Review the simple (haha!) case of number theory over \mathbb{Z} :

Continuing discussion of analytical properties of $\zeta(s)$ relevant to Riemann's Explicit Formula (von Mangoldt's reformulation):

$$
\sum_{p^{m}<X} \log p=X-(b+1)-\lim _{T \rightarrow \infty} \sum_{|\operatorname{Im}(\rho)|<T} \frac{X^{\rho}}{\rho}+\sum_{n \geq 1} \frac{X^{-2 n}}{2 n}
$$

We are in the course of proving that the completed zeta function

$$
\xi(s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)
$$

has an analytic continuation to $s \in \mathbb{C}$, except for simple poles at $s=0,1$, and has the functional equation

$$
\xi(1-s)=\xi(s)
$$

... and (anticipating the Riemann-Hadamard product issues) $s(s-1) \xi(s)$ is entire and bounded in vertical strips.

We need the simplest theta function

$$
\theta(z)=\sum_{n \in \mathbb{Z}} e^{\pi i n^{2} z} \quad(\text { with } z \in \mathfrak{H})
$$

By Riemann's time, Jacobi's functional equation of $\theta(z)$ was wellknown, as the simplest example of a larger thing:

$$
\theta(z)=\frac{1}{\sqrt{-i z}} \cdot \theta(-1 / z)
$$

(Proof below.) The modified version

$$
\frac{\theta(i y)-1}{2}=\sum_{n=1}^{\infty} e^{-\pi n^{2} y}
$$

gets used just below.

The connection to $\zeta(s)$ is the integral presentation:
Claim: For $\operatorname{Re}(s)>1$

$$
\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \cdot \zeta(s)=\int_{0}^{\infty} \frac{\theta(i y)-1}{2} \cdot y^{s / 2} \cdot \frac{d y}{y}
$$

Meaning? An integral against t^{s} with $d t / t$, a Mellin transform, is just a Fourier transform in different coordinates.

Starting from the integral, for $\operatorname{Re}(s)>1$, compute directly

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{\theta(i y)-1}{2} y^{s / 2} \frac{d y}{y}=\int_{0}^{\infty} \sum_{n \geq 1} e^{-\pi n^{2} y} y^{s / 2} \frac{d y}{y} \\
= & \sum_{n \geq 1} \int_{0}^{\infty} e^{-\pi n^{2} y} y^{s / 2} \frac{d y}{y}=\pi^{-s / 2} \sum_{n \geq 1} \frac{1}{n^{2 s}} \int_{0}^{\infty} e^{-y} y^{s / 2} \frac{d y}{y}
\end{aligned}
$$

by replacing y by $y /\left(\pi n^{2}\right)$, and interchanging sum an integeral, giving

$$
=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \cdot \sum_{n \geq 1} \frac{1}{n^{s}}=\xi(s) \quad(\text { for } \operatorname{Re}(s)>1)
$$

$$
\begin{aligned}
& \frac{\theta(i y)-1}{2}=\sum_{n=1}^{\infty} e^{-\pi n^{2} y} \text { is of rapid decay as } y \rightarrow+\infty \\
& \frac{\theta(i y)-1}{2}=\sum_{n \geq 1} e^{-\pi n^{2} y} \leq e^{-\pi y / 2} \sum_{n \geq 1} e^{-\pi n^{2} / 2} \\
& =\mathrm{const} \cdot e^{-\pi y / 2} \quad(\text { for } y \geq 1)
\end{aligned}
$$

Thus, the integral from 1 (not 0) to $+\infty$ is nicely convergent for all values of s, and

$$
\int_{1}^{\infty} \frac{\theta(i y)-1}{2} y^{s / 2} \frac{d y}{y}=\text { entire in } s
$$

The trick (known before Riemann) is to use Jacobi's functional equation for $\theta(z)$ to convert the part of the integral from 0 to 1 into a similar integral from 1 to $+\infty$.

It is not obvious that $\theta(i y)$ has any property that would ensure this. However, in the early 19th century theta functions were intensely studied.

Again, the functional equation of θ, proven below, is

$$
\theta(z)=\frac{1}{\sqrt{-i z}} \cdot \theta(-1 / z)
$$

Book-keeping:

$$
\frac{\theta(-1 / i y)-1}{2}=y^{1 / 2} \frac{\theta(i y)-1}{2}+\frac{y^{1 / 2}}{2}-\frac{1}{2}
$$

Then

$$
\begin{gathered}
\int_{0}^{1} \frac{\theta(i y)-1}{2} y^{s / 2} \frac{d y}{y}=\int_{1}^{\infty} \frac{\theta(-1 / i y)-1}{2} y^{-s / 2} \frac{d y}{y} \\
=\int_{1}^{\infty}\left(y^{1 / 2} \frac{\theta(i y)-1}{2}+\frac{y^{1 / 2}}{2}-\frac{1}{2}\right) y^{-s / 2} \frac{d y}{y} \\
=\int_{1}^{\infty} \frac{\theta(i y)-1}{2} y^{-s / 2} \frac{d y}{y}+\int_{1}^{\infty}\left(\frac{y^{(1-s) / 2}}{2}-\frac{y^{-s / 2}}{2}\right) \frac{d y}{y} \\
=\int_{1}^{\infty} \frac{\theta(i y)-1}{2} y^{-s / 2} \frac{d y}{y}+\frac{1}{s-1}-\frac{1}{s} \\
=(\text { entire })+\frac{1}{s-1}-\frac{1}{s}
\end{gathered}
$$

The elementary expressions $1 /(s-1)$ and $1 / s$ certainly have meromorphic continuations to \mathbb{C}, with explicit poles. Thus, together with the first integral from 1 to ∞, we have

$$
\begin{gathered}
\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s) \\
=\int_{1}^{\infty} \frac{\theta(i y)-1}{2}\left(y^{s / 2}+y^{(1-s) / 2}\right) \frac{d y}{y}+\frac{1}{s-1}-\frac{1}{s} \\
=(\text { entire })+\frac{1}{s-1}-\frac{1}{s}
\end{gathered}
$$

The right-hand side is visibly symmetrical under $s \rightarrow 1-s$, which gives the functional equation.

Comments: Attempting to avoid the gamma factor $\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right)$ leads to an unsymmetrical and unenlightening form.

The fact that $\Gamma(s / 2)$ has no zeros assures that it masks no poles of $\zeta(s)$. Non-vanishing of $\Gamma(s)$ follows from the identity

$$
\Gamma(s) \cdot \Gamma(1-s)=\frac{\pi}{\sin \pi s}
$$

Claim: Jacobi's functional equation for $\theta(z)$

$$
\theta(-1 / i y)=\sqrt{y} \cdot \theta(i y)
$$

Proof: This symmetry itself follows from a more fundamental fact, the Poisson summation formula

$$
\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \widehat{f}(n) \quad(\widehat{f} \text { is Fourier transform })
$$

Fourier transform of $f=\widehat{f}(\xi)=\int_{\mathbb{R}} f(x) e^{-2 \pi i x \xi} d x$
The Poisson summation formula is applied to

$$
f(x)=\varphi(\sqrt{y} \cdot x) \quad \text { with } \quad \varphi(x)=e^{-\pi x^{2}}
$$

The Gaussian $\varphi(x)=e^{-\pi x^{2}}$ has the useful property that it is its own Fourier transform.

Prove that the Gaussian is its own Fourier transform by completing the square and a contour integration shift:

$$
\begin{gathered}
\widehat{\varphi}(\xi)=\int_{\mathbb{R}} e^{-\pi x^{2}} e^{-2 \pi i x \xi} d x=\int_{\mathbb{R}} e^{-\pi(x+i \xi)^{2}-\pi \xi^{2}} d x \\
=e^{-\pi \xi^{2}} \int_{\mathbb{R}} e^{-\pi(x+i \xi)^{2}} d x
\end{gathered}
$$

By moving the contour of integration, the latter integral is

$$
\int_{\mathbb{R}} e^{-\pi(x+i \xi)^{2}} d x=\int_{\mathbb{R}+i \xi} e^{-\pi x^{2}} d x=\int_{\mathbb{R}} e^{-\pi x^{2}} d x
$$

Thus, the integral is a independent of ξ. In fact, the constant is 1. By a straightforward change of variables, Fourier transform behaves well with respect to dilations:

$$
\begin{array}{r}
\widehat{f}(\xi)=\int_{\mathbb{R}} \varphi(\sqrt{y} x) e^{-2 \pi i x \xi} d x=\frac{1}{\sqrt{y}} \int_{\mathbb{R}} \varphi(x) e^{-2 \pi i x \xi / \sqrt{y}} d x \\
=\frac{1}{\sqrt{y}} \widehat{\varphi}(\xi / \sqrt{y})=\frac{1}{\sqrt{y}} e^{-\pi \xi^{2} / y} \quad \quad \quad \text { (replacing } x \text { by } x / \sqrt{y} \text {) }
\end{array}
$$

Applying Poisson summation to $f(x)=e^{-\pi x^{2} y}$,

$$
\sum_{n \in \mathbb{Z}} e^{-\pi n^{2} y}=\frac{1}{\sqrt{y}} \sum_{n \in \mathbb{Z}} e^{-\pi n^{2} / y}
$$

This gives

$$
\theta(i y)=\frac{1}{\sqrt{y}} \theta(-1 / i y)
$$

Remark For $z \in \mathfrak{H}$, also $-1 / z \in \mathfrak{H}$, and the series for $\theta(z)$ and $\theta(-1 / z)$ are nicely convergent. The identity proven for θ is $\theta(-1 / z)=\sqrt{-i z} \theta(z)$ on the imaginary axis. The Identity Principle from complex analysis implies that the same equality holds for all $z \in \mathfrak{H}$.

Heuristic for Poisson summation $\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \widehat{f}(n)$
The periodicized version of a function f on \mathbb{R} is

$$
F(x)=\sum_{n \in \mathbb{Z}} f(x+n)
$$

A periodic function should be (!) represented by its Fourier series:

$$
F(x)=\sum_{\ell \in \mathbb{Z}} e^{2 \pi i \ell x} \int_{0}^{1} F(x) e^{-2 \pi i \ell x} d x
$$

Fourier coefficients of F expand to be the Fourier transform of f :

$$
\begin{aligned}
& \int_{0}^{1} F(x) e^{-2 \pi i \ell x} d x=\int_{0}^{1} \sum_{n \in \mathbb{Z}} f(x+n) e^{-2 \pi i \ell x} d x \\
= & \sum_{n \in \mathbb{Z}} \int_{n}^{n+1} f(x) e^{-2 \pi i \ell x} d x=\int_{\mathbb{R}} f(x) e^{-2 \pi i \ell x} d x=\widehat{f}(\ell)
\end{aligned}
$$

Evaluating at 0, we should have

$$
\sum_{n \in \mathbb{Z}} f(n)=F(0)=\sum_{\ell \in \mathbb{Z}} \widehat{f}(\ell)
$$

What would it take to legitimize this?

Certainly f must be of sufficient decay so that the integral for its Fourier transform is convergent. and so that summing its translates by \mathbb{Z} is convergent.

We'd want f to be continuous, probably differentiable, so that we can talk about pointwise values of F
... and to make plausible the hope that the Fourier series of F converges to F pointwise.

For f and several derivatives rapidly decreasing, the Fourier transform \widehat{f} will be of sufficient decay so that its sum over \mathbb{Z} does converge.

A simple sufficient hypothesis for convergence is that f be in the Schwartz space of infinitely-differentiable functions all of whose derivatives are of rapid decay, that is,

Schwartz space $=\left\{\operatorname{smooth} f: \sup _{x}\left(1+x^{2}\right)^{\ell}\left|f^{(i)}(x)\right|<\infty\right.$ for all $\left.i, \ell\right\}$

Representability of a periodic function by its Fourier series is a serious question, with several possible senses. We want pointwise convergence. A special, self-contained argument gives a goodenough result for immediate purposes.

Consider (\mathbb{Z}_{-})periodic functions on \mathbb{R}, that is, complex-valued functions f on \mathbb{R} such that $f(x+n)=f(x)$ for all $x \in \mathbb{R}, n \in \mathbb{Z}$. For periodic f sufficiently nice so that integrals

$$
\widehat{f}(n)=\int_{0}^{1} f(x) e^{-2 \pi i n x} d x \quad\left(n^{t h} \text { Fourier coefficient of } f\right)
$$

make sense, the Fourier expansion of f is

$$
f \sim \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{2 \pi i n x}
$$

We want

$$
f\left(x_{o}\right)=\sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{2 \pi i n x_{o}}
$$

Consider periodic piecewise- C^{o} functions which are left-continuous and right-continuous at any discontinuities.

Theorem: For periodic piecewise- C^{o} function f, left-continuous and right-continuous at discontinuities, for points x_{o} at which f is C^{0} and left-differentiable and right-differentiable, the Fourier series of f evaluated at x_{o} converges to $f(x)$:

$$
f\left(x_{o}\right)=\sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{2 \pi i n x_{o}}
$$

That is, for such functions, at such points, the Fourier series represents the function pointwise.

A notable missing conclusion is uniform pointwise convergence. For more serious applications, pointwise convergence not known to be uniform is often useless.

Proof: Can reduce to $x_{o}=0$ and $f(0)=0$. Representability of $f(0)$ by the Fourier series is the assertion that

$$
\begin{aligned}
0=f(0) & =\lim _{M, N \rightarrow+\infty} \sum_{-M \leq n<N} \widehat{f}(n) e^{2 \pi i n \cdot 0} \\
& =\lim _{M, N \rightarrow+\infty} \sum_{-M \leq n<N} \widehat{f}(n)
\end{aligned}
$$

Substituting the defining integral for the Fourier coefficients:

$$
\begin{gathered}
\sum_{-M \leq n<N} \widehat{f}(n)=\sum_{-M \leq n<N} \int_{0}^{1} f(u) e^{-2 \pi i n u} d u \\
=\int_{0}^{1} \sum_{-M \leq n<N} f(u) e^{-2 \pi i n u} d u=\int_{0}^{1} f(u) \cdot \frac{e^{2 \pi i M u}-e^{-2 \pi i N u}}{1-e^{-2 \pi i u}} d u
\end{gathered}
$$

We will show that

$$
\lim _{\ell \rightarrow \pm \infty} \int_{0}^{1} \frac{f(u) \cdot e^{-2 \pi i \ell u}}{1-e^{-2 \pi i u}} d u=0
$$

Since $f(0)=0$, the function

$$
g(x)=\frac{f(x)}{1-e^{-2 \pi i x}}
$$

is piecewise- C^{o}, and left-continuous and right-continuous at discontinuities. The only issue is at integers, and by the periodicity it suffices to prove continuity at 0 .

$$
\frac{f(x)}{1-e^{-2 \pi i x}}=\frac{f(x)}{x} \cdot \frac{x}{1-e^{-2 \pi i x}}
$$

The two-sided limit

$$
\lim _{x \rightarrow 0} \frac{x}{1-e^{-2 \pi i x}}=\left.\frac{d}{d x}\right|_{x=0} \frac{x}{1-e^{-2 \pi i x}}
$$

exists, by differentiability. Similarly, we have left and right limits

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)}{x} \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}
$$

by the one-sided differentiability of f. So both one-sided limits exist, giving the one-sided continuity of g at 0 .

We find ourselves wanting a Riemann-Lebesgue lemma, that that the Fourier coefficients of a periodic, piecewise- C^{o} function g, with left and right limits at discontinuities, go to 0 .

The essential property approximability by step functions: given $\varepsilon>0$ there is a step function $s(x)$ such that

$$
\int_{0}^{1}|s(x)-g(x)| d x<\varepsilon
$$

With such s,

$$
|\widehat{s}(n)-\widehat{g}(n)| \leq \int_{0}^{1}|s(u)-g(u)| d u<\varepsilon \quad(\text { for all } \varepsilon>0)
$$

It suffices that Fourier coefficients of step functions go to 0 , an easy computation:

$$
\int_{a}^{b} e^{-2 \pi i \ell x} d x=\left[\frac{e^{-2 \pi i \ell x}}{-2 \pi i \ell}\right]_{a}^{b}=\frac{e^{-2 \pi i \ell b}-e^{-2 \pi i \ell a}}{-2 \pi i \ell} \longrightarrow 0
$$

as $\ell \rightarrow \pm \infty$. Thus, the Fourier coefficients of g go to 0 , so the Fourier series of f converges to $f(0)$ when f is C^{1} at 0 .

