Continuing the review of the simple (!?) case of number theory over \mathbb{Z} :

So far, we have sketched the connection between prime numbers, and zeros of the zeta function, given by Riemann's formula

$$
\sum_{p^{m}<X} \log p=X-(b+1)-\lim _{T \rightarrow \infty} \sum_{|\operatorname{Im}(\rho)|<T} \frac{X^{\rho}}{\rho}+\sum_{n \geq 1} \frac{X^{-2 n}}{2 n}
$$

with finite LHS, and infinite RHS... and noted that ideas from complex variables and Fourier analysis are needed to make this legitimate. A similar discussion applies to many other zeta functions and L-functions, such as those used by Dirichlet to prove the primes-in-arithmetic progressions theorem.

A different example (though connected to zeta functions and Lfunctions at a deeper level!) is Gauss' Quadratic Reciprocity.

Fermat's two-squares theorem: a prime number p is expressible as $p=a^{2}+b^{2}$ if and only if $p=1 \bmod 4($ or $p=2)$:

Yes, one direction is easy: the squares mod 4 are 0,1 . The ring of Gaussian integers $\mathbb{Z}[i]$ is Euclidean, so is a PID. The Galois norm N from $\mathbb{Q}(i)$ to \mathbb{Q} is $N(a+b i)=a^{2}+b^{2}$ 。

A prime is expressible as $p=(a+b i)(a-b i)$, if and only if it is not prime in $\mathbb{Z}[i]$, if and only if $\mathbb{Z}[i] / p \mathbb{Z}[i]$ is not an integral domain. Compute

$$
\mathbb{Z}[i] / p \approx\left(\mathbb{Z}[x] /\left\langle x^{2}+1\right\rangle\right) / p \approx(\mathbb{Z}[x] / p) /\left\langle x^{2}+1\right\rangle \approx \mathbb{F}_{p}[x] /\left\langle x^{2}+1\right\rangle
$$

The latter is not an integral domain if and only if there is a fourth root of unity $\sqrt{-1}$ in \mathbb{F}_{p}. Since \mathbb{F}_{p}^{\times}is cyclic, presence of $\sqrt{-1}$ is equivalent to $p=1 \bmod 4$ (or $p=2$.
$\mathbb{Z}[\sqrt{2}]$ is Euclidean, and the same argument shows

$$
p=a^{2}-2 b^{2} \quad \Longleftrightarrow \quad 2 \text { is a square } \bmod p
$$

When is 2 a square $\bmod p ?($ for $p>2$)

A main feature of finite fields is the cyclic-ness of multiplicative groups, from which arises Euler's criterion

$$
b \in \mathbb{F}_{p}^{\times} \text {is a square } \quad \Longleftrightarrow \quad b^{\frac{p-1}{2}}=1 \bmod p
$$

Also, there is a handy connection between roots of unity and 2 :

$$
(1+i)^{2}=2 i \quad \Longrightarrow \quad 2=-i(1+i)^{2}
$$

Computing in the ring $\mathbb{Z}[i] / p(!)$, using $\binom{p}{j}=0$ for $0<j<p$,

$$
2^{\frac{p-1}{2}}=\left(-i(1+i)^{2}\right)^{\frac{p-1}{2}}=(-i)^{\frac{p-1}{2}} \frac{(1+i)^{p}}{1+i}=(-i)^{\frac{p-1}{2}} \frac{1+i^{p}}{1+i}
$$

Quasi-astonishingly, this depends only on $p \bmod 8$, and

$$
2 \text { is a square } \bmod p \quad \Longleftrightarrow \quad p= \pm 1 \bmod 8
$$

When is q a square $\bmod p$, for odd primes $p \neq q$?

Amazingly, the answer depends only on $p \bmod 4 q$.

The quadratic symbol is

$$
\binom{b}{p}_{2}=\left\{\begin{aligned}
0 & \text { for } b=0 \bmod p \\
1 & \text { for } b \text { nonzero square } \bmod p \\
-1 & \text { for } b \text { nonzero non-square } \bmod p
\end{aligned}\right.
$$

Gauss' Law of Quadratic Reciprocity is

$$
\binom{q}{p}_{2} \cdot\binom{p}{q}_{2}=(-1)^{\frac{(p-1)(q-1)}{4}}
$$

This is arguably the historically-first non-trivial theorem in number theory.

Again, the cyclicness of \mathbb{F}_{p}^{\times}shows that exactly half the non-zero things mod p are squares, and Euler's criterion

$$
b \in \mathbb{F}_{p}^{\times} \text {is a square } \quad \Longleftrightarrow \quad b^{\frac{p-1}{2}}=1 \bmod p
$$

also shows that $b \rightarrow\binom{b}{p}_{2}$ is a group homomorphism $\mathbb{F}_{p}^{\times} \rightarrow\{ \pm 1\}$. For brevity, write $\chi(b)=\binom{b}{q}_{2}$.

The surprise is that every prime q is expressible, systematically in terms of roots of unity. Fix a group homomorphism $\psi(b)=e^{2 \pi i b / q}$ on the additive group of \mathbb{F}_{q}. The quadratic Gauss sum $\bmod q$ is

$$
g(\chi)=\sum_{b \bmod q} \chi(b) \cdot \psi(b)
$$

Obviously, this is a weighted average of $q^{t h}$ roots of unity, with weights ± 1 (or 0). Such Gauss sums with more general characters χ on \mathbb{F}_{p}^{\times}are useful, too, but we just want the quadratic character for now.

The Galois group of $\mathbb{Q}\left(e^{2 \pi i / q}\right)$ over \mathbb{Q} is isomorphic to \mathbb{Z} / q^{\times}, and $\ell \in \mathbb{Z} / q^{\times}$acts on $q^{t h}$ roots of unity by $\sigma_{\ell}: e^{2 \pi i / q} \rightarrow e^{2 \pi i \ell / q}$. Certainly the quadratic Gauss sum

$$
g(\chi)=\sum_{b \bmod q} \chi(b) \cdot \psi(b)
$$

lies in $\mathbb{Q}\left(e^{2 \pi i / q}\right)$. By a change of variables (replacing b by $\ell^{-1} b$),

$$
\begin{aligned}
\sigma_{\ell} g(\chi) & =\sum_{b \bmod q} \chi(b) \cdot \psi(\ell b)=\sum_{b \bmod q} \chi\left(\ell^{-1} b\right) \cdot \psi(b) \\
& =\chi(\ell) \cdot \sum_{b \bmod q} \chi(b) \cdot \psi(b)=\chi(\ell) \cdot g(\chi)
\end{aligned}
$$

With hindsight, since χ is multiplicative, this equivariance is really designed into the Gauss sum.

Then $\sigma_{\ell}\left(g(\chi)^{2}\right)=\chi(\ell)^{2} \cdot g(\chi)^{2}=g(\chi)^{2}$, so by Galois theory $g(\chi)^{2} \in \mathbb{Q}!?!?$

Claim: $g(\chi)^{2}=q \cdot(-1)^{q-1}$

Compute directly, keeping track of the trick that $\chi(0)=0$:

$$
\begin{aligned}
& g(\chi)^{2}=\sum_{a \neq 0, b \neq 0} \chi(a) \chi(b) \psi(a+b)=\sum_{a \neq 0, b \neq 0} \chi(a b) \chi(b) \psi(a b+b) \\
& =\sum_{a \neq 0, b \neq 0} \chi(a) \psi((a+1) b)=\sum_{a \neq 0,-1, b \neq 0} \chi(a) \psi((a+1) b)+\chi(-1) \sum_{b \neq 0} 1
\end{aligned}
$$

To simplify all this, use the Cancellation Lemma: for $\alpha: H \rightarrow \mathbb{C}^{\times}$ a group homorphism from a finite group H to \mathbb{C}^{\times},

$$
\sum_{h \in H} \alpha(h)=\left\{\begin{array}{cl}
|H| & \text { for } \alpha \text { identically } 1 \\
0 & \text { for } \alpha \text { not identically } 1
\end{array}\right.
$$

Proven by change-of-variables: for α not trivial, let $\alpha\left(h_{o}\right) \neq 1$, and

$$
\sum_{h \in H} \alpha(h)=\sum_{h \in H} \alpha\left(h h_{o}\right)=\alpha\left(h_{o}\right) \sum_{h \in H} \alpha(h)
$$

So $\left(1-\alpha\left(h_{o}\right)\right) \sum_{h \in H} \alpha(h)=0$.

Thus, since $b \rightarrow \psi(c \cdot b)$ is a group hom \mathbb{F}_{q} to \mathbb{C}^{\times}, non-trivial for $c \in \mathbb{F}_{q}^{\times}$, for $a+1 \neq 0$, we can evaluate inner sums over b :

$$
\sum_{b \neq 0} \psi((a+1) b)=\sum_{\text {all } b} \psi((a+1) b)-\psi((a+1) 0)=0-1=-1
$$

Thus,

$$
\begin{gathered}
\sum_{a \neq 0,-1, b \neq 0} \chi(a) \psi((a+1) b)+\chi(-1) \sum_{b \neq 0} 1 \\
=\sum_{a \neq 0,-1} \chi(a) \cdot(-1)+\chi(-1) \cdot(q-1) \\
=-\sum_{a \neq 0} \chi(a)+\chi(-1)+\chi(-1) \cdot(q-1)=0+\chi(-1) q=\chi(-1) q
\end{gathered}
$$

That is, $g(\chi)^{2}=\chi(-1) q$.

Using $g(\chi)^{2}=\chi(-1) q$ and plugging into Euler's criterion: computing $\bmod p$ in $\mathbb{Z}\left[e^{2 \pi i / q}\right]$, noting that apparently q and $g(\chi)$ are invertible there (!),

$$
\binom{q}{p}_{2}=q^{\frac{p-1}{2}}=\left((-1)^{\frac{q-1}{2}} \cdot g(\chi)^{2}\right)^{\frac{p-1}{2}}=(-1)^{\frac{(p-1)(q-1)}{4}} \cdot \frac{g(\chi)^{p}}{g(\chi)}
$$

Again using $\binom{p}{j}=0 \bmod p$ for $0<j<p$,

$$
\begin{aligned}
g(\chi)^{p} & =\sum_{b \bmod q} \chi(b)^{p} \cdot \psi(p \cdot b)=\sum_{b \bmod q} \chi(b) \cdot \psi(p \cdot b) \\
& =\sum_{b \bmod q} \chi\left(b p^{-1}\right) \cdot \psi(b)=\binom{p}{q}_{2} \cdot g(\chi) \bmod p
\end{aligned}
$$

Thus, in $\mathbb{Z}\left[e^{2 \pi i / q}\right] \bmod p$,

$$
\begin{gathered}
\binom{q}{p}_{2}=(-1)^{\frac{(p-1)(q-1)}{4}} \cdot \frac{g(\chi)^{p}}{g(\chi)} \\
=(-1)^{\frac{(p-1)(q-1)}{4}} \cdot \frac{\binom{p}{q}_{2} \cdot g(\chi)}{g(\chi)}=(-1)^{\frac{(p-1)(q-1)}{4}} \cdot\binom{p}{q}_{2}
\end{gathered}
$$

Since these values are ± 1, their equality in $\mathbb{Z}\left[e^{2 \pi i / q}\right] \bmod p$ for $p>2$ gives their equality as numbers in $\{ \pm 1\}$.

