- Classfield Theory...

- Herbrand quotients: veiled homological ideas
- Recollection of topological antecedents: counting holes
- Herbrand quotient as Euler-Poincaré characteristic
- Toward Hilbert's theorem 90 as cohomology cont'd
- Cyclic extensions of local fields

Herbrand quotients: veiled homological ideas Homological algebra includes computational devices extending linear algebra and counting procedures. Motivations also come from (algebraic) topology, defining and counting holes.

Recap the definition of the Herbrand quotient, despite its opacity: For an abelian group A with maps $f: A \rightarrow A$ and $g: A \rightarrow A$, with $f \circ g=0$ and $g \circ f=0$.

$$
q(A)=q_{f, g}(A)=\text { Herbrand quotient of } A, f, g=\frac{[\operatorname{ker} f: \operatorname{im} g]}{[\operatorname{ker} g: \operatorname{im} f]}
$$

Inscrutable Key Lemma: For finite $A, q(A)=1$. For f stable, g-stable subgroup $A \subset B$ with $f, g: B \rightarrow B$, we have $q(B)=q(A) \cdot q(B / A)$, in the usual sense that if two are finite, so is the third, and the relation holds.

More definitions stripped of origins, motivation, or purpose: A complex of abelian groups A_{i} is a family of homomorphisms (with the \pm in the numbering depending on context)

$$
\cdots \longrightarrow A_{i} \xrightarrow{f_{i}} A_{i \pm 1} \xrightarrow{f_{i \pm 1}} \cdots
$$

with the composition of any two consecutive maps $=0$, that is, with $f_{i \pm 1} \circ f_{i}=0$, for all i. The (co)homology, with superscript or subscript depending on context and numbering conventions, is

$$
H_{i}(\text { the complex })=H^{i}(\text { the complex })=\frac{\operatorname{ker} f_{i}}{\operatorname{im} f_{i \pm 1}}
$$

The utility of this requires explanation. In any case, the Herbrand quotient situation involves a periodic complex

$$
\cdots \longrightarrow A \xrightarrow{f} A \xrightarrow{g} A \xrightarrow{g} A \xrightarrow{f} \cdots
$$

and the Herbrand quotient is a ratio of orders of (co-)homology groups.

Basic computational device: long exact sequence

We noted that the homology of spheres S^{n} is best computed not by expressing the spheres as simplicial complexes and using the definition, but by a long exact sequence in homology, obtained from the Mayer-Vietoris theorem.
That is, express S^{n} as the union of two hemispheres, each having trivial homology (no holes!), intersecting at the equator, isomorphic to S^{n-1}.

In this example, the (Mayer-Vietoris) long exact sequence has many 0's, giving $H^{i}\left(S^{n}\right) \approx H^{i-1}\left(S^{n-1}\right)$ for $2 \leq i<n$.

Induction on the dimension n of S^{n} essentially reduces to some low-dimensional and edge cases.

These edge cases are nicely explained via Euler-Poincaré characteristics, in an algebraic sense, rather than the naive geometric sense $V-E+F$.

Euler-Poincaré characteristics: The fussy edge cases in using the long exact sequence from Mayer-Vietoris to compute homology of spheres are

$$
0 \rightarrow H_{1}\left(S^{n}\right) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0
$$

and, at the bottom of the induction,

$$
0 \rightarrow H_{1}\left(S^{1}\right) \rightarrow \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0
$$

In both cases, the unknown object injects to a free \mathbb{Z}-module, so is free. Then the question is obviously its rank.
Claim (about Euler characteristic): In an exact sequence

$$
0 \longrightarrow F_{1} \longrightarrow F_{2} \longrightarrow \ldots \longrightarrow F_{n-1} \longrightarrow F_{n} \longrightarrow 0
$$

of free modules F_{i}, we have $\sum_{i}(-1)^{i} \cdot \operatorname{rk} F_{i}=0$.

Proof: For a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of vector spaces over a field, the standard idea that any basis of A can be extended to a basis of B, with the (images of the) new elements forming a basis of $C \approx B / A$, proves the assertion in this case.

The general case is by induction: an exact sequence

$$
0 \longrightarrow F_{1} \longrightarrow \cdots \longrightarrow F_{n-1} \longrightarrow F_{n-1} \longrightarrow F_{n} \longrightarrow 0
$$

with $n>3$ can be broken into two smaller ones:

with X the image of F_{n-2} and the kernel of $F_{n-1} \rightarrow F_{n}$.

Then the two equations

$$
\begin{gathered}
\operatorname{dim} F_{1}-\operatorname{dim} F_{2}+\operatorname{dim} F_{3}-\ldots+(-1)^{n-1} \operatorname{dim} X=0 \\
\operatorname{dim} X-\operatorname{dim} F_{n-1}+\operatorname{dim} F_{n}=0
\end{gathered}
$$

give the assertion, by subtracting or adding.
Remark: The same argument applies to exact sequences of free modules over a PID.

Remark: The same argument proves a counting result, namely, for an exact sequence of finite abelian groups,
$0 \longrightarrow M_{1} \longrightarrow \cdots \longrightarrow M_{n-1} \longrightarrow M_{n-1} \longrightarrow M_{n} \longrightarrow 0$
$\prod_{i}\left|M_{i}\right|^{(-1)^{i}}=1$, or, equivalently, $\sum_{i}(-1)^{i} \cdot \log \left|M_{i}\right|=0$.
This bears on Herbrand-quotient issues.

Toward Hilbert's Theorem 90 as cohomology: The linear algebra that counts holes is useful for counting other things.

To introduce cohomology as saying useful things about familiar objects, rewrite Hilbert's theorem 90: for $G=\operatorname{Gal}(K / k)=\langle\sigma\rangle$ cyclic, letting $t=\sum_{g \in G} g \in \mathbb{Z}[G]$, the additive version of the theorem asserts

$$
\frac{\left.\operatorname{ker} t\right|_{K}}{\left.\operatorname{im}(\sigma-1)\right|_{K}}=0
$$

Of course, the multiplicative version has the same form, once we realize that for $\beta \in K^{\times},(\sigma-1) \beta=\sigma \beta / \beta$ and $t \cdot \beta=N_{k}^{K}(\beta)$.

A formation ker/im is of the desired homological form.
Homological algebra puts such quotients into a larger context.
The Artin/reciprocity map will have a natural homological sense.

The numerators in Hilbert's Theorem 90 are the kernels of the $\operatorname{norm} N_{k}^{K}: K^{\times} \rightarrow k^{\times}$and trace $\operatorname{tr}_{k}^{K}: K \rightarrow k$.
$k^{\times}=\left(K^{\times}\right)^{G}$ and $k=K^{G}$ are the G-fixed submodules of K^{\times}and K, by Galois theory.
Recall that, for a group G and \mathbb{Z}-module A with G acting, the fixed sub-module A^{G} is

$$
A^{G}=\{a \in A: g a=a \text { for all } g \in G\}
$$

This is the trivial-representation isotype in A. This is characterized as the subobject through which all G-maps from trivial G-modules X to A factor:

(G acting trivially on X)

The denominators in Theorem 90 are as follows.
The co-fixed quotient module A_{G} of a G-module A is characterized as the quotient through which all G-maps from A to trivial G modules X factor:

This is A's trivial-representation co-isotype. It is provably constructed as

$$
A_{G}=\frac{A}{I_{G} \cdot A}
$$

where I_{G} is the augmentation ideal, the kernel of the augmentation $\operatorname{map} \varepsilon: \mathbb{Z}[G] \rightarrow \mathbb{Z}$, defined by $\varepsilon g=1$ for all $g \in G$. Therefore,

$$
I_{G}=\text { ideal generated in } \mathbb{Z}[G] \text { by } g-1 \text { for } g \in G
$$

$I_{G} \cdot A$ appears in Hilbert's theorem 90 for cyclic G.

For cyclic $G=\langle\sigma\rangle$ of order n, with $t=\sum_{g \in G} g$

$$
\begin{gathered}
(\sigma-1) \cdot t=t \cdot(\sigma-1)=(\sigma-1) \cdot\left(1+\sigma+\sigma^{2}+\ldots+\sigma^{n-1}\right) \\
=\sigma^{n}-1=0 \quad(\text { in } \mathbb{Z}[G])
\end{gathered}
$$

Thus, since the composite of any two successive maps is 0 , by definition we have a two-sided complex fitting the hypotheses of the Herbrand quotient situation:

$$
\cdots \xrightarrow{t} A \xrightarrow{\sigma-1} A \xrightarrow{t} A \xrightarrow{\sigma-1} A \xrightarrow{t} \cdots
$$

(Co-)homology quotients abstracting Theorem 90 are

$$
\frac{\left.\operatorname{ker} t\right|_{A}}{\left.\operatorname{im}(\sigma-1)\right|_{A}} \quad \frac{\left.\operatorname{ker}(\sigma-1)\right|_{A}}{\left.\operatorname{im} t\right|_{A}}
$$

Specifically, Theorem 90 says that for $A=K$ or $A=K^{\times}$with K / k a finite separable extension,

$$
\frac{\left.\operatorname{ker} t\right|_{A}}{\left.\operatorname{im}(\sigma-1)\right|_{A}}=0
$$

In that situation, due to non-degeneracy of trace in separable extensions,
and

$$
\frac{\left.\operatorname{ker}(\sigma-1)\right|_{K}}{\left.\operatorname{im} t\right|_{K}}=\frac{k}{\operatorname{tr}_{k}^{K} K}=0
$$

$$
\frac{\left.\operatorname{ker}(\sigma-1)\right|_{K^{\times}}}{\left.\operatorname{im} t\right|_{K^{\times}}}=\frac{k^{\times}}{N_{k}^{K} K^{\times}}= \begin{cases}1 & \text { (finite fields) } \\ \mathbb{Z} /[K: k] & \text { (unramified local) } \\ ? ? & \text { (in general) }\end{cases}
$$

Theorem: (shortest long exact sequence) A commutative diagram

with exact rows gives a long exact sequence

$$
\left.\left.\left.0 \rightarrow \operatorname{ker} f\right|_{A} \rightarrow \operatorname{ker} f\right|_{B} \rightarrow \operatorname{ker} f\right|_{C} \rightarrow \frac{A^{\prime}}{f A} \rightarrow \frac{B^{\prime}}{f B} \rightarrow \frac{C^{\prime}}{f C} \rightarrow 0
$$

Remark: The least obvious map is ker $\left.f\right|_{C} \longrightarrow A^{\prime} / f A$.
Remark: The diagram is a short exact sequence of the complexes $0 \rightarrow A \rightarrow A^{\prime} \rightarrow 0,0 \rightarrow B \rightarrow B^{\prime} \rightarrow 0$, and $0 \rightarrow C \rightarrow C^{\prime} \rightarrow 0$.

Least obvious part of the proof: The connecting homomorphism $\delta:\left.\operatorname{ker} f\right|_{C} \longrightarrow A^{\prime} / f A$ is not obvious. Recopying the diagram,

Given $f(c)=0$, take $b \rightarrow c$. Then $f(b) \rightarrow f(c)=0$, so there is $a^{\prime} \rightarrow f(b)$. Put $\delta(c)=a^{\prime}$. The rest of the proof is more natural.

Remark: The description of the connecting homomorphism is the Snake Lemma.

Example: Powers in $\mathbb{Z}_{p}^{\times}, p>2$. Let $f(x)=x^{n}$, and consider

Let $\mu_{n} R$ be $n^{\text {th }}$ roots of unity in R, and $U=1+p \mathbb{Z}_{p}$. The long exact sequence is (with multiplicative notation)

$$
1 \rightarrow \mu_{n} U \rightarrow \mu_{n} \mathbb{Z}_{p}^{\times} \rightarrow \mu_{n} \mathbb{Z} / p^{\times} \rightarrow \frac{U}{U^{n}} \rightarrow \frac{\mathbb{Z}_{p}^{\times}}{\left(\mathbb{Z}_{p}^{\times}\right)^{n}} \rightarrow \frac{\mathbb{Z} / p^{\times}}{\left(\mathbb{Z} / p^{\times}\right)^{n}} \rightarrow 1
$$

For $p \nmid n, \ldots$
\ldots with $p \nmid n$ and $p>2$ we understand $n^{t h}$ powers in U and in \mathbb{Z} / p^{\times}: on U the $n^{t h}$ power map is an isomorphism. Thus, (recopying)

$$
1 \rightarrow \mu_{n} U \rightarrow \mu_{n} \mathbb{Z}_{p}^{\times} \rightarrow \mu_{n} \mathbb{Z} / p^{\times} \rightarrow \frac{U}{U^{n}} \rightarrow \frac{\mathbb{Z}_{p}^{\times}}{\left(\mathbb{Z}_{p}^{\times}\right)^{n}} \rightarrow \frac{\mathbb{Z} / p^{\times}}{\left(\mathbb{Z} / p^{\times}\right)^{n}} \rightarrow 1
$$

becomes

$$
1 \rightarrow 1 \rightarrow \mu_{n} \mathbb{Z}_{p}^{\times} \rightarrow \mu_{n} \mathbb{Z} / p^{\times} \rightarrow 1 \rightarrow \frac{\mathbb{Z}_{p}^{\times}}{\left(\mathbb{Z}_{p}^{\times}\right)^{n}} \rightarrow \frac{\mathbb{Z} / p^{\times}}{\left(\mathbb{Z} / p^{\times}\right)^{n}} \rightarrow 1
$$

Two isomorphisms: whatever $n^{t h}$ roots of unity are in \mathbb{Z} / p^{\times}lift to \mathbb{Z}_{p}^{\times}, and $x \in \mathbb{Z}_{p}^{\times}$is an $n^{t h}$ power \Leftrightarrow it is an $n^{t h}$ power $\bmod p$.
Remark: Obtaining $n^{\text {th }}$ roots of unity in \mathbb{Z}_{p} didn't seem to need Hensel's Lemma, only that $x \rightarrow x^{n}$ is an isomorphism on U.

