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• Classfield Theory...
• Herbrand quotient as Euler-Poincaré characteristic
• Toward Hilbert’s theorem 90 as cohomology cont’d
• Toward classfield theory of cyclic extensions of local fields

Again, the early conceptions of classfield theory, from reciprocity
laws of Gauss 1796, Eisenstein, Jacobi, through Kummer and
Kronecker, the relative-quadratic examples of Hilbert 1897,
Takagi’s and Artin’s proofs in the 1920s and 1930s, were
substantial enough that there was little concern for rewriting.

Nevertheless, with hindsight gained from a decade of application
of Noether’s abstract algebra to algebraic topology, by the late
1930s Chevalley, Weil, and others could see the possibility of
usefully rewriting classfield theory overtly using the cohomological
ideas that had been lurking inside it.
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Herbrand quotients: less-bare definition An abelian group A
with an ordered pair of maps f : A → A and g : A → A, with
f ◦ g = 0 and g ◦ f = 0 gives a periodic complex

. . . f // A
g // A

f // A
g // . . .

This is an example of a complex

. . .
fi−1 // Ai

fi // Ai+1
fi+1 // . . .

where the essential requirement is that the composition fi+1 ◦ fi of
any two successive maps is 0, that is, that ker fi ⊂ im fi+1.

The (co-) homology of the complex is the collection of quotients

Hi(the complex) = Hi(the complex) =
ker fi|Ai

im fi−1|Ai−1
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The periodic complex

. . . f // A
g // A

f // A
g // . . .

has just two (co-) homology groups,

ker f |A
im gA

ker g|A
im fA

and there is no natural indexing. The Herbrand quotient is the
ratio of the orders of these groups:

Herbrand quotient of A, f, g = qf,g(A) =
[ker f : im g]

[ker g : im f ]

Inscrutable Key Lemma: For finite A, q(A) = 1. For f -
stable, g-stable subgroup A ⊂ B with f, g : B → B, we have
q(B) = q(A) · q(B/A), in the usual sense that if two are finite, so is
the third, and the relation holds. (Proof below)
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In fact, letting C = B/A, the lemma refers to a situation
. . .

g

��

. . .

g

��

. . .

g

��
0 // A

f

��

// B //

f

��

C //

f

��

0

0 // A

g

��

// B //

g

��

C //

g

��

0

0 // A

f

��

// B //

f

��

C //

f

��

0

. . . . . . . . .
with columns complexes and rows exact, where again,

. . . f // X
g // . . . exact means ker g = im f .

Important special cases are that 0 → A → B implies A → B
injects, and B → C → 0 implies B → C surjects.
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The latter diagram is commutative, in the sense that compositions
of maps are independent of the route through the diagram.

More precisely, recall that a diagram

A
f //

g

��

B

h

��
C

i
// D

is commutative when the composition along the upper right is
equal to the composition along the lower left, that is, h ◦ f = i ◦ g.

In the Herbrand quotient diagram, a special case of the long
exact sequence in (co-) homology will give a periodic long
exact sequence

. . .→ ker fA
im gA

→ ker fB
im gB

→ ker fC
im gC

→ ker gA
im fA

→ ker gB
im fB

→ ker gC
im fC

→ . . .
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The periodicity often is emphasized by writing the long exact
sequence as

ker f |A
im g|A

// ker f |B
im g|B

""E
EE

EE
EE

E

ker g|C
im f |C

<<yyyyyyyy
ker f |C
im g|C

||yy
yy

yy
yy

ker g|B
im f |B

bbEEEEEEEE

ker g|A
im f |A

oo

The numerical assertion of the Herbrand lemma is extracted from
this periodic exact sequence by Euler-Poincaré characteristics.

Claim: (Protype) The Euler characteristic
∑
i(−1)i dimFi of an

exact sequence

0 −→ V1 −→ V2 −→ . . . −→ Vn−1 −→ Vn −→ 0

of vector spaces over a field is 0.
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Proof: (Recap) For a short exact sequence 0→ V1 → V2 → V3 → 0
of vector spaces, the standard idea that any basis of V1 can be
extended to a basis of V2, with the (images of the) new elements
forming a basis of V3 ≈ V2/V1, proves the assertion in this case.

The general case is by induction: an exact sequence

0 // V1 // . . . //// Vn−1 // Vn−1 // Vn // 0

with n > 3 can be spliced together from two smaller ones:

0 // V1 // V2 //

  A
AA

AA
AA

V3 // . . . // 0

X

>>}}}}}}}

  A
AA

AA
AA

A

0

>>}}}}}}}}
0

with X = imV2 = ker(V3 → V4), using exactness.
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That is, we have exact

0 // V1 // V2 // X // 0
and

0 // X // V3 // . . . // Vn // 0

Add the corresponding equations dimV1− dimV2 + dimX = 0 and
(by induction) dimX − dimV3 + ...+ (−1)n dimVn = 0. ///

Corollary: The Euler-Poincaré characteristic
dimV1 − dimV2 + dimV3 − dimV4 + dimV5 − dimV6 of a periodic
exact diagram of vector spaces

V1 // V2

  A
AA

AA
AA

V6

>>}}}}}}}
V3

~~}}
}}

}}
}

V5

``AAAAAAA
V4oo

is 0.
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Proof: Use the splicing trick, with

X = ker(V1 → V2) = im (V6 → V1)

to rewrite the periodic exact sequence as

0 // X // V1 // . . . // V6 // X // 0

The Euler-Poincaré characteristic of the un-spliced exact sequence
is

0 = (−1)1 dimX −
( 6∑
i=1

(−1)i dimVi

)
+ (−1)8 dimX

= −
6∑
i=1

(−1)i dimVi

giving the asserted vanishing. ///
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Remark: By the same arguments, for exact sequences of finite
abelian groups

0 // A1
// . . . //// An−1 // An−1 // An // 0

we have |A1| · |A3| · |A5| · . . .
|A2| · |A4| · |A6| . . .

= 1

and the analogous corollary: for periodic exact

A1
// A2

  B
BB

BB
BB

B

A6

>>||||||||
A3

~~||
||

||
||

A5

``BBBBBBBB
A4

oo

we have
|A1| · |A3| · |A5|
|A2| · |A4| · |A6|

= 1
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In the periodic exact sequence

ker f |A
im g|A

// ker f |B
im g|B

""E
EE

EE
EE

E

ker g|C
im f |C

<<yyyyyyyy
ker f |C
im g|C

||yy
yy

yy
yy

ker g|B
im f |B

bbEEEEEEEE

ker g|A
im f |A

oo

group the cardinalities belonging to A,B,C, and note the
inversion for B:

1 =
|A1|
|A4|

· |A5|
|A2|

· |A3|
|A6|

=
[ker fA : im gA]

[ker gA : im fA]
· [ker gB : im fB ]

[ker fB : im gB ]
· [ker fC : im gC ]

[ker gC : im fC ]
///
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Remark: The finiteness assertions were omitted, but it is clear
that the Herbrand quotient lemma is a corollary of Euler-Poincaré
characteristic ideas and the long exact sequence in homology.

Theorem: (shortest long exact sequence) A commutative diagram

0

��

0

��

0

��
0 // A

f

��

// B //

f

��

C //

f

��

0

0 // A′

��

// B′ //

��

C ′ //

��

0

0 0 0
with exact rows gives a long exact sequence

0→ ker f |A → ker f |B → ker f |C →
A′

fA
→ B′

fB
→ C ′

fC
→ 0

Remark: The diagram is a short exact sequence of the complexes
0→ A→ A′ → 0, 0→ B → B′ → 0, and 0→ C → C ′ → 0.
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Least obvious part of the proof: The connecting homomorphism
δ : ker f |C −→ A′/fA is not obvious. Recopying the diagram,

0

��

0

��

0

��
0 // A

f

��

// B //

f

��

C //

f

��

0

0 // A′

��

// B′ //

��

C ′ //

��

0

0 0 0
Given f(c) = 0, take b → c, by surjectivity of B → C. Then
f(b)→ f(c) = 0, so f(b) is in the kernel of B′ → C ′. By exactness
of A′ → B′ → C ′, there is a′ → f(b). Put δ(c) = a′. (The rest of
the proof is more natural.) ///

Remark: The Snake Lemma is the description of the connecting
homomorphism. There is non-trivial content in its existence.
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Example: Euler’s integral Γ(s) =
∫∞
0
ts e−t dtt converges for

Re(s) > 0. The usual way to see that this has an meromorphic
continuation is to repeatedly integrate by parts.

However, the long exact sequence in homology shows that the
values are completely determined, in any case!

Rewrite the integral as an integral over the whole line, by
replacing t by x2:

Γ(s) =

∫ ∞
0

ts e−t
dt

t
=

∫
R
|x|2s−1 e−x

2

dx

The Gaussian e−x
2

is in the Schwartz space S on R, and for
Re(λ) > 0 the map uλ(ϕ) =

∫
R |x|

λ ϕ(x) dx is in the space S ∗ of
continuous linear functionals on S , that is, tempered distributions.

uλ can be meromorphically continued as a tempered-distribution-
valued function of λ. Strikingly, without meromorphic
continuation, uλ is determined by the Snake Lemma, that is, by
the long exact sequence in homology, as follows.
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Observe that for Re(λ)� 1, uλ is differentiable, and xu′λ = λ · uλ.
That is, for such λ, uλ is annihilated by

Tλ = x
d

dx
− λ

Let So be the space of Schwartz functions vanishing to infinite
order at 0, and S ∗o its dual.

Let vλ be uλ restricted to So, where the integral converges for all
λ ∈ C. That is, vλ is entire as a function of λ.

We wish to extend vλ from So to S, thus continuing uλ outside
the region of convergence of the integral.

Characterize uλ and vλ as being solutions of the equation Tλu = 0.

Thus, in the surjection S ∗ → S ∗o , we want uλ ∈ S ∗ mapping to
vλ and uλ ∈ kerTλ. Further, uλ should be unique.
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X = ker(S ∗ → S ∗o ) consists of distributions supported at
0. By the theory of Taylor-Maclaurin expansions, X is finite
linear combinations of Dirac δ and its derivatives. Consider the
commutative diagram

0

��

0

��

0

��
0 // X

Tλ

��

// S ∗ //

Tλ

��

S ∗o //

Tλ

��

0

0 // X

��

// S ∗ //

��

S ∗o //

��

0

0 0 0

We have vλ ∈ kerTλ
∣∣
S ∗
o

, and want to find unique uλ ∈ kerTλ
∣∣
S ∗

surjecting to vλ. This is exactly what the long exact sequence
gives a criterion for:
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The not-so-long long exact sequence is

0 // kerTλ|X // kerTλ
∣∣
S ∗
o

// kerTλ
∣∣
S ∗

uujjjjjjjjjjjjjjjjjjjjjj

X

TλX
// S ∗o
TλS ∗o

// S ∗

TλS ∗
// 0

The part of interest is

0 // kerTλ|X // kerTλ
∣∣
S ∗
o

// kerTλ
∣∣
S ∗

// X

TλX

Thus, vλ ∈ kerT |S ∗
o

is assured to be in the image of kerTλ|S ∗

when X/TλX = 0, and uniquely so exactly when kerTλ|X = 0.

Remark: We reach these conclusions without knowing the details
of the connecting homomorphism, or any of the other (more
elementary) maps.
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Thus, the desired uλ certainly exists when X/TλX = 0, that is,
when TλX = X, and uniquely so exactly when Tλu = 0 has no
non-trivial solution in X.

We compute that for test function ϕ

(x
d

dx
δ)(ϕ) = (

d

dx
δ)(xϕ) = −δ( d

dx
xϕ)

= −x
∣∣∣
x=0
· ϕ′(0)− dx

dx

∣∣∣
x=0
· ϕ(0) = ϕ(0) = δ(ϕ)

That is, x d
dxδ = −δ. By induction, x d

dxδ
(n) = −(n+ 1) · δ(n).

Thus, uλ exists and is unique for λ 6∈ {−1,−2,−3, . . .}. Thus,

Γ(s) = u2s−1(e−x
2

) certainly exists for s 6∈ {0,− 1
2 ,−1,− 3

2 ,−2, . . .}.
Remark: This incorrectly indicates potential trouble at negative
half-integers. There is no such trouble, further information about
the maps in the long exact sequence is needed.


