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Review the simple (haha!) case of number theory over Z:

Continuing discussion of analytical properties of ζ(s) relevant to
Riemann’s Explicit Formula (von Mangoldt’s reformulation):

∑
pm<X

log p = X − (b+ 1) − lim
T→∞

∑
|Im(ρ)|<T

Xρ

ρ
+
∑
n≥1

X−2n

2n

We are in the course of proving that the completed zeta function

ξ(s) = π−
s
2 Γ(

s

2
) ζ(s)

has an analytic continuation to s ∈ C, except for simple poles at
s = 0, 1, and has the functional equation

ξ(1− s) = ξ(s)

... and (anticipating the Riemann-Hadamard product issues)
s(s− 1)ξ(s) is entire and bounded in vertical strips.
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We need the simplest theta function

θ(z) =
∑
n∈Z

eπin
2z (with z ∈ H)

By Riemann’s time, Jacobi’s functional equation of θ(z) was well-
known, as the simplest example of a larger thing:

θ(z) =
1√
−iz
· θ(−1/z)

(Proof below.) The modified version

θ(iy)− 1

2
=

∞∑
n=1

e−πn
2y

gets used just below.
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The connection to ζ(s) is the integral presentation:

Claim: For Re(s) > 1

π−s/2 Γ(
s

2
) · ζ(s) =

∫ ∞
0

θ(iy)− 1

2
· ys/2 · dy

y

Meaning? An integral against ts with dt/t, a Mellin transform, is
just a Fourier transform in different coordinates.

Starting from the integral, for Re(s) > 1, compute directly∫ ∞
0

θ(iy)− 1

2
ys/2

dy

y
=

∫ ∞
0

∑
n≥1

e−πn
2y ys/2

dy

y

=
∑
n≥1

∫ ∞
0

e−πn
2y ys/2

dy

y
= π−s/2

∑
n≥1

1

n2s

∫ ∞
0

e−y ys/2
dy

y

by replacing y by y/(πn2), and interchanging sum an integeral,
giving

= π−s/2Γ(
s

2
) ·
∑
n≥1

1

ns
= ξ(s) (for Re(s) > 1)
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θ(iy)− 1

2
=
∞∑
n=1

e−πn
2y is of rapid decay as y → +∞:

θ(iy)− 1

2
=
∑
n≥1

e−πn
2y ≤ e−πy/2

∑
n≥1

e−πn
2/2

= const · e−πy/2 (for y ≥ 1)

Thus, the integral from 1 (not 0) to +∞ is nicely convergent for
all values of s, and∫ ∞

1

θ(iy)− 1

2
ys/2

dy

y
= entire in s

The trick (known before Riemann) is to use Jacobi’s functional
equation for θ(z) to convert the part of the integral from 0 to 1
into a similar integral from 1 to +∞.

It is not obvious that θ(iy) has any property that would ensure
this. However, in the early 19th century theta functions were
intensely studied.
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Again, the functional equation of θ, proven below, is

θ(z) =
1√
−iz
· θ(−1/z)

Book-keeping:

θ(−1/iy)− 1

2
= y1/2

θ(iy)− 1

2
+
y1/2

2
− 1

2

Then ∫ 1

0

θ(iy)− 1

2
ys/2

dy

y
=

∫ ∞
1

θ(−1/iy)− 1

2
y−s/2

dy

y

=

∫ ∞
1

(
y1/2

θ(iy)− 1

2
+
y1/2

2
− 1

2

)
y−s/2

dy

y

=

∫ ∞
1

θ(iy)− 1

2
y−s/2

dy

y
+

∫ ∞
1

(
y(1−s)/2

2
− y−s/2

2

)
dy

y

=

∫ ∞
1

θ(iy)− 1

2
y−s/2

dy

y
+

1

s− 1
− 1

s

= (entire) +
1

s− 1
− 1

s
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The elementary expressions 1/(s − 1) and 1/s certainly have
meromorphic continuations to C, with explicit poles. Thus,
together with the first integral from 1 to ∞, we have

π−s/2 Γ(
s

2
) ζ(s)

=

∫ ∞
1

θ(iy)− 1

2
(ys/2 + y(1−s)/2)

dy

y
+

1

s− 1
− 1

s

= (entire) +
1

s− 1
− 1

s

The right-hand side is visibly symmetrical under s → 1 − s, which
gives the functional equation. ///

Comments: Attempting to avoid the gamma factor π−s/2 Γ( s2 )
leads to an unsymmetrical and unenlightening form.

The fact that Γ(s/2) has no zeros assures that it masks no poles
of ζ(s). Non-vanishing of Γ(s) follows from the identity

Γ(s) · Γ(1− s) =
π

sinπs
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Claim: Jacobi’s functional equation for θ(z)

θ(−1/iy) =
√
y · θ(iy)

Proof: This symmetry itself follows from a more fundamental
fact, the Poisson summation formula∑

n∈Z
f(n) =

∑
n∈Z

f̂(n) (f̂ is Fourier transform)

Fourier transform of f = f̂(ξ) =

∫
R
f(x) e−2πixξ dx

The Poisson summation formula is applied to

f(x) = ϕ(
√
y · x) with ϕ(x) = e−πx

2

The Gaussian ϕ(x) = e−πx
2

has the useful property that it is its
own Fourier transform.
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Prove that the Gaussian is its own Fourier transform by
completing the square and a contour integration shift:

ϕ̂(ξ) =

∫
R
e−πx

2

e−2πixξ dx =

∫
R
e−π(x+iξ)

2−πξ2 dx

= e−πξ
2

∫
R
e−π(x+iξ)

2

dx

By moving the contour of integration, the latter integral is∫
R
e−π(x+iξ)

2

dx =

∫
R+iξ

e−πx
2

dx =

∫
R
e−πx

2

dx

Thus, the integral is a independent of ξ. In fact, the constant is
1. By a straightforward change of variables, Fourier transform
behaves well with respect to dilations:

f̂(ξ) =

∫
R
ϕ(
√
y x) e−2πixξ dx =

1
√
y

∫
R
ϕ(x) e−2πixξ/

√
y dx

=
1
√
y
ϕ̂(ξ/

√
y) =

1
√
y
e−πξ

2/y (replacing x by x/
√
y)
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Applying Poisson summation to f(x) = e−πx
2y,

∑
n∈Z

e−πn
2y =

1
√
y

∑
n∈Z

e−πn
2/y

This gives

θ(iy) =
1
√
y
θ(−1/iy)

Remark For z ∈ H, also −1/z ∈ H, and the series for θ(z)
and θ(−1/z) are nicely convergent. The identity proven for θ
is θ(−1/z) =

√
−iz θ(z) on the imaginary axis. The Identity

Principle from complex analysis implies that the same equality
holds for all z ∈ H.
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Heuristic for Poisson summation
∑
n∈Z

f(n) =
∑
n∈Z

f̂(n)

The periodicized version of a function f on R is

F (x) =
∑
n∈Z

f(x+ n)

A periodic function should be (!) represented by its Fourier series:

F (x) =
∑
`∈Z

e2πi`x
∫ 1

0

F (x) e−2πi`x dx

Fourier coefficients of F expand to be the Fourier transform of f :∫ 1

0

F (x) e−2πi`x dx =

∫ 1

0

∑
n∈Z

f(x+ n) e−2πi`x dx

=
∑
n∈Z

∫ n+1

n

f(x) e−2πi`x dx =

∫
R
f(x) e−2πi`x dx = f̂(`)

Evaluating at 0, we should have∑
n∈Z

f(n) = F (0) =
∑
`∈Z

f̂(`)
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What would it take to legitimize this?

Certainly f must be of sufficient decay so that the integral for
its Fourier transform is convergent. and so that summing its
translates by Z is convergent.

We’d want f to be continuous, probably differentiable, so that we
can talk about pointwise values of F

... and to make plausible the hope that the Fourier series of F
converges to F pointwise.

For f and several derivatives rapidly decreasing, the Fourier
transform f̂ will be of sufficient decay so that its sum over Z does
converge.

A simple sufficient hypothesis for convergence is that f be in the
Schwartz space of infinitely-differentiable functions all of whose
derivatives are of rapid decay, that is,

Schwartz space = {smooth f : sup
x

(1 + x2)`|f (i)(x)| <∞ for all i, `}
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Representability of a periodic function by its Fourier series is a
serious question, with several possible senses. We want pointwise
convergence. A special, self-contained argument gives a good-
enough result for immediate purposes.

Consider (Z-)periodic functions on R, that is, complex-valued
functions f on R such that f(x + n) = f(x) for all x ∈ R, n ∈ Z.
For periodic f sufficiently nice so that integrals

f̂(n) =

∫ 1

0

f(x) e−2πinx dx (nth Fourier coefficient of f)

make sense, the Fourier expansion of f is

f ∼
∑
n∈Z

f̂(n) e2πinx

We want
f(xo) =

∑
n∈Z

f̂(n) e2πinxo
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Consider periodic piecewise-Co functions which are left-continuous
and right-continuous at any discontinuities.

Theorem: For periodic piecewise-Co function f , left-continuous
and right-continuous at discontinuities, for points xo at which f is
C0 and left-differentiable and right-differentiable, the Fourier series
of f evaluated at xo converges to f(x):

f(xo) =
∑
n∈Z

f̂(n) e2πinxo

That is, for such functions, at such points, the Fourier series
represents the function pointwise.

A notable missing conclusion is uniform pointwise convergence.
For more serious applications, pointwise convergence not known to
be uniform is often useless.
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Proof: Can reduce to xo = 0 and f(0) = 0. Representability of
f(0) by the Fourier series is the assertion that

0 = f(0) = lim
M,N→+∞

∑
−M≤n<N

f̂(n) e2πin·0

= lim
M,N→+∞

∑
−M≤n<N

f̂(n)

Substituting the defining integral for the Fourier coefficients:

∑
−M≤n<N

f̂(n) =
∑

−M≤n<N

∫ 1

0

f(u) e−2πinu du

=

∫ 1

0

∑
−M≤n<N

f(u) e−2πinu du =

∫ 1

0

f(u) · e
2πiMu − e−2πiNu

1− e−2πiu
du

We will show that

lim
`→±∞

∫ 1

0

f(u) · e−2πi`u

1− e−2πiu
du = 0
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Since f(0) = 0, the function

g(x) =
f(x)

1− e−2πix

is piecewise-Co, and left-continuous and right-continuous
at discontinuities. The only issue is at integers, and by the
periodicity it suffices to prove continuity at 0.

f(x)

1− e−2πix
=

f(x)

x
· x

1− e−2πix

The two-sided limit

lim
x→0

x

1− e−2πix
=

d

dx

∣∣∣
x=0

x

1− e−2πix

exists, by differentiability. Similarly, we have left and right limits

lim
x→0−

f(x)

x
and lim

x→0+

f(x)

x

by the one-sided differentiability of f . So both one-sided limits
exist, giving the one-sided continuity of g at 0. ///
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We find ourselves wanting a Riemann-Lebesgue lemma, that that
the Fourier coefficients of a periodic, piecewise-Co function g, with
left and right limits at discontinuities, go to 0.

The essential property approximability by step functions: given
ε > 0 there is a step function s(x) such that∫ 1

0

|s(x)− g(x)| dx < ε

With such s,

|ŝ(n)− ĝ(n)| ≤
∫ 1

0

|s(u)− g(u)| du < ε (for all ε > 0)

It suffices that Fourier coefficients of step functions go to 0, an
easy computation:∫ b

a

e−2πi`x dx = [
e−2πi`x

−2πi`
]ba =

e−2πi`b − e−2πi`a

−2πi`
−→ 0

as ` → ±∞. Thus, the Fourier coefficients of g go to 0, so the
Fourier series of f converges to f(0) when f is C1 at 0.


