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• Classfield Theory...
• Non-homological statement of main theorems
• Abrupt, insufficiently prepared, homological statement
• Parsing some notions of group (co-) homology

In fact, we did not yet complete any proof of local or global
classfield theory, although the Herbrand quotient discussion and
discussion of long exact sequences from short exact sequences of
complexes are essential for almost any sensible proof.

For a beginner, the homological statements are more difficult
to understand than the non-homological. However, the price
is worth paying, since the classical arguments of Takagi and
Artin are complicated and somewhat idiosyncratic. An overtly
homological approach is (potentially) better organized, easier
to understand in the long run, and connects more obviously to
standard mathematics.



Garrett 05-04-2012 2

Non-homological statements: recall... Local classfield theory
asserts that Galois groups of finite abelian extensions K of a local

field k are exactly the quotients k×/NK
k (K×)

αL/k

≈
// Gal(K/k) .

Existence: every open finite-index subgroup of k× is of the form
NK
k K

×. The Artin/reciprocity law maps to Galois groups
are natural: for finite abelian extensions L ⊃ K ⊃ k there is a
commutative diagram

k×/NL
k (L×)

αL/k //

quot

��

Gal(L/k)

quot

��
k×/NK

k (K×) αK/k

// Gal(K/k)

For an abelian extension of number fields K/k, the global
Artin/reciprocity map αK/k : J → Gal(K/k) is essentially the
product of the local ones...

Remark: So far, with considerable effort, we have only managed
to prove [K : k] = [k× : NK

k K
×] for cyclic local field extensions.
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Recall: For p in ok and P|p in oK unramified in abelian K/k, the
inertia subgroup of the decomposition group Gp ⊂ Gal(K/k) is
trivial, Gp is generated by the Artin element (p,K/k).

The corresponding unramified extension of completions Kw/kv
is cyclic with Galois group generated by the local Artin element
(mv,Kw/kv) with mv the unique non-zero prime in ov. The local
Artin/reciprocity map αw/v : k×v → Gal(Kw/kv) is

αw/v(x) = (mv,Kw/kv)
ordvx (unramified Kw/kv)

Identifying the two cyclic groups Gal(Kw/kv) ≈ Gp by identifying
their corresponding Artin elements (mv,Kw/kv) ←→ (p,K/k), we
can consider the local Artin map as mapping to Gp, and

αw/v : k×v −→ Gal(Kw/kv) ≈ Gp ⊂ Gal(K/k)
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With the identification Gal(Kw/kv) ≈ Gp ⊂ Gal(K/k) at
unramified places, define the global Artin/reciprocity map
αK/k : J −→ Gal(K/k) by

αK/k(x) =
∏
v

∏
w|v

αw/v(xv) (for x = {xv} ∈ Jk)

Remark: For the moment, we seem not to know how to define
local Artin/reciprocity maps at ramified primes.

The critical part of the assertion of global classfield theory is that
the global αK/k factors through the idele class group Jk/k× and
αK/k : Jk/k×NK

k JK −→ Gal(K/k) is an isomorphism.
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Remark: The significance of factoring through J/k× and
J/k×NK

k JK comes in two parts:

Since norms in unramified extensions of non-archimedean fields
are surjective to local units, and norms on archimedean fields are
open maps, the image NK

k JK is open in Jk. Thus, the local and
global Artin maps are continuous.

The latter open-ness/continuity reformulates part of the classical
assertion that the Artin map has a conductor. But the difficult
part is proving k×-invariance.

Recall that such assertions, such as we considered for the
quadratic Hilbert symbol, imply classical-looking reciprocity laws.
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Homological assertions: In contrast to our usual, we give
statements and explain them afterward. Write GK/k = Gal(K/k).

For an extension K/k of local fields with [K : k] = n,
H2(GK/k,K

×) is cyclic of order n, and contains a unique
generator, the canonical class uK/k which under the Brauer
invariant map H2(GK/k,K

×)→ Q/Z maps to 1/n.

Theorem: For q ∈ Z, the cup-product α → α · uK/k on Tate

cohomology Ĥq(GK/k,Z)→ Ĥq+2(GK/k,K
×) is an isomorphism.

In particular, for q = −2, Ĥ−2(G,Z) is ordinary group homology

H1(G,Z), and H1(G,Z) = G/Gder = Gab. Also, Ĥ0(GK/k,K
×) =

k×/NK
k K

×, so:

Corollary/Definition: the inverse reciprocity map or
inverse norm residue symbol α−1K/k : α → α · uK/k is an

isomorphism Gal(K/k)ab → k×/NK
k K

×.
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Local Existence Theorem: Given an open finite-index
subgroup U of k×, there is a unique abelian K/k with
NK
k K

× = U .

Remark: Because the (inverse) reciprocity map is given by cup
product with a canonical element, for L ⊃ K ⊃ k, some diagrams
will obviously commute. Further, for groundfields k ⊂ k′ ⊂ K,

k×
αK/k′

//

inc

��

Gal(K/k)ab

V

��
k′×

αK/k′
// Gal(K/k′)ab

where V is the Verlagerung, or transfer (below...) In fact, this
may provide a minor motivation to understand transfer.



Garrett 05-04-2012 8

Global:

Lemma: For all w|v in Kw/kv, the groups Hq(GKw/kv ,K
×
w ) are

canonically isomorphic to each other, so we identify them. Then

Ĥq(GK/k, JK) ≈
∐
v

Ĥq(GKw/kv ,K
×
w )

Corollary: H1(GK/k, JK) = 0 and

H2(GK/k, JK) ≈
∐
v

1

nv
Z
/
Z (with nv = [Kw : kv])

Proposition: (JK/K×)Gal(K/k) = Jk/k×
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Theorem: With Herbrand quotient q(G,A) = |H2(A)|/|H1(A)|
of G-module A, for cyclic K/k, q(GK/k, JK/K×) = n.

Corollary: For K/k cyclic of degree n, |Jk/k×NK
k JK | ≥ n.

Remark: This was formerly the second inequality, but by 1960’s
became the first inequality.

Corollary: For NK
k JK ⊂ U ⊂ Jk and k×U dense in Jk,

necessarily K = k.

Corollary: (For finite abelian K/k), for S any finite set of primes
containing ramified primes, Gal(K/k) is generated by Frobenius
elements from primes not in S.

Corollary: There are infinitely-many primes outside S which do
not split completely.



Garrett 05-04-2012 10

Theorem: (second/other inequality) the orders of

Ĥ0(GK/k, JK/K×) and Ĥ2(GK/k, JK/K×) divide [K : k], and

Ĥ1(GK/k, JK/K×) = 0.

Theorem: The global reciprocity law map is the product of the
local ones (as earlier), so is a product of cup-product maps in
cohomology.

Some explanations... if not proofs... :
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Tate cohomology of finite groups: Fitting into the Herbrand
quotient situation, a finite cyclic group G = 〈σ〉 with t =

∑
g∈G g

attaches to every G-module A a periodic complex

. . . σ−1 // A
t // A

σ−1 // A
t // . . .

with (co-)homology ker(σ − 1)|A/im t|A and ker t|A/im (σ − 1)|A.
Of course, ker(σ − 1)|A = AG. It is standard to define Tate
cohomology for finite cyclic G by

Ĥn(G,A) =


AG

im t|A
(n even)

ker t|A
im (σ − 1)|A

(n odd)

Remark: Tate cohomology is defined for all n ∈ Z. The hat does
not mean completion or dual: it is merely a distinguishing mark.
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More generally: for merely finite G and G-module A, for reasons
that are not instantly clear, Tate cohomology is defined as follows.
Let t =

∑
g∈G g be the trace/norm element as before, and IG the

augmentation ideal in Z[G] generated by g − 1 for all g ∈ G. Tate
cohomology is

Ĥn(G,A) =



Hn(G,A) (for n ≥ 1)

AG

im t|A
(n = 0)

ker t|A
IG ·A

(n = −1)

H1+|n|(G,A) (for n ≤ −2)

where (!?!) Hn(G,A) with n ≥ 0 is group cohomology and
Hn(G,A) with n ≥ 0 is group homology, defined as follows.
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To begin, the 0th cohomology and homology are just fixed and
cofixed vectors: H0(G,A) = AG and H0(G,A) = AG.

The functor A ///o/o/o AG is left-exact in that, provably,

0→ A→ B → C → 0 exact =⇒ 0→ AG → BG → CG exact

Dually, the functor A ///o/o/o AG = A/IGA is right-exact:

0→ A→ B → C → 0 exact =⇒ AG → BG → CG → 0 exact

These one-sided exactnesses can be proven directly, but are also
corollaries of the adjunction

HomG(AG, B) ≈ HomG(A,BG)

and the general fact that left adjoints like LA = AG are right
exact, and right adjoints like RB = BG are left exact.
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For fixed G, the higher cohomology and homology functors

A ///o/o/o Hn(A) and A ///o/o/o Hn(A) are characterized as the

universal things that from a short exact sequence
0 → A → B → C → 0 produce one-sided long exact sequences
completing 0→ AG → BG → CG and AG → BG → CG → 0

0 // AG // BG // CG // H1(A)

rrddddddddddddddddddddddddddddddddddddddddd

H1(B) // H1(C) // H2(A) // H2(B) // H2(C)

rrddddddddddddddddddddddddddddddddddddddddd

H3(A) // H3(B) // H3(C) // H4(A) // . . .

in cohomology, and for homology going in the opposite direction:
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H1(C) // AG // BG // CG // 0

H2(A) // H2(B) // H2(C) // H1(A) // H1(B)

llZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

. . . // H4(C) // H3(A) // H3(B) // H3(C)

llZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

In both cases, naturality is required, meaning that a map of short
exact sequences

0 // A //

��

B //

��

C //

��

0

0 // A′ // B′ // C ′ // 0

gives a map of long-exact sequences:
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In cohomology,

0 // AG //

��

BG //

��

CG //

��

H1(A) //

��

. . .

0 // A′G // B′G // C ′G // H1(A′) // . . .

and for homology

. . . // H1(C) //

��

AG //

��

BG //

��

CG //

��

0

. . . // H1(C ′) // A′G // B′G // C ′G // 0

Any functors like Hn and Hn that fit into such diagrams are
δ-functors.
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Finally, the Hn’s and Hn’s are characterized as universal
δ-functors extending A ///o/o/o AG and A ///o/o/o AG : for any
other collection Tn extending Hn or Tn extending Hn, there are
unique Hn(A) → Tn(A) or Tn(A) → Hn(A) such that for all
0 → A → B → C → 0, there are maps between long exact
sequences, in cohomology

. . . // Hn //

��

Hn(B) //

��

Hn(C) //

��

. . .

. . . // Tn // Tn(B) // Tn(C) // . . .

and in homology
. . . // Tn //

��

Tn(B) //

��

Tn(C) //

��

. . .

. . . // Hn
// Hn(B) // Hn(C) // . . .



Garrett 05-04-2012 18

Complexes come from ... derived functors of things like the
G-fixed submodule functor A ///o/o/o AG .

For cyclic G, ker(σ − 1)|A = AG.

Remark: Those partial failures of exactness are reasonable:

Consider G = {±1}, acting on Z by multiplication, and trivially
on Z/2. Application of the G-invariants functor gives ZG = {0}
and (Z/2)G = Z/2, so from the exact sequence

0 // Z
×2 // Z

quot // Z/2 // 0

we obtain only the exact sequence

0 // 0 // 0 // Z/2

that is, losing surjectivity to Z/2 = (Z/2)G. Applying the G-
coinvariants functor gives ZG = Z/{n − (−n) : n ∈ Z} ≈ Z/2,
losing exactness at the left end, leaving only the exact sequence

Z/2 0 // Z/2 ≈ // Z/2 // 0


