- Classfield Theory...

- Slightly refined main statements
- Interlude: finiteneness of ramification
- Recap Hilbert's theorem 90
- Herbrand quotients: veiled homological ideas
- Recollection of topological antecedents: counting holes
- Toward Hilbert's theorem 90 as cohomology
- Cyclic extensions of local fields

Putting pieces of classfield theory together: For an abelian extension of number fields K / k, the global Artin/reciprocity map $\alpha_{K / k}: \mathbb{J} \rightarrow \operatorname{Gal}(K / k)$ is essentially the product of the local ones:
At unramified K_{w} / k_{v}, the local Artin/reciprocity map $k_{v}^{\times} \rightarrow \operatorname{Gal}\left(K_{w} / k_{v}\right)$ is $\alpha_{w / v}(x)=\left(\mathfrak{m}_{v}, K_{w} / k_{v}\right)^{\operatorname{ord}_{v} x}$. Identifying the two cyclic groups $\operatorname{Gal}\left(K_{w} / k_{v}\right) \approx G_{\mathfrak{p}}$ by identifying their corresponding Artin elements $\left(\mathfrak{m}_{v}, K_{w} / k_{v}\right) \longleftrightarrow(\mathfrak{p}, K / k)$, consider the local Artin map as mapping to $G_{\mathfrak{p}}$, and

$$
\alpha_{w / v}: k_{v}^{\times} \longrightarrow \operatorname{Gal}\left(K_{w} / k_{v}\right) \approx G_{\mathfrak{p}} \subset \operatorname{Gal}(K / k)
$$

Then the global Artin/reciprocity map $\alpha_{K / k}: \mathbb{J} \longrightarrow \operatorname{Gal}(K / k)$ is

$$
\alpha_{K / k}(x)=\prod_{v} \prod_{w \mid v} \alpha_{w / v}\left(x_{v}\right) \quad\left(\text { for } x=\left\{x_{v}\right\} \in \mathbb{J}_{k}\right)
$$

Remark: The critical part of the assertion of global classfield theory is that the global $\alpha_{K / k}$ factors through the idele class group $\mathbb{J}_{k} / k^{\times}$。

Interlude: finiteness of ramification

It is important that only finitely-many primes ramify in $\mathfrak{o}_{K} / \mathfrak{o}_{k}$, where K / k is a finite extension of number fields.

In fact, finiteness of ramification is a more general algebraic fact:
Theorem: Only finitely many primes ramify in the integral closure \mathfrak{O} of a Dedekind domain \mathfrak{o} in a finite separable extension K / k of the field of fractions k of \mathfrak{o}.
The proof requires some preparation. The inverse different $\mathfrak{d}_{\mathfrak{O} / \mathfrak{o}}^{-1}$ of $\mathfrak{O} / \mathfrak{o}$ is

$$
\mathfrak{d}_{\mathfrak{O} / \mathfrak{o}}^{-1}=\left\{x \in K: \operatorname{tr}_{k}^{K}(x \mathfrak{O}) \subset \mathfrak{o}\right\}
$$

Proposition: The inverse different is a fractional ideal of \mathfrak{O} containing \mathfrak{O}.
Proof: Since $\operatorname{tr}_{k}^{K}(\mathfrak{O}) \subset \mathfrak{o}$, certainly $\mathfrak{O} \subset \mathfrak{d}_{K / k}^{-1}$.
Given a k-basis x_{i} of K, we can adjust by a non-zero constant in k so that all x_{i} are in \mathfrak{O}. Let \widehat{x}_{i} be the dual basis with respect to the trace pairing, which by separability is non-degenerate.
Since $\sum_{i} \mathfrak{o} x_{i} \subset \mathfrak{O}$, certainly $\mathfrak{d}^{-1} \subset \sum_{i} \mathfrak{o} \widehat{x}_{i}$, a finitely-generated \mathfrak{o}-module inside K. Since \mathfrak{o} is Noetherian, every submodule of a finitely-generated \mathfrak{o}-module is finitely-generated, so \mathfrak{d}^{-1} is finitelygenerated as an \mathfrak{o}-module. Thus, it is certainly finitely-generated as an \mathfrak{O}-module, so is a fractional ideal. Since $\mathfrak{d}^{-1} \supset \mathfrak{O}$, its inverse is contained in \mathfrak{O}.

Given the proposition, it makes sense to define the different $\mathfrak{d}_{\mathfrak{G} / 0}$ to be the fractional-ideal inverse of $\mathfrak{d}_{\mathfrak{O} / \mathfrak{0}}^{-1}$. When the Dedekind rings $\mathfrak{o} \subset k$ and $\mathfrak{O} \subset K$ are understood, we may write

$$
\mathfrak{d}_{K / k}=\mathfrak{d}_{\mathfrak{O} / \mathfrak{o}}
$$

Proposition: The different is multiplicative in towers, that is, for finite separable extensions $k \subset K \subset L$, with k the field of fractions of Dedekind \mathfrak{o}_{k}, and for integral closures \mathfrak{o}_{K} and \mathfrak{o}_{L} of \mathfrak{o}_{k} in K and L,

$$
\mathfrak{d}_{L / k}=\mathfrak{d}_{L / K} \cdot \mathfrak{d}_{K / k}
$$

Proof: On one hand, with $x \in L$ and $y \in K$ and $\operatorname{tr}_{K}^{L}\left(x \mathfrak{o}_{L}\right) \subset \mathfrak{o}_{K}$ and $\operatorname{tr}_{k}^{K}\left(y \mathfrak{o}_{K}\right) \subset \mathfrak{o}_{k}$, certainly

$$
\operatorname{tr}_{k}^{L}\left(x y \mathfrak{o}_{L}\right)=\operatorname{tr}_{k}^{K} \operatorname{tr}_{K}^{L}\left(x y \mathfrak{o}_{L}\right)=\operatorname{tr}_{k}^{K}\left(y \cdot \operatorname{tr}_{K}^{L}\left(x \mathfrak{o}_{L}\right)\right) \subset \operatorname{tr}_{k}^{K}\left(y \mathfrak{o}_{K}\right) \subset \mathfrak{o}_{k}
$$

gives $\mathfrak{d}_{L / K}^{-1} \cdot \mathfrak{d}_{K / k}^{-1} \subset \mathfrak{d}_{L / k}^{-1}$. Conversely, \ldots
for $x \in \mathfrak{d}_{L / k}^{-1}$,

$$
\operatorname{tr}_{k}^{K}\left(\operatorname{tr}_{K}^{L} x \mathfrak{o}_{L} \cdot \mathfrak{o}_{K}\right)=\operatorname{tr}_{k}^{K}\left(\operatorname{tr}_{K}^{L} x \mathfrak{o}_{L}\right)=\operatorname{tr}_{k}^{L}\left(x \mathfrak{o}_{L}\right) \subset \mathfrak{o}_{k}
$$

Thus, $\operatorname{tr}_{K}^{L}\left(\mathfrak{d}_{L / K}^{-1}\right) \subset \mathfrak{d}_{K / k}^{-1}$, and for $x \in \mathfrak{d}_{L / k}^{-1}$

$$
\operatorname{tr}_{K}^{L}\left(\mathfrak{d}_{K / k} \cdot x \mathfrak{o}_{L}\right)=\mathfrak{d}_{K / k} \cdot \operatorname{tr}_{K}^{L}\left(x \mathfrak{o}_{L}\right) \subset \mathfrak{d}_{K / k} \cdot \mathfrak{d}_{K / k}^{-1}=\mathfrak{o}_{K}
$$

That is, $\mathfrak{d}_{K / k} \cdot \mathfrak{d}_{L / k}^{-1} \subset \mathfrak{d}_{L / K}^{-1}$. Even though $\mathfrak{d}_{K / k}$ is not a fractional ideal in L, the product $\mathfrak{d}_{K / k} \cdot \mathfrak{d}_{L / k}^{-1}$ is contained in the finitelygenerated \mathfrak{o}_{L}-module $\mathfrak{a}_{L / K}^{-1}$, and \mathfrak{o}_{L} is Noetherian. Thus, that product is a fractional ideal in L. Multiplying the containment through by the ideal $\mathfrak{d}_{L / k} \cdot \mathfrak{d}_{L / K}$ gives $\mathfrak{d}_{K / k} \cdot \mathfrak{d}_{L / K} \subset \mathfrak{d}_{L / k}$.

Corollary: There are only finitely-many primes \mathfrak{p} in \mathfrak{o}_{k} ramifying in $\mathfrak{o}_{K} / \mathfrak{o}_{k}$ for finite separable K / k.
Proof: A prime that ramifies in K / k certainly ramifies in the further (finite, separable) extension to the Galois closure of K over k, so it suffices to consider the finite Galois case.

Let $\mathfrak{p} \cdot \mathfrak{o}_{K}=\left(\mathfrak{P}_{1} \ldots \mathfrak{P}_{n}\right)^{e}$.

$$
\begin{gathered}
\operatorname{tr}_{k}^{K}\left(\mathfrak{P}_{1}^{1-e} \cdot \mathfrak{o}_{K}\right)=\mathfrak{p}^{-1} \mathfrak{p} \cdot \operatorname{tr}_{k}^{K}\left(\mathfrak{P}_{1}^{1-e}\right)=\mathfrak{p}^{-1} \operatorname{tr}_{k}^{K}\left(\mathfrak{p}_{1}^{1-e}\right) \\
\subset \mathfrak{p}^{-1} \operatorname{tr}_{k}^{K}\left(\mathfrak{P}_{1} \mathfrak{P}_{2}^{e} \ldots \mathfrak{P}_{n}^{e}\right) \subset \mathfrak{p}^{-1} \operatorname{tr}_{k}^{K}\left(\mathfrak{P}_{1} \mathfrak{P}_{2} \ldots \mathfrak{P}_{n}\right) \\
\subset \mathfrak{p}^{-1} \cdot\left(\mathfrak{P}_{1} \mathfrak{P}_{2} \ldots \mathfrak{P}_{n} \cap \mathfrak{o}_{k}\right) \subset \mathfrak{p}^{-1} \cdot \mathfrak{p}=\mathfrak{o}_{k}
\end{gathered}
$$

Thus, $\mathfrak{P}_{1}^{1-e} \subset \mathfrak{d}_{K / k}^{-1}$, which is equivalent to $\mathfrak{d}_{K / k} \subset \mathfrak{P}_{1}^{e-1}$, so $\mathfrak{P}_{1}^{e-1} \mid \mathfrak{d}_{K / k}$. Since $\mathfrak{d}_{K / k}$ is a non-zero ideal, only finitely-many primes divide it.

Recap:

Hilbert's Theorem 90: In a field extension K / k of degree n with cyclic Galois group generated by σ, the elements in K of norm 1 are exactly those of the form $\sigma \alpha / \alpha$ for $\alpha \in K$.

Hilbert's Theorem 90 gives another (the usual?) proof of
Corollary: A cyclic degree n extension K / k of k containing $n^{t h}$ roots of unity and characteristic not dividing n is obtained by adjoining an $n^{\text {th }}$ root.

Additive version of Theorem 90: Let K / k be cyclic of degree n with Galois group generated by σ. Then $\operatorname{tr}_{k}^{K}(\beta)=0$ if and only if there is $\alpha \in K$ such that $\beta=\alpha-\alpha^{\sigma}$.

Corollary: (Artin-Schreier extensions) Let K / k be cyclic of order p in characteristic p. Then there is $K=k(\alpha)$ with α satisfying an (Artin-Schreier) equation $x^{p}-x+a=0$ with $a \in k$.

Post-1940's reformulations: ... recast some things we already know, such as Hilbert's Theorem 90, in other terms.

Herbrand quotients: veiled homological ideas

Homological algebra includes computational devices extending linear algebra and counting procedures. Motivations also come from (algebraic) topology, defining and counting holes.

It is easy enough to define the Herbrand quotient, although explaining its significance, and the meaning of the Key Lemma, requires more effort:

Let A be an abelian group, with maps $f: A \rightarrow A$ and $g: A \rightarrow A$, such that $f \circ g=0$ and $g \circ f=0$.

$$
q(A)=q_{f, g}(A)=\text { Herbrand quotient of } A, f, g=\frac{[\operatorname{ker} f: \operatorname{im} g]}{[\operatorname{ker} g: \operatorname{im} f]}
$$

Inscrutable Key Lemma: For finite $A, q(A)=1$. For f stable, g-stable subgroup $A \subset B$ with $f, g: B \rightarrow B$, we have $q(B)=q(A) \cdot q(B / A)$, in the usual sense that if two are finite, so is the third, and the relation holds.

The keywords are that this Lemma is about Euler-Poincaré characteristics of the short exact sequence of complexes

What does this mean?

The best-known Euler characteristic refers to the numbers of vertices V, edges E, and F faces of a polyhedron, and Euler's theorem is that, for convex polyhedra,

$$
V-E+F=2 \quad \text { (Euler char of convex polyhedron) }
$$

We are concerned with the linear algebra in this.
Definitions stripped of origins, motivation, or purpose: A complex of abelian groups A_{i} is a family of homomorphisms

$$
\cdots \longrightarrow A_{i} \xrightarrow{f_{i}} A_{i-1} \xrightarrow{f_{i-1}} \cdots
$$

with the composition of any two consecutive maps 0 , that is, with $f_{i-1} \circ f_{i}=0$, for all i. The (co)homology, with superscript or subscript depending on context and numbering conventions, is

$$
H_{i}(\text { the complex })=H^{i}(\text { the complex })=\frac{\operatorname{ker} f_{i}}{\operatorname{im} f_{i \pm 1}}
$$

The utility of this requires explanation.

Recollection of topological antecedents: counting holes.

An n-dimensional triangle is an n-simplex. A simplicial complex [different use of the word!] X is a topological space made by sticking together simplices in a reasonable way.

An orientation of a simplex is an ordering of its vertices: an oriented n-simplex is a list $\sigma=\left[v_{o}, v_{1}, \ldots, v_{n}\right]$ of $n+1$ vertices v_{j}, with ordering specified modulo even permutations.
The boundary $\partial \sigma$ is an alternating sum, in the free group generated by the simplices in X :

$$
\begin{gathered}
\partial \sigma=\left[v_{1}, \ldots, v_{n}\right]-\left[v_{o}, v_{2}, \ldots, v_{n}\right]+\ldots+(-1)^{n}\left[v_{o}, v_{1}, \ldots, v_{n-1}\right] \\
=\sum_{j=0}^{n}(-1)^{j}\left[v_{o}, \ldots, \widehat{v_{j}}, \ldots, v_{n}\right] \quad \text { (hat denoting omission) }
\end{gathered}
$$

Permuting the vertices in a simplex multiplies it by the sign of the permutation:

$$
\left[v_{\pi(0)}, v_{\pi(1)}, \ldots, v_{\pi(n)}\right]=\operatorname{sign}(\pi) \cdot\left[v_{0}, v_{1}, \ldots, v_{n}\right]
$$

These symbol-pattern occurs in many places...

The abelian group C_{n} of n-chains in X is the free group on oriented n-dimensional simplices in X, and $\partial=\partial_{n}$ maps $C_{n} \rightarrow C_{n-1}$. A little work shows that $\partial_{n-1} \circ \partial_{n}=0$ as a map $C_{n} \rightarrow C_{n-2}$, so we have a chain complex

$$
\cdots \longrightarrow C_{i} \xrightarrow{\partial_{i}} C_{i-1} \xrightarrow{\partial_{i-1}} \cdots \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0}
$$

with homology

$$
H_{i}(X)=\frac{\operatorname{ker} \partial_{i}}{\operatorname{im} \partial_{i+1}}=\frac{i \text {-dimensional cycles }}{i \text {-dimensional boundaries }}
$$

It is not obvious, but the rank of the free part of $H_{i}(X)$ is the number of i-dimensional holes in X, in the following sense.

Basic theorem: The n-sphere S^{n} has $H_{i}\left(S^{n}\right)=0$ for $0<i \neq n$, and $H_{n}\left(S^{n}\right)=\mathbb{Z}$.

Example computation: First, check that $\partial_{1} \partial_{2}=0$:

$$
\begin{aligned}
& \partial_{1} \partial_{2}\left[v_{0}, v_{1}, v_{2}\right]=\partial_{1}\left(\left[v_{1}, v_{2}\right]-\left[v_{0}, v_{2}\right]+\left[v_{0}, v_{1}\right]\right) \\
& =\left(\left[v_{2}\right]-\left[v_{1}\right]\right)-\left(\left[v_{2}\right]-\left[v_{0}\right]\right)+\left(\left[v_{1}\right]-\left[v_{0}\right]\right)=0
\end{aligned}
$$

Second: make a circle S^{1} as a hollow triangle X by sticking together three line segments $\left[v_{0}, v_{1}\right],\left[v_{1}, v_{2}\right],\left[v_{2}, v_{0}\right]$. The whole chain complex is not very big:

$$
0 \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0}
$$

with C_{1} free of rank 3 made from the three line segments $\left[v_{i}, v_{j}\right]$, and C_{0} of rank 3 , made from the three vertices.

$$
H_{1}(X)=\frac{\operatorname{ker} \partial_{1}}{\operatorname{im} \partial_{2}}=\operatorname{ker} \partial_{1}=\mathbb{Z} \cdot\left(\left[v_{0}, v_{1}\right]+\left[v_{1}, v_{2}\right]+\left[v_{2}, v_{0}\right]\right)
$$

Thus, $H_{1}(X)$ is free, rank one, so this computes that there is one one-dimensional hole in a circle.

Another example computation: We can make a 2 -sphere by sticking together four oriented triangles along their edges, forming a hollow tetrahedron $X:\left[v_{0}, v_{1}, v_{2}\right],\left[v_{1}, v_{2}, v_{3}\right],\left[v_{2}, v_{3}, v_{0}\right]$, and [v_{3}, v_{0}, v_{1}]. The whole chain complex is not very big:

$$
0 \longrightarrow C_{2} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0}
$$

with C_{2} free of rank 4 made from the four triangles, C_{1} of rank 6 made from the six line segments $\left[v_{i}, v_{j}\right]$, and C_{0} of rank 4 , made from the four vertices. Note the patterns $\partial_{1}\left[v_{a}, v_{b}\right]=\left[v_{a}\right]-\left[v_{b}\right]$ and

$$
\partial_{2}\left[v_{a}, v_{b}, v_{c}\right]=\left[v_{b}, v_{c}\right]-\left[v_{a}, v_{c}\right]+\left[v_{a}, v_{b}\right]
$$

Linear algebra gives $H_{1}(X) \approx\{0\}$ and $H_{2}(X) \approx \mathbb{Z}$, confirming that there is no one-dimensional hole in a 2 -sphere, but there is a two-dimensional hole.

A better computational device: long exact sequence, Mayer-Vietoris, etc

The homology of spheres S^{n} is best determined not by direct computation. Under mild hypotheses on topological spaces X, Y, there is a long exact sequence (Recall: $A \rightarrow B \rightarrow C$ is exact when $\operatorname{im}(A \rightarrow B)=\operatorname{ker}(B \rightarrow C) \ldots)$

The long exact sequence is the basic computational device! Compute homology of spheres by induction...

