- Classfield Theory...

- Herbrand quotient as Euler-Poincaré characteristic
- Toward Hilbert's theorem 90 as cohomology cont'd
- Toward classfield theory of cyclic extensions of local fields

Again, the early conceptions of classfield theory, from reciprocity laws of Gauss 1796, Eisenstein, Jacobi, through Kummer and Kronecker, the relative-quadratic examples of Hilbert 1897, Takagi's and Artin's proofs in the 1920s and 1930s, were substantial enough that there was little concern for rewriting.
Nevertheless, with hindsight gained from a decade of application of Noether's abstract algebra to algebraic topology, by the late 1930s Chevalley, Weil, and others could see the possibility of usefully rewriting classfield theory overtly using the cohomological ideas that had been lurking inside it.

Herbrand quotients: less-bare definition An abelian group A with an ordered pair of maps $f: A \rightarrow A$ and $g: A \rightarrow A$, with $f \circ g=0$ and $g \circ f=0$ gives a periodic complex

$$
\cdots \xrightarrow{f} A \xrightarrow{g} A \xrightarrow{f} A \xrightarrow{g} \cdots
$$

This is an example of a complex

$$
\cdots \xrightarrow{f_{i-1}} A_{i} \xrightarrow{f_{i}} A_{i+1} \xrightarrow{f_{i+1}} \cdots
$$

where the essential requirement is that the composition $f_{i+1} \circ f_{i}$ of any two successive maps is 0 , that is, that $\operatorname{ker} f_{i} \subset \operatorname{im} f_{i+1}$.
The (co-) homology of the complex is the collection of quotients

$$
H_{i}(\text { the complex })=H^{i}(\text { the complex })=\frac{\left.\operatorname{ker} f_{i}\right|_{A_{i}}}{\left.\operatorname{im} f_{i-1}\right|_{A_{i-1}}}
$$

The periodic complex

$$
\cdots \xrightarrow{f} A \xrightarrow{g} A \xrightarrow{f} A \xrightarrow{g} \cdots
$$

has just two (co-) homology groups,

$$
\frac{\left.\operatorname{ker} f\right|_{A}}{\operatorname{im} g_{A}} \quad \frac{\left.\operatorname{ker} g\right|_{A}}{\operatorname{im} f_{A}}
$$

and there is no natural indexing. The Herbrand quotient is the ratio of the orders of these groups:

Herbrand quotient of $A, f, g=q_{f, g}(A)=\frac{[\operatorname{ker} f: \operatorname{im} g]}{[\operatorname{ker} g: \operatorname{im} f]}$
Inscrutable Key Lemma: For finite $A, q(A)=1$. For f stable, g-stable subgroup $A \subset B$ with $f, g: B \rightarrow B$, we have $q(B)=q(A) \cdot q(B / A)$, in the usual sense that if two are finite, so is the third, and the relation holds. (Proof below)

In fact, letting $C=B / A$, the lemma refers to a situation

with columns complexes and rows exact, where again, $\cdots \xrightarrow{f} X \xrightarrow{g} \cdots$ exact means $\operatorname{ker} g=\operatorname{im} f$.
Important special cases are that $0 \rightarrow A \rightarrow B$ implies $A \rightarrow B$ injects, and $B \rightarrow C \rightarrow 0$ implies $B \rightarrow C$ surjects.

The latter diagram is commutative, in the sense that compositions of maps are independent of the route through the diagram.

More precisely, recall that a diagram

is commutative when the composition along the upper right is equal to the composition along the lower left, that is, $h \circ f=i \circ g$. In the Herbrand quotient diagram, a special case of the long exact sequence in (co-) homology will give a periodic long exact sequence

$$
\ldots \rightarrow \frac{\operatorname{ker} f_{A}}{\operatorname{im} g_{A}} \rightarrow \frac{\operatorname{ker} f_{B}}{\operatorname{im} g_{B}} \rightarrow \frac{\operatorname{ker} f_{C}}{\operatorname{im} g_{C}} \rightarrow \frac{\operatorname{ker} g_{A}}{\operatorname{im} f_{A}} \rightarrow \frac{\operatorname{ker} g_{B}}{\operatorname{im} f_{B}} \rightarrow \frac{\operatorname{ker} g_{C}}{\operatorname{im} f_{C}} \rightarrow \ldots
$$

The periodicity often is emphasized by writing the long exact sequence as

$$
\frac{\left.\operatorname{ker} f\right|_{A}}{\left.\operatorname{im} g\right|_{A}} \longrightarrow \frac{\left.\operatorname{ker} f\right|_{B}}{\left.\operatorname{img} g\right|_{B}}
$$

The numerical assertion of the Herbrand lemma is extracted from this periodic exact sequence by Euler-Poincaré characteristics.

Claim: (Protype) The Euler characteristic $\sum_{i}(-1)^{i} \operatorname{dim} F_{i}$ of an exact sequence

$$
0 \longrightarrow V_{1} \longrightarrow V_{2} \longrightarrow \ldots \longrightarrow V_{n-1} \longrightarrow V_{n} \longrightarrow 0
$$

of vector spaces over a field is 0 .

Proof: (Recap) For a short exact sequence $0 \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow 0$ of vector spaces, the standard idea that any basis of V_{1} can be extended to a basis of V_{2}, with the (images of the) new elements forming a basis of $V_{3} \approx V_{2} / V_{1}$, proves the assertion in this case.

The general case is by induction: an exact sequence

$$
0 \longrightarrow V_{1} \longrightarrow \cdots \longrightarrow V_{n-1} \longrightarrow V_{n-1} \longrightarrow V_{n} \longrightarrow 0
$$

with $n>3$ can be spliced together from two smaller ones:

with $X=\operatorname{im} V_{2}=\operatorname{ker}\left(V_{3} \rightarrow V_{4}\right)$, using exactness.

That is, we have exact
and

$$
0 \longrightarrow V_{1} \longrightarrow V_{2} \longrightarrow X \longrightarrow 0
$$

$$
0 \longrightarrow X \longrightarrow V_{3} \longrightarrow \cdots \longrightarrow V_{n} \longrightarrow 0
$$

Add the corresponding equations $\operatorname{dim} V_{1}-\operatorname{dim} V_{2}+\operatorname{dim} X=0$ and (by induction) $\operatorname{dim} X-\operatorname{dim} V_{3}+\ldots+(-1)^{n} \operatorname{dim} V_{n}=0$.

Corollary: The Euler-Poincaré characteristic $\operatorname{dim} V_{1}-\operatorname{dim} V_{2}+\operatorname{dim} V_{3}-\operatorname{dim} V_{4}+\operatorname{dim} V_{5}-\operatorname{dim} V_{6}$ of a periodic exact diagram of vector spaces

is 0 .

Proof: Use the splicing trick, with

$$
X=\operatorname{ker}\left(V_{1} \rightarrow V_{2}\right)=\operatorname{im}\left(V_{6} \rightarrow V_{1}\right)
$$

to rewrite the periodic exact sequence as

$$
0 \longrightarrow X \longrightarrow V_{1} \longrightarrow \cdots \longrightarrow V_{6} \longrightarrow X \longrightarrow 0
$$

The Euler-Poincaré characteristic of the un-spliced exact sequence is

$$
\begin{gathered}
0=(-1)^{1} \operatorname{dim} X-\left(\sum_{i=1}^{6}(-1)^{i} \operatorname{dim} V_{i}\right)+(-1)^{8} \operatorname{dim} X \\
=-\sum_{i=1}^{6}(-1)^{i} \operatorname{dim} V_{i}
\end{gathered}
$$

giving the asserted vanishing.

Remark: By the same arguments, for exact sequences of finite abelian groups

$$
0 \longrightarrow A_{1} \longrightarrow \cdots \longrightarrow A_{n-1} \longrightarrow A_{n-1} \longrightarrow A_{n} \longrightarrow 0
$$

we have

$$
\frac{\left|A_{1}\right| \cdot\left|A_{3}\right| \cdot\left|A_{5}\right| \cdot \ldots}{\left|A_{2}\right| \cdot\left|A_{4}\right| \cdot\left|A_{6}\right| \ldots}=1
$$

and the analogous corollary: for periodic exact

we have

$$
\frac{\left|A_{1}\right| \cdot\left|A_{3}\right| \cdot\left|A_{5}\right|}{\left|A_{2}\right| \cdot\left|A_{4}\right| \cdot\left|A_{6}\right|}=1
$$

In the periodic exact sequence

group the cardinalities belonging to A, B, C, and note the inversion for B :

$$
1=\frac{\left|A_{1}\right|}{\left|A_{4}\right|} \cdot \frac{\left|A_{5}\right|}{\left|A_{2}\right|} \cdot \frac{\left|A_{3}\right|}{\left|A_{6}\right|}
$$

$$
=\frac{\left[\operatorname{ker} f_{A}: \operatorname{im} g_{A}\right]}{\left[\operatorname{ker} g_{A}: \operatorname{im} f_{A}\right]} \cdot \frac{\left[\operatorname{ker} g_{B}: \operatorname{im} f_{B}\right]}{\left[\operatorname{ker} f_{B}: \operatorname{im} g_{B}\right]} \cdot \frac{\left[\operatorname{ker} f_{C}: \operatorname{im} g_{C}\right]}{\left[\operatorname{ker} g_{C}: \operatorname{im} f_{C}\right]}
$$

Remark: The finiteness assertions were omitted, but it is clear that the Herbrand quotient lemma is a corollary of Euler-Poincaré characteristic ideas and the long exact sequence in homology.

Theorem: (shortest long exact sequence) A commutative diagram

with exact rows gives a long exact sequence

$$
\left.\left.\left.0 \rightarrow \operatorname{ker} f\right|_{A} \rightarrow \operatorname{ker} f\right|_{B} \rightarrow \operatorname{ker} f\right|_{C} \rightarrow \frac{A^{\prime}}{f A} \rightarrow \frac{B^{\prime}}{f B} \rightarrow \frac{C^{\prime}}{f C} \rightarrow 0
$$

Remark: The diagram is a short exact sequence of the complexes $0 \rightarrow A \rightarrow A^{\prime} \rightarrow 0,0 \rightarrow B \rightarrow B^{\prime} \rightarrow 0$, and $0 \rightarrow C \rightarrow C^{\prime} \rightarrow 0$.

Least obvious part of the proof: The connecting homomorphism $\delta:\left.\operatorname{ker} f\right|_{C} \longrightarrow A^{\prime} / f A$ is not obvious. Recopying the diagram,

Given $f(c)=0$, take $b \rightarrow c$, by surjectivity of $B \rightarrow C$. Then $f(b) \rightarrow f(c)=0$, so $f(b)$ is in the kernel of $B^{\prime} \rightarrow C^{\prime}$. By exactness of $A^{\prime} \rightarrow B^{\prime} \rightarrow C^{\prime}$, there is $a^{\prime} \rightarrow f(b)$. Put $\delta(c)=a^{\prime}$. (The rest of the proof is more natural.)

Remark: The Snake Lemma is the description of the connecting homomorphism. There is non-trivial content in its existence.

Example: Euler's integral $\Gamma(s)=\int_{0}^{\infty} t^{s} e^{-t} \frac{d t}{t}$ converges for $\operatorname{Re}(s)>0$. The usual way to see that this has an meromorphic continuation is to repeatedly integrate by parts.

However, the long exact sequence in homology shows that the values are completely determined, in any case!

Rewrite the integral as an integral over the whole line, by replacing t by x^{2} :

$$
\Gamma(s)=\int_{0}^{\infty} t^{s} e^{-t} \frac{d t}{t}=\int_{\mathbb{R}}|x|^{2 s-1} e^{-x^{2}} d x
$$

The Gaussian $e^{-x^{2}}$ is in the Schwartz space \mathscr{S} on \mathbb{R}, and for $\operatorname{Re}(\lambda)>0$ the map $u_{\lambda}(\varphi)=\int_{\mathbb{R}}|x|^{\lambda} \varphi(x) d x$ is in the space \mathscr{S}^{*} of continuous linear functionals on \mathscr{S}, that is, tempered distributions. u_{λ} can be meromorphically continued as a tempered-distributionvalued function of λ. Strikingly, without meromorphic continuation, u_{λ} is determined by the Snake Lemma, that is, by the long exact sequence in homology, as follows.

Observe that for $\operatorname{Re}(\lambda) \gg 1, u_{\lambda}$ is differentiable, and $x u_{\lambda}^{\prime}=\lambda \cdot u_{\lambda}$. That is, for such λ, u_{λ} is annihilated by

$$
T_{\lambda}=x \frac{d}{d x}-\lambda
$$

Let \mathscr{S}_{o} be the space of Schwartz functions vanishing to infinite order at 0 , and \mathscr{S}_{o}^{*} its dual.

Let v_{λ} be u_{λ} restricted to \mathscr{S}_{o}, where the integral converges for all $\lambda \in \mathbb{C}$. That is, v_{λ} is entire as a function of λ.

We wish to extend v_{λ} from \mathscr{S}_{o} to S, thus continuing u_{λ} outside the region of convergence of the integral.

Characterize u_{λ} and v_{λ} as being solutions of the equation $T_{\lambda} u=0$.
Thus, in the surjection $\mathscr{S}^{*} \rightarrow \mathscr{S}_{o}^{*}$, we want $u_{\lambda} \in \mathscr{S}^{*}$ mapping to v_{λ} and $u_{\lambda} \in \operatorname{ker} T_{\lambda}$. Further, u_{λ} should be unique.
$X=\operatorname{ker}\left(\mathscr{S}^{*} \rightarrow \mathscr{S}_{o}^{*}\right)$ consists of distributions supported at 0 . By the theory of Taylor-Maclaurin expansions, X is finite linear combinations of Dirac δ and its derivatives. Consider the commutative diagram

We have $\left.v_{\lambda} \in \operatorname{ker} T_{\lambda}\right|_{\mathscr{S}_{0}^{*}}$, and want to find unique $\left.u_{\lambda} \in \operatorname{ker} T_{\lambda}\right|_{\mathscr{S}^{*}}$ surjecting to v_{λ}. This is exactly what the long exact sequence gives a criterion for:

The not-so-long long exact sequence is

The part of interest is

$$
\left.\left.\left.0 \longrightarrow \operatorname{ker} T_{\lambda}\right|_{X} \longrightarrow \operatorname{ker} T_{\lambda}\right|_{\mathscr{S}_{o}^{*}} \longrightarrow \operatorname{ker} T_{\lambda}\right|_{\mathscr{S}^{*}} \longrightarrow \frac{X}{T_{\lambda} X}
$$

Thus, $\left.v_{\lambda} \in \operatorname{ker} T\right|_{\mathscr{S}_{o}^{*}}$ is assured to be in the image of $\left.\operatorname{ker} T_{\lambda}\right|_{\mathscr{S}^{*}}$ when $X / T_{\lambda} X=0$, and uniquely so exactly when $\left.\operatorname{ker} T_{\lambda}\right|_{X}=0$.
Remark: We reach these conclusions without knowing the details of the connecting homomorphism, or any of the other (more elementary) maps.

Thus, the desired u_{λ} certainly exists when $X / T_{\lambda} X=0$, that is, when $T_{\lambda} X=X$, and uniquely so exactly when $T_{\lambda} u=0$ has no non-trivial solution in X.

We compute that for test function φ

$$
\begin{gathered}
\left(x \frac{d}{d x} \delta\right)(\varphi)=\left(\frac{d}{d x} \delta\right)(x \varphi)=-\delta\left(\frac{d}{d x} x \varphi\right) \\
=-\left.x\right|_{x=0} \cdot \varphi^{\prime}(0)-\left.\frac{d x}{d x}\right|_{x=0} \cdot \varphi(0)=\varphi(0)=\delta(\varphi)
\end{gathered}
$$

That is, $x \frac{d}{d x} \delta=-\delta$. By induction, $x \frac{d}{d x} \delta^{(n)}=-(n+1) \cdot \delta^{(n)}$.
Thus, u_{λ} exists and is unique for $\lambda \notin\{-1,-2,-3, \ldots\}$. Thus, $\Gamma(s)=u_{2 s-1}\left(e^{-x^{2}}\right)$ certainly exists for $s \notin\left\{0,-\frac{1}{2},-1,-\frac{3}{2},-2, \ldots\right\}$. Remark: This incorrectly indicates potential trouble at negative half-integers. There is no such trouble, further information about the maps in the long exact sequence is needed.

