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• Classfield Theory...

• Interlude: finiteness of ramification and the different [sic]

• Herbrand quotients: veiled homological ideas
• Recollection of topological antecedents: counting holes
• Toward Hilbert’s theorem 90 as cohomology
• Cyclic extensions of local fields
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Interlude: finiteness of ramification It is important that
only finitely-many primes ramify in oK/ok, where K/k is a finite
extension of number fields.

Theorem: Only finitely many primes ramify in the integral
closure O of a Dedekind domain o in a finite separable extension
K/k of the field of fractions k of o. ///

The inverse different d−1O/o of O/o is d−1O/o = {x ∈ K : trKk xO ⊂ o}.

Proposition: The inverse different is a fractional ideal of O
containing O. ///

Proposition: The different is multiplicative in towers: for finite
separable k ⊂ K ⊂ L, with k the field of fractions of Dedekind ok,
and for integral closures oK and oL of ok in K and L

dL/k = dL/K · dK/k
Corollary: In finite Galois K/k, if Pe|p then Pe−1|dO/o. ///
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Post-1940’s reformulations: To warm up, recast some things
we already know, such as Hilbert’s Theorem 90.

Herbrand quotients: veiled homological ideas Homological
algebra includes computational devices extending linear algebra
and counting procedures. Motivations also come from (algebraic)
topology, defining and counting holes.

It is easy to define the Herbrand quotient, although explaining
its significance, and the meaning of the Key Lemma, requires
more effort: For an abelian group A with maps f : A → A and
g : A→ A, with f ◦ g = 0 and g ◦ f = 0.

q(A) = qf,g(A) = Herbrand quotient of A, f, g =
[ker f : im g]

[ker g : im f ]

Inscrutable Key Lemma: For finite A, q(A) = 1. For f -
stable, g-stable subgroup A ⊂ B with f, g : B → B, we have
q(B) = q(A) · q(B/A), in the usual sense that if two are finite, so is
the third, and the relation holds.
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The keywords are that this Lemma is about Euler-Poincaré
characteristics of the short exact sequence of complexes
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The best-known Euler characteristic refers to the numbers of
vertices V , edges E, and F faces of a polyhedron, and Euler’s
theorem is that, for convex polyhedra,

V − E + F = 2 (Euler char of convex polyhedron)

We are concerned with the linear algebra in this.

Definitions stripped of origins, motivation, or purpose: A complex
of abelian groups Ai is a family of homomorphisms (with the ± in
the numbering depending on context)

. . . // Ai
fi // Ai±1

fi±1 // . . .

with the composition of any two consecutive maps = 0, that is,
with fi±1 ◦ fi = 0, for all i. The (co)homology, with superscript
or subscript depending on context and numbering conventions, is

Hi(the complex) = Hi(the complex) =
ker fi

im fi±1
The utility of this requires explanation.
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Recollection of topological antecedents: counting holes.
An n-dimensional triangle is an n-simplex. A simplicial complex
[different use of the word!] X is a topological space made by
sticking together simplices in a reasonable way.

An orientation of a simplex is an ordering of its vertices: an
oriented n-simplex is a list σ = [vo, v1, . . . , vn] of n + 1 vertices
vj , with ordering specified modulo even permutations.

The boundary ∂σ is an alternating sum, in the free group
generated by the simplices in X:

∂σ = [v1, . . . , vn]− [vo, v2, . . . , vn] + ...+ (−1)n[vo, v1, . . . , vn−1]

=
n∑
j=0

(−1)j [vo, . . . , v̂j , . . . , vn] (hat denoting omission)

Permuting the vertices in a simplex multiplies it by the sign of the
permutation:

[vπ(0), vπ(1), . . . , vπ(n)] = sign(π) · [v0, v1, . . . , vn]

These symbol-pattern occurs in many places...
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The abelian group Cn of n-chains in X is the free group on
oriented n-dimensional simplices in X, and ∂ = ∂n maps
Cn → Cn−1. A little work shows that ∂n−1 ◦ ∂n = 0 as a map
Cn → Cn−2, so we have a chain complex

. . . // Ci
∂i // Ci−1

∂i−1 // . . . ∂2 // C1
∂1 // C0

with homology

Hi(X) =
ker ∂i

im ∂i+1
=

i-dimensional cycles

i-dimensional boundaries

It is not obvious, but the rank of the free part of Hi(X) is the
number of i-dimensional holes in X, in the sense of the following
theorem. Or, perhaps the theorem vindicates defining holes in
terms of (co-) homology...

Basic theorem: The n-sphere Sn has Hi(S
n) = 0 for 0 < i 6= n,

and Hn(Sn) = Z.
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Basic computational device: long exact sequence, Mayer-
Vietoris, etc

The homology of spheres Sn is best determined not by direct
computation. Under mild hypotheses on topological spaces X,Y ,
there is a long exact sequence (Recall: A → B → C is exact when
im (A→ B) = ker(B → C)...) . . .

rrdddddddddddddddddddddddddddddddddd

. . . Hi(X ∩ Y ) // Hi(X)⊕Hi(Y ) // Hi(X ∪ Y )

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Hi−1(X ∩ Y ) // Hi−1(X)⊕Hi−1(Y ) // Hi−1(X ∪ Y )

rrdddddddddddddddddddddddddddddddddd

. . .

The long exact sequence is the basic computational device!
Compute homology of spheres by induction...
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Suppose Hi(S
n−1) = 0 for 0 < i < n − 1 and Hn−1(Sn−1) = Z.

Also, H0(Sn−1) = Z, equivalent to connectedness.

Sn is the union of upper hemi-sphere X and lower hemi-sphere Y ,
with intersection the equator Sn−1, setting up the induction.

We grant ourselves that X,Y have no holes, in the sense that their
only non-vanishing homology is H0(X) = H0(Y ) = Z.

Thus, all the higher Hi(X) ⊕ Hi(Y )’s are 0, and the long exact
sequence becomes . . .

ttiiiiiiiiiiiiiiiii

. . . Hi(S
n−1) // 0 // Hi(S

n)

uujjjjjjjjjjjjjjjj

Hi−1(Sn−1) // 0 // Hi−1(Sn)

ttiiiiiiiiiiiiiiiii

. . .
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That is, the long exact sequence in homology breaks up into
smaller exact sequences

0 −→ Hi(S
n) −→ Hi−1(Sn−1) −→ 0 (for i > 1)

and, more fussily,

0→ H1(Sn)→ H0(Sn−1)→ H0(X)⊕H0(Y )→ H0(Sn)→ 0

The dimension-shifting conclusion is Hi(S
n) ≈ Hi−1(Sn−1), clear

for i > 1.

For the fussy case i = 1, 0→ H1(Sn)→ Z→ Z⊕ Z→ Z→ 0 gives
H1(Sn) = 0. ///

Remark: This computation is an archetype.
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Toward Hilbert’s Theorem 90 as cohomology: The linear
algebra that counts holes is useful for counting other things.

To introduce cohomology as saying useful things about familiar
objects, rewrite Hilbert’s theorem 90: for G = Gal(K/k) = 〈σ〉
cyclic, letting t =

∑
g∈G g ∈ Z[G], the additive version of the

theorem asserts ker t|K
im (σ − 1)|K

= 0

Of course, the multiplicative version has the same form, once we
realize that for β ∈ K×, (σ − 1)β = σβ/β and t · β = NK

k (β).

An assertion ker/im = 0 is of the desired homological form.

Homological algebra puts such quotients into a larger context.

The Artin/reciprocity map will have a natural homological sense.
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The numerators in Hilbert’s Theorem 90 are the kernels of the
norm NK

k : K× → k× and trace trKk : K → k.

k× = (K×)G and k = KG are the G-fixed submodules of K× and
K, by Galois theory.

Recall that, for a group G and Z-module A with G acting, the
fixed sub-module AG is

AG = {a ∈ A : ga = a for all g ∈ G}
This is the trivial-representation isotype in A. This is
characterized as the subobject through which all G-maps from
trivial G-modules N to A factor:

AG // A

X
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(G acting trivially on X)
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The denominators in Theorem 90 are explained as follows.

The co-fixed quotient module AG of a G-module A is characterized
as the quotient through which all G-maps from A to trivial G-
modules X factor:

AG

∃!
���
�
� Aoo

∀~~}}}}}}}}
(G acting trivially on X)

X
This is A’s trivial-representation co-isotype. It is provably
constructed as

AG =
A

IG ·A
where IG is the augmentation ideal, the kernel of the augmentation
map ε : Z[G]→ Z, defined by εg = 1 for all g ∈ G. Therefore,

IG = ideal generated in Z[G] by g − 1 for g ∈ G
IG ·A appears in Hilbert’s theorem 90 for cyclic G.
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For cyclic G = 〈σ〉 of order n, with t =
∑
g∈G g

(σ − 1) · t = t · (σ − 1) = (σ − 1) · (1 + σ + σ2 + . . .+ σn−1)

= σn − 1 = 0 (in Z[G])

Thus, since the composite of any two successive maps is 0, by
definition we have a two-sided complex fitting the hypotheses of
the Herbrand quotient situation:

. . . t // A
σ−1 // A

t // A
σ−1 // A

t // . . .

(Co-)homology quotients abstracting Theorem 90 are

ker t|A
im (σ − 1)|A

ker(σ − 1)|A
im t|A


