho)) 2open @(h) = 0. /]
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Thus, since b — 9 (c - b) is a group hom [, to C*, non-trivial for
ceFr, for a+1 # 0, we can evaluate inner sums over b:

S v+ 1)b) = Y W((a+1)b) —((a+1)0) = 0-1 = 1

b£0 all b

Thus,

That is, g(x)? = x(—1)g. ///



Garrett 09-14-2011

Using g(x)? = x(—1)q and plugging into Euler’s criterion:
computing mod p in Z[e*™/9], noting that apparently ¢ and g(x)
are invertible there (!),

<q)2 = "7 = (D) 0?7 = (—1)%,9(9&1’

p

Again using (?) = 0 mod p for 0 < j < p,

gx)? = Y x®P-v(p-b) = > x(b)-p(p-b)

b mod q b mod q

= -1y = p . mo
SR RCRRT (q) g(x) mod p

Thus, in Z[e?>™*/9] mod p,

<q>2 e g(x)?

D

g(x) q

_ (_1)<p—1>4<q—1> . (5)2 -9(x) _ (_1)<p—1>4<q—1> . (P>2

Since these values are £1, their equality in Z[e2”/ 7] mod p for

9

p > 2 gives their equality as numbers in {£1}. ///




