
Continuing the review of the simple (!?) case of number theory over \mathbb{Z} :

So far, we have sketched the connection between *prime numbers*, and *zeros of the zeta function*, given by Riemann's formula

$$\sum_{p^m < X} \log p = X - (b+1) - \lim_{T \to \infty} \sum_{|\text{Im}(\rho)| < T} \frac{X^{\rho}}{\rho} + \sum_{n \ge 1} \frac{X^{-2n}}{2n}$$

with *finite* LHS, and *infinite* RHS... and noted that ideas from complex variables and Fourier analysis are needed to make this legitimate. A similar discussion applies to many other zeta functions and *L*-functions, such as those used by Dirichlet to prove the primes-in-arithmetic progressions theorem.

A different example (though connected to zeta functions and L-functions at a deeper level!) is Gauss' *Quadratic Reciprocity*.

-- 0...

Fermat's two-squares theorem: a prime number p is expressible as $p = a^2 + b^2$ if and only if $p = 1 \mod 4$ (or p = 2):

Yes, one direction is easy: the squares mod 4 are 0, 1. The ring of Gaussian integers $\mathbb{Z}[i]$ is *Euclidean*, so is a PID. The Galois norm N from $\mathbb{Q}(i)$ to \mathbb{Q} is $N(a+bi) = a^2 + b^2$.

A prime is expressible as p = (a+bi)(a-bi), if and only if it is *not* prime in $\mathbb{Z}[i]$, if and only if $\mathbb{Z}[i]/p\mathbb{Z}[i]$ is *not* an integral domain. Compute

$$\mathbb{Z}[i]/p \approx \left(\mathbb{Z}[x]/\langle x^2 + 1 \rangle\right)/p \approx \left(\mathbb{Z}[x]/p\right)/\langle x^2 + 1 \rangle \approx \mathbb{F}_p[x]/\langle x^2 + 1 \rangle$$

The latter is not an integral domain if and only if there is a fourth root of unity $\sqrt{-1}$ in \mathbb{F}_p . Since \mathbb{F}_p^{\times} is cyclic, presence of $\sqrt{-1}$ is equivalent to $p = 1 \mod 4$ (or p = 2.

 $\mathbb{Z}[\sqrt{2}]$ is Euclidean, and the same argument shows

$$p = a^2 - 2b^2 \iff 2$$
 is a square mod p

When is 2 a square mod p? (for p > 2)

A main feature of finite fields is the cyclic-ness of multiplicative groups, from which arises *Euler's criterion*

$$b \in \mathbb{F}_p^{\times}$$
 is a square $\iff b^{\frac{p-1}{2}} = 1 \mod p$

Also, there is a handy connection between roots of unity and 2:

$$(1+i)^2 = 2i \implies 2 = -i(1+i)^2$$

Computing in the ring $\mathbb{Z}[i]/p$ (!), using $\binom{p}{j} = 0$ for 0 < j < p,

$$2^{\frac{p-1}{2}} = \left(-i(1+i)^2\right)^{\frac{p-1}{2}} = \left(-i\right)^{\frac{p-1}{2}} \frac{(1+i)^p}{1+i} = \left(-i\right)^{\frac{p-1}{2}} \frac{1+i^p}{1+i}$$

Quasi-astonishingly, this depends only on $p \mod 8$, and

2 is a square mod $p \iff p = \pm 1 \mod 8$

When is q a square mod p, for odd primes $p \neq q$?

Amazingly, the answer depends only on $p \mod 4q$.

The quadratic symbol is

$$\binom{b}{p}_{2} = \begin{cases} 0 & \text{for } b = 0 \mod p \\ 1 & \text{for } b \text{ nonzero square mod } p \\ -1 & \text{for } b \text{ nonzero non-square mod } p \end{cases}$$

Gauss' Law of Quadratic Reciprocity is

$$\binom{q}{p}_2 \cdot \binom{p}{q}_2 = (-1)^{\frac{(p-1)(q-1)}{4}}$$

This is arguably the historically-first non-trivial theorem in number theory.

Again, the cyclicness of \mathbb{F}_p^{\times} shows that *exactly half* the non-zero things mod p are squares, and Euler's criterion

$$b \in \mathbb{F}_p^{\times}$$
 is a square $\iff b^{\frac{p-1}{2}} = 1 \mod p$

also shows that $b \to {\binom{b}{p}}_2$ is a group homomorphism $\mathbb{F}_p^{\times} \to \{\pm 1\}$. For brevity, write $\chi(b) = {\binom{b}{q}}_2$.

The surprise is that *every* prime q is expressible, *systematically* in terms of roots of unity. Fix a group homomorphism $\psi(b) = e^{2\pi i b/q}$ on the *additive* group of \mathbb{F}_q . The quadratic *Gauss sum* mod q is

$$g(\chi) = \sum_{b \mod q} \chi(b) \cdot \psi(b)$$

Obviously, this is a weighted average of q^{th} roots of unity, with weights ± 1 (or 0). Such Gauss sums with more general *characters* χ on \mathbb{F}_p^{\times} are useful, too, but we just want the quadratic character for now. The Galois group of $\mathbb{Q}(e^{2\pi i/q})$ over \mathbb{Q} is isomorphic to \mathbb{Z}/q^{\times} , and $\ell \in \mathbb{Z}/q^{\times}$ acts on q^{th} roots of unity by $\sigma_{\ell} : e^{2\pi i/q} \to e^{2\pi i\ell/q}$. Certainly the quadratic Gauss sum

$$g(\chi) = \sum_{b \mod q} \chi(b) \cdot \psi(b)$$

lies in $\mathbb{Q}(e^{2\pi i/q})$. By a change of variables (replacing b by $\ell^{-1}b$),

$$\sigma_{\ell} g(\chi) = \sum_{b \mod q} \chi(b) \cdot \psi(\ell b) = \sum_{b \mod q} \chi(\ell^{-1}b) \cdot \psi(b)$$
$$= \chi(\ell) \cdot \sum_{b \mod q} \chi(b) \cdot \psi(b) = \chi(\ell) \cdot g(\chi)$$

With hindsight, since χ is multiplicative, this *equivariance* is really *designed into* the Gauss sum.

Then $\sigma_{\ell}(g(\chi)^2) = \chi(\ell)^2 \cdot g(\chi)^2 = g(\chi)^2$, so by Galois theory $g(\chi)^2 \in \mathbb{Q}$!?!?

Claim: $g(\chi)^2 = q \cdot (-1)^{q-1}$

Compute directly, keeping track of the trick that $\chi(0) = 0$:

$$g(\chi)^2 = \sum_{a \neq 0, b \neq 0} \chi(a) \, \chi(b) \, \psi(a+b) = \sum_{a \neq 0, b \neq 0} \chi(ab) \, \chi(b) \, \psi(ab+b)$$
$$= \sum_{a \neq 0, b \neq 0} \chi(a) \, \psi((a+1)b) = \sum_{a \neq 0, -1, b \neq 0} \chi(a) \, \psi((a+1)b) + \chi(-1) \sum_{b \neq 0} 1$$

To simplify all this, use the *Cancellation Lemma:* for $\alpha : H \to \mathbb{C}^{\times}$ a group homorphism from a finite group H to \mathbb{C}^{\times} ,

$$\sum_{h \in H} \alpha(h) = \begin{cases} |H| & \text{for } \alpha \text{ identically } 1\\ 0 & \text{for } \alpha \text{ not identically } 1 \end{cases}$$

Proven by change-of-variables: for α not trivial, let $\alpha(h_o) \neq 1$, and

$$\sum_{h \in H} \alpha(h) = \sum_{h \in H} \alpha(hh_o) = \alpha(h_o) \sum_{h \in H} \alpha(h)$$
$$(1 - \alpha(h_o)) \sum_{h \in H} \alpha(h) = 0.$$
///

 So

Thus, since $b \to \psi(c \cdot b)$ is a group hom \mathbb{F}_q to \mathbb{C}^{\times} , non-trivial for $c \in \mathbb{F}_q^{\times}$, for $a + 1 \neq 0$, we can evaluate inner sums over b:

$$\sum_{b \neq 0} \psi((a+1)b) = \sum_{\text{all } b} \psi((a+1)b) - \psi((a+1)0) = 0 - 1 = -1$$

Thus,

$$\sum_{a \neq 0, -1, b \neq 0} \chi(a) \psi((a+1)b) + \chi(-1) \sum_{b \neq 0} 1$$
$$= \sum_{a \neq 0, -1} \chi(a) \cdot (-1) + \chi(-1) \cdot (q-1)$$
$$= -\sum_{a \neq 0} \chi(a) + \chi(-1) + \chi(-1) \cdot (q-1) = 0 + \chi(-1)q = \chi(-1)q$$

That is, $g(\chi)^2 = \chi(-1)q$. ///

Using $g(\chi)^2 = \chi(-1)q$ and plugging into Euler's criterion: computing mod p in $\mathbb{Z}[e^{2\pi i/q}]$, noting that apparently q and $g(\chi)$ are invertible there (!),

$$\binom{q}{p}_{2} = q^{\frac{p-1}{2}} = \left((-1)^{\frac{q-1}{2}} \cdot g(\chi)^{2}\right)^{\frac{p-1}{2}} = (-1)^{\frac{(p-1)(q-1)}{4}} \cdot \frac{g(\chi)^{p}}{g(\chi)}$$

Again using $\binom{p}{j} = 0 \mod p$ for 0 < j < p,

$$g(\chi)^p = \sum_{b \mod q} \chi(b)^p \cdot \psi(p \cdot b) = \sum_{b \mod q} \chi(b) \cdot \psi(p \cdot b)$$

$$= \sum_{b \mod q} \chi(bp^{-1}) \cdot \psi(b) = \binom{p}{q}_2 \cdot g(\chi) \mod p$$

Thus, in $\mathbb{Z}[e^{2\pi i/q}] \mod p$,

$$\begin{pmatrix} q \\ p \end{pmatrix}_2 = (-1)^{\frac{(p-1)(q-1)}{4}} \cdot \frac{g(\chi)^p}{g(\chi)}$$
$$= (-1)^{\frac{(p-1)(q-1)}{4}} \cdot \frac{\binom{p}{q}_2 \cdot g(\chi)}{g(\chi)} = (-1)^{\frac{(p-1)(q-1)}{4}} \cdot \binom{p}{q}_2$$

Since these values are ± 1 , their equality in $\mathbb{Z}[e^{2\pi i/q}] \mod p$ for p > 2 gives their equality as numbers in $\{\pm 1\}$. ///