- Classfield Theory...

- Interlude: finiteness of ramification and the different [sic]
- Herbrand quotients: veiled homological ideas
- Recollection of topological antecedents: counting holes
- Toward Hilbert's theorem 90 as cohomology
- Cyclic extensions of local fields

Interlude: finiteness of ramification It is important that only finitely-many primes ramify in $\mathfrak{o}_{K} / \mathfrak{o}_{k}$, where K / k is a finite extension of number fields.

Theorem: Only finitely many primes ramify in the integral closure \mathfrak{O} of a Dedekind domain \mathfrak{o} in a finite separable extension K / k of the field of fractions k of \mathfrak{o}.

The inverse different $\mathfrak{d}_{\mathfrak{O} / \mathfrak{o}}^{-1}$ of $\mathfrak{O} / \mathfrak{o}$ is $\mathfrak{d}_{\mathfrak{O} / \mathfrak{o}}^{-1}=\left\{x \in K: \operatorname{tr}_{k}^{K} x \mathfrak{O} \subset \mathfrak{o}\right\}$.
Proposition: The inverse different is a fractional ideal of \mathfrak{O} containing \mathfrak{O}.

Proposition: The different is multiplicative in towers: for finite separable $k \subset K \subset L$, with k the field of fractions of Dedekind \mathfrak{o}_{k}, and for integral closures \mathfrak{o}_{K} and \mathfrak{o}_{L} of \mathfrak{o}_{k} in K and L

$$
\mathfrak{d}_{L / k}=\mathfrak{d}_{L / K} \cdot \mathfrak{d}_{K / k}
$$

Corollary: In finite Galois K / k, if $\mathfrak{P}^{e} \mid \mathfrak{p}$ then $\mathfrak{P}^{e-1} \mid \mathfrak{d}_{\mathfrak{O} / \mathfrak{o}}$.

Post-1940's reformulations: To warm up, recast some things we already know, such as Hilbert's Theorem 90.
Herbrand quotients: veiled homological ideas Homological algebra includes computational devices extending linear algebra and counting procedures. Motivations also come from (algebraic) topology, defining and counting holes.

It is easy to define the Herbrand quotient, although explaining its significance, and the meaning of the Key Lemma, requires more effort: For an abelian group A with maps $f: A \rightarrow A$ and $g: A \rightarrow A$, with $f \circ g=0$ and $g \circ f=0$.

$$
q(A)=q_{f, g}(A)=\text { Herbrand quotient of } A, f, g=\frac{[\operatorname{ker} f: \operatorname{im} g]}{[\operatorname{ker} g: \operatorname{im} f]}
$$

Inscrutable Key Lemma: For finite $A, q(A)=1$. For f stable, g-stable subgroup $A \subset B$ with $f, g: B \rightarrow B$, we have $q(B)=q(A) \cdot q(B / A)$, in the usual sense that if two are finite, so is the third, and the relation holds.

The keywords are that this Lemma is about Euler-Poincaré characteristics of the short exact sequence of complexes

What does this mean?

The best-known Euler characteristic refers to the numbers of vertices V, edges E, and F faces of a polyhedron, and Euler's theorem is that, for convex polyhedra,

$$
V-E+F=2 \quad \text { (Euler char of convex polyhedron) }
$$

We are concerned with the linear algebra in this.
Definitions stripped of origins, motivation, or purpose: A complex of abelian groups A_{i} is a family of homomorphisms (with the \pm in the numbering depending on context)

$$
\cdots \longrightarrow A_{i} \xrightarrow{f_{i}} A_{i \pm 1} \xrightarrow{f_{i \pm 1}} \cdots
$$

with the composition of any two consecutive maps $=0$, that is, with $f_{i \pm 1} \circ f_{i}=0$, for all i. The (co)homology, with superscript or subscript depending on context and numbering conventions, is

$$
H_{i}(\text { the complex })=H^{i}(\text { the complex })=\frac{\operatorname{ker} f_{i}}{\operatorname{im} f_{i \pm 1}}
$$

The utility of this requires explanation.

Recollection of topological antecedents: counting holes. An n-dimensional triangle is an n-simplex. A simplicial complex [different use of the word!] X is a topological space made by sticking together simplices in a reasonable way.

An orientation of a simplex is an ordering of its vertices: an oriented n-simplex is a list $\sigma=\left[v_{o}, v_{1}, \ldots, v_{n}\right]$ of $n+1$ vertices v_{j}, with ordering specified modulo even permutations.
The boundary $\partial \sigma$ is an alternating sum, in the free group generated by the simplices in X :

$$
\begin{aligned}
& \partial \sigma=\left[v_{1}, \ldots, v_{n}\right]-\left[v_{o}, v_{2}, \ldots, v_{n}\right]+\ldots+(-1)^{n}\left[v_{o}, v_{1}, \ldots, v_{n-1}\right] \\
& =\sum_{j=0}^{n}(-1)^{j}\left[v_{o}, \ldots, \widehat{v_{j}}, \ldots, v_{n}\right] \quad \text { (hat denoting omission) }
\end{aligned}
$$

Permuting the vertices in a simplex multiplies it by the sign of the permutation:

$$
\left[v_{\pi(0)}, v_{\pi(1)}, \ldots, v_{\pi(n)}\right]=\operatorname{sign}(\pi) \cdot\left[v_{0}, v_{1}, \ldots, v_{n}\right]
$$

These symbol-pattern occurs in many places...

The abelian group C_{n} of n-chains in X is the free group on oriented n-dimensional simplices in X, and $\partial=\partial_{n}$ maps $C_{n} \rightarrow C_{n-1}$. A little work shows that $\partial_{n-1} \circ \partial_{n}=0$ as a map $C_{n} \rightarrow C_{n-2}$, so we have a chain complex

$$
\cdots \longrightarrow C_{i} \xrightarrow{\partial_{i}} C_{i-1} \xrightarrow{\partial_{i-1}} \cdots \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0}
$$

with homology

$$
H_{i}(X)=\frac{\operatorname{ker} \partial_{i}}{\operatorname{im} \partial_{i+1}}=\frac{i \text {-dimensional cycles }}{i \text {-dimensional boundaries }}
$$

It is not obvious, but the rank of the free part of $H_{i}(X)$ is the number of i-dimensional holes in X, in the sense of the following theorem. Or, perhaps the theorem vindicates defining holes in terms of (co-) homology...

Basic theorem: The n-sphere S^{n} has $H_{i}\left(S^{n}\right)=0$ for $0<i \neq n$, and $H_{n}\left(S^{n}\right)=\mathbb{Z}$.

Basic computational device: long exact sequence, MayerVietoris, etc

The homology of spheres S^{n} is best determined not by direct computation. Under mild hypotheses on topological spaces X, Y, there is a long exact sequence (Recall: $A \rightarrow B \rightarrow C$ is exact when $\operatorname{im}(A \rightarrow B)=\operatorname{ker}(B \rightarrow C) \ldots)$

The long exact sequence is the basic computational device! Compute homology of spheres by induction...

Suppose $H_{i}\left(S^{n-1}\right)=0$ for $0<i<n-1$ and $H_{n-1}\left(S^{n-1}\right)=\mathbb{Z}$. Also, $H_{0}\left(S^{n-1}\right)=\mathbb{Z}$, equivalent to connectedness.
S^{n} is the union of upper hemi-sphere X and lower hemi-sphere Y, with intersection the equator S^{n-1}, setting up the induction.
We grant ourselves that X, Y have no holes, in the sense that their only non-vanishing homology is $H_{0}(X)=H_{0}(Y)=\mathbb{Z}$.
Thus, all the higher $H_{i}(X) \oplus H_{i}(Y)$'s are 0 , and the long exact sequence becomes

That is, the long exact sequence in homology breaks up into smaller exact sequences

$$
0 \longrightarrow H_{i}\left(S^{n}\right) \longrightarrow H_{i-1}\left(S^{n-1}\right) \longrightarrow 0 \quad(\text { for } i>1)
$$

and, more fussily,

$$
0 \rightarrow H_{1}\left(S^{n}\right) \rightarrow H_{0}\left(S^{n-1}\right) \rightarrow H_{0}(X) \oplus H_{0}(Y) \rightarrow H_{0}\left(S^{n}\right) \rightarrow 0
$$

The dimension-shifting conclusion is $H_{i}\left(S^{n}\right) \approx H_{i-1}\left(S^{n-1}\right)$, clear for $i>1$.

For the fussy case $i=1,0 \rightarrow H_{1}\left(S^{n}\right) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0$ gives $H_{1}\left(S^{n}\right)=0$.

Remark: This computation is an archetype.

Toward Hilbert's Theorem 90 as cohomology: The linear algebra that counts holes is useful for counting other things.

To introduce cohomology as saying useful things about familiar objects, rewrite Hilbert's theorem 90: for $G=\operatorname{Gal}(K / k)=\langle\sigma\rangle$ cyclic, letting $t=\sum_{g \in G} g \in \mathbb{Z}[G]$, the additive version of the theorem asserts

$$
\frac{\left.\operatorname{ker} t\right|_{K}}{\left.\operatorname{im}(\sigma-1)\right|_{K}}=0
$$

Of course, the multiplicative version has the same form, once we realize that for $\beta \in K^{\times},(\sigma-1) \beta=\sigma \beta / \beta$ and $t \cdot \beta=N_{k}^{K}(\beta)$. An assertion ker/im $=0$ is of the desired homological form.

Homological algebra puts such quotients into a larger context.
The Artin/reciprocity map will have a natural homological sense.

The numerators in Hilbert's Theorem 90 are the kernels of the norm $N_{k}^{K}: K^{\times} \rightarrow k^{\times}$and $\operatorname{trace} \operatorname{tr}_{k}^{K}: K \rightarrow k$.
$k^{\times}=\left(K^{\times}\right)^{G}$ and $k=K^{G}$ are the G-fixed submodules of K^{\times}and K, by Galois theory.
Recall that, for a group G and \mathbb{Z}-module A with G acting, the fixed sub-module A^{G} is

$$
A^{G}=\{a \in A: g a=a \text { for all } g \in G\}
$$

This is the trivial-representation isotype in A. This is characterized as the subobject through which all G-maps from trivial G-modules N to A factor:

(G acting trivially on X)

The denominators in Theorem 90 are explained as follows.
The co-fixed quotient module A_{G} of a G-module A is characterized as the quotient through which all G-maps from A to trivial G modules X factor:

This is A's trivial-representation co-isotype. It is provably constructed as

$$
A_{G}=\frac{A}{I_{G} \cdot A}
$$

where I_{G} is the augmentation ideal, the kernel of the augmentation $\operatorname{map} \varepsilon: \mathbb{Z}[G] \rightarrow \mathbb{Z}$, defined by $\varepsilon g=1$ for all $g \in G$. Therefore,

$$
I_{G}=\text { ideal generated in } \mathbb{Z}[G] \text { by } g-1 \text { for } g \in G
$$

$I_{G} \cdot A$ appears in Hilbert's theorem 90 for cyclic G.

For cyclic $G=\langle\sigma\rangle$ of order n, with $t=\sum_{g \in G} g$

$$
\begin{gathered}
(\sigma-1) \cdot t=t \cdot(\sigma-1)=(\sigma-1) \cdot\left(1+\sigma+\sigma^{2}+\ldots+\sigma^{n-1}\right) \\
=\sigma^{n}-1=0 \quad(\text { in } \mathbb{Z}[G])
\end{gathered}
$$

Thus, since the composite of any two successive maps is 0 , by definition we have a two-sided complex fitting the hypotheses of the Herbrand quotient situation:

$$
\cdots \xrightarrow{t} A \xrightarrow{\sigma-1} A \xrightarrow{t} A \xrightarrow{\sigma-1} A \xrightarrow{t} \cdots
$$

(Co-)homology quotients abstracting Theorem 90 are

$$
\frac{\left.\operatorname{ker} t\right|_{A}}{\left.\operatorname{im}(\sigma-1)\right|_{A}} \quad \frac{\left.\operatorname{ker}(\sigma-1)\right|_{A}}{\left.\operatorname{im} t\right|_{A}}
$$

