• Classfield Theory...

- Slightly refined main statements
- Interlude: finiteneness of ramification
- \bullet Recap Hilbert's theorem 90
- Herbrand quotients: veiled homological ideas
- Recollection of topological antecedents: counting holes
- Toward Hilbert's theorem 90 as cohomology
- Cyclic extensions of local fields

Putting pieces of classifield theory together: For an abelian extension of number fields K/k, the global Artin/reciprocity map $\alpha_{K/k} : \mathbb{J} \to \text{Gal}(K/k)$ is essentially the product of the local ones:

At unramified K_w/k_v , the local Artin/reciprocity map $k_v^{\times} \to \operatorname{Gal}(K_w/k_v)$ is $\alpha_{w/v}(x) = (\mathfrak{m}_v, K_w/k_v)^{\operatorname{ord}_v x}$. Identifying the two cyclic groups $\operatorname{Gal}(K_w/k_v) \approx G_{\mathfrak{p}}$ by identifying their corresponding Artin elements $(\mathfrak{m}_v, K_w/k_v) \longleftrightarrow (\mathfrak{p}, K/k)$, consider the local Artin map as mapping to $G_{\mathfrak{p}}$, and

$$\alpha_{w/v} : k_v^{\times} \longrightarrow \operatorname{Gal}(K_w/k_v) \approx G_{\mathfrak{p}} \subset \operatorname{Gal}(K/k)$$

Then the global Artin/reciprocity map $\alpha_{K/k} : \mathbb{J} \longrightarrow \operatorname{Gal}(K/k)$ is

$$\alpha_{K/k}(x) = \prod_{v} \prod_{w|v} \alpha_{w/v}(x_v) \qquad \text{(for } x = \{x_v\} \in \mathbb{J}_k)$$

Remark: The *critical* part of the assertion of global classfield theory is that the global $\alpha_{K/k}$ factors through the idele class group \mathbb{J}_k/k^{\times} .

Interlude: finiteness of ramification

It is important that only finitely-many primes ramify in $\mathfrak{o}_K/\mathfrak{o}_k$, where K/k is a finite extension of number fields.

In fact, finiteness of ramification is a more general algebraic fact:

Theorem: Only finitely many primes ramify in the integral closure \mathfrak{O} of a Dedekind domain \mathfrak{o} in a finite separable extension K/k of the field of fractions k of \mathfrak{o} .

The proof requires some preparation. The *inverse different* $\mathfrak{d}_{\mathfrak{O}/\mathfrak{o}}^{-1}$ of $\mathfrak{O}/\mathfrak{o}$ is

$$\mathfrak{d}_{\mathfrak{O}/\mathfrak{o}}^{-1} = \{ x \in K : \operatorname{tr}_k^K(x\mathfrak{O}) \subset \mathfrak{o} \}$$

Proposition: The inverse different is a fractional ideal of \mathfrak{O} containing \mathfrak{O} .

Proof: Since $\operatorname{tr}_k^K(\mathfrak{O}) \subset \mathfrak{o}$, certainly $\mathfrak{O} \subset \mathfrak{d}_{K/k}^{-1}$.

Given a k-basis x_i of K, we can adjust by a non-zero constant in k so that all x_i are in \mathfrak{O} . Let \hat{x}_i be the dual basis with respect to the trace pairing, which by separability is non-degenerate.

Since $\sum_i \mathfrak{o} x_i \subset \mathfrak{O}$, certainly $\mathfrak{d}^{-1} \subset \sum_i \mathfrak{o} \hat{x}_i$, a finitely-generated \mathfrak{o} -module inside K. Since \mathfrak{o} is *Noetherian*, every submodule of a finitely-generated \mathfrak{o} -module is finitely-generated, so \mathfrak{d}^{-1} is finitely-generated as an \mathfrak{o} -module. Thus, it is certainly finitely-generated as an \mathfrak{O} -module, so is a fractional ideal. Since $\mathfrak{d}^{-1} \supset \mathfrak{O}$, its inverse is contained in \mathfrak{O} .

Given the proposition, it makes sense to define the *different* $\mathfrak{d}_{\mathfrak{O}/\mathfrak{o}}$ to be the fractional-ideal inverse of $\mathfrak{d}_{\mathfrak{O}/\mathfrak{o}}^{-1}$. When the Dedekind rings $\mathfrak{o} \subset k$ and $\mathfrak{O} \subset K$ are understood, we may write

$$\mathfrak{d}_{K/k} = \mathfrak{d}_{\mathfrak{O}/\mathfrak{o}}$$

Proposition: The different is *multiplicative in towers*, that is, for finite separable extensions $k \subset K \subset L$, with k the field of fractions of Dedekind \mathfrak{o}_k , and for integral closures \mathfrak{o}_K and \mathfrak{o}_L of \mathfrak{o}_k in K and L,

$$\mathfrak{d}_{L/k} \;=\; \mathfrak{d}_{L/K} \cdot \mathfrak{d}_{K/k}$$

Proof: On one hand, with $x \in L$ and $y \in K$ and $\operatorname{tr}_{K}^{L}(x\mathfrak{o}_{L}) \subset \mathfrak{o}_{K}$ and $\operatorname{tr}_{k}^{K}(y\mathfrak{o}_{K}) \subset \mathfrak{o}_{k}$, certainly

$$\operatorname{tr}_{k}^{L}(xy\mathfrak{o}_{L}) = \operatorname{tr}_{k}^{K}\operatorname{tr}_{K}^{L}(xy\mathfrak{o}_{L}) = \operatorname{tr}_{k}^{K}(y \cdot \operatorname{tr}_{K}^{L}(x\mathfrak{o}_{L})) \subset \operatorname{tr}_{k}^{K}(y\mathfrak{o}_{K}) \subset \mathfrak{o}_{k}$$

gives $\mathfrak{d}_{L/K}^{-1} \cdot \mathfrak{d}_{K/k}^{-1} \subset \mathfrak{d}_{L/k}^{-1}$. Conversely, ...

for $x \in \mathfrak{d}_{L/k}^{-1}$,

 $\operatorname{tr}_k^K(\operatorname{tr}_K^L x \mathfrak{o}_L \cdot \mathfrak{o}_K) = \operatorname{tr}_k^K(\operatorname{tr}_K^L x \mathfrak{o}_L) = \operatorname{tr}_k^L(x \mathfrak{o}_L) \subset \mathfrak{o}_k$

Thus, $\operatorname{tr}_{K}^{L}(\mathfrak{d}_{L/K}^{-1}) \subset \mathfrak{d}_{K/k}^{-1}$, and for $x \in \mathfrak{d}_{L/k}^{-1}$

$$\operatorname{tr}_{K}^{L}(\mathfrak{d}_{K/k} \cdot x\mathfrak{o}_{L}) = \mathfrak{d}_{K/k} \cdot \operatorname{tr}_{K}^{L}(x\mathfrak{o}_{L}) \subset \mathfrak{d}_{K/k} \cdot \mathfrak{d}_{K/k}^{-1} = \mathfrak{o}_{K}$$

That is, $\mathfrak{d}_{K/k} \cdot \mathfrak{d}_{L/k}^{-1} \subset \mathfrak{d}_{L/K}^{-1}$. Even though $\mathfrak{d}_{K/k}$ is not a fractional ideal in L, the product $\mathfrak{d}_{K/k} \cdot \mathfrak{d}_{L/k}^{-1}$ is contained in the finitely-generated \mathfrak{o}_L -module $\mathfrak{d}_{L/K}^{-1}$, and \mathfrak{o}_L is Noetherian. Thus, that product is a fractional ideal in L. Multiplying the containment through by the ideal $\mathfrak{d}_{L/k} \cdot \mathfrak{d}_{L/K}$ gives $\mathfrak{d}_{K/k} \cdot \mathfrak{d}_{L/K} \subset \mathfrak{d}_{L/k}$. ///

Corollary: There are only finitely-many primes \mathfrak{p} in \mathfrak{o}_k ramifying in $\mathfrak{o}_K/\mathfrak{o}_k$ for finite separable K/k.

Proof: A prime that ramifies in K/k certainly ramifies in the further (finite, separable) extension to the Galois closure of K over k, so it suffices to consider the finite Galois case.

Let $\mathfrak{p} \cdot \mathfrak{o}_K = (\mathfrak{P}_1 \dots \mathfrak{P}_n)^e$.

$$\operatorname{tr}_{k}^{K}(\mathfrak{P}_{1}^{1-e} \cdot \mathfrak{o}_{K}) = \mathfrak{p}^{-1}\mathfrak{p} \cdot \operatorname{tr}_{k}^{K}(\mathfrak{P}_{1}^{1-e}) = \mathfrak{p}^{-1}\operatorname{tr}_{k}^{K}(\mathfrak{p}\mathfrak{P}_{1}^{1-e})$$
$$\subset \mathfrak{p}^{-1}\operatorname{tr}_{k}^{K}(\mathfrak{P}_{1}\mathfrak{P}_{2}^{e}\ldots\mathfrak{P}_{n}^{e}) \subset \mathfrak{p}^{-1}\operatorname{tr}_{k}^{K}(\mathfrak{P}_{1}\mathfrak{P}_{2}\ldots\mathfrak{P}_{n})$$
$$\subset \mathfrak{p}^{-1} \cdot (\mathfrak{P}_{1}\mathfrak{P}_{2}\ldots\mathfrak{P}_{n} \cap \mathfrak{o}_{k}) \subset \mathfrak{p}^{-1} \cdot \mathfrak{p} = \mathfrak{o}_{k}$$

Thus, $\mathfrak{P}_1^{1-e} \subset \mathfrak{d}_{K/k}^{-1}$, which is equivalent to $\mathfrak{d}_{K/k} \subset \mathfrak{P}_1^{e-1}$, so $\mathfrak{P}_1^{e-1}|\mathfrak{d}_{K/k}$. Since $\mathfrak{d}_{K/k}$ is a non-zero ideal, only finitely-many primes divide it. ///

Recap:

Hilbert's Theorem 90: In a field extension K/k of degree n with cyclic Galois group generated by σ , the elements in K of norm 1 are exactly those of the form $\sigma \alpha / \alpha$ for $\alpha \in K$. ///

Hilbert's Theorem 90 gives another (the usual?) proof of

Corollary: A cyclic degree n extension K/k of k containing n^{th} roots of unity and characteristic not dividing n is obtained by adjoining an n^{th} root.

Additive version of Theorem 90: Let K/k be cyclic of degree n with Galois group generated by σ . Then $\operatorname{tr}_k^K(\beta) = 0$ if and only if there is $\alpha \in K$ such that $\beta = \alpha - \alpha^{\sigma}$.

Corollary: (Artin-Schreier extensions) Let K/k be cyclic of order p in characteristic p. Then there is $K = k(\alpha)$ with α satisfying an (Artin-Schreier) equation $x^p - x + a = 0$ with $a \in k$. ///

Post-1940's reformulations: ... recast some things we already know, such as *Hilbert's Theorem 90*, in other terms.

Herbrand quotients: veiled homological ideas

Homological algebra includes computational devices extending linear algebra and counting procedures. Motivations also come from (algebraic) topology, defining and counting *holes*.

It is easy enough to *define* the **Herbrand quotient**, although explaining its significance, and the meaning of the Key Lemma, requires more effort:

Let A be an abelian group, with maps $f : A \to A$ and $g : A \to A$, such that $f \circ g = 0$ and $g \circ f = 0$.

 $q(A) = q_{f,g}(A) =$ Herbrand quotient of $A, f, g = \frac{[\ker f : \operatorname{im} g]}{[\ker g : \operatorname{im} f]}$ Inscrutable Key Lemma: For finite A, q(A) = 1. For f-

stable, g-stable subgroup $A \subset B$ with $f, g : B \to B$, we have $q(B) = q(A) \cdot q(B/A)$, in the usual sense that if two are finite, so is the third, and the relation holds.

The keywords are that this Lemma is about Euler-Poincaré characteristics of the short exact sequence of complexes

What does this mean?

The best-known *Euler characteristic* refers to the numbers of vertices V, edges E, and F faces of a polyhedron, and *Euler's theorem* is that, for *convex* polyhedra,

V - E + F = 2 (Euler char of convex polyhedron)

We are concerned with the *linear algebra* in this.

Definitions stripped of origins, motivation, or purpose: A *complex* of abelian groups A_i is a family of homomorphisms

$$\cdots \longrightarrow A_i \xrightarrow{f_i} A_{i-1} \xrightarrow{f_{i-1}} \cdots$$

with the composition of any two consecutive maps 0, that is, with $f_{i-1} \circ f_i = 0$, for all *i*. The **(co)homology**, with superscript or subscript depending on context and numbering conventions, is

 H_i (the complex) = H^i (the complex) = $\frac{\ker f_i}{\operatorname{im} f_{i\pm 1}}$

The utility of this requires explanation.

Recollection of topological antecedents: *counting holes.*

An *n*-dimensional triangle is an *n*-simplex. A simplicial complex [different use of the word!] X is a topological space made by sticking together simplices in a reasonable way.

An orientation of a simplex is an ordering of its vertices: an oriented *n*-simplex is a list $\sigma = [v_o, v_1, \ldots, v_n]$ of n + 1 vertices v_i , with ordering specified modulo even permutations.

The boundary $\partial \sigma$ is an alternating sum, in the free group generated by the simplices in X:

$$\partial \sigma = [v_1, \dots, v_n] - [v_o, v_2, \dots, v_n] + \dots + (-1)^n [v_o, v_1, \dots, v_{n-1}]$$
$$= \sum_{j=0}^n (-1)^j [v_o, \dots, \widehat{v_j}, \dots, v_n] \qquad \text{(hat denoting omission)}$$

Permuting the vertices in a simplex multiplies it by the sign of the permutation:

$$[v_{\pi(0)}, v_{\pi(1)}, \dots, v_{\pi(n)}] = \operatorname{sign}(\pi) \cdot [v_0, v_1, \dots, v_n]$$

These symbol-pattern occurs in many places...

The abelian group C_n of *n*-chains in X is the free group on oriented *n*-dimensional simplices in X, and $\partial = \partial_n$ maps $C_n \to C_{n-1}$. A little work shows that $\partial_{n-1} \circ \partial_n = 0$ as a map $C_n \to C_{n-2}$, so we have a chain complex

$$\cdots \longrightarrow C_i \xrightarrow{\partial_i} C_{i-1} \xrightarrow{\partial_{i-1}} \cdots \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0$$

with homology

 $H_i(X) = \frac{\ker \partial_i}{\operatorname{im} \partial_{i+1}} = \frac{i \text{-dimensional cycles}}{i \text{-dimensional boundaries}}$

It is not obvious, but the rank of the free part of $H_i(X)$ is the number of *i*-dimensional holes in X, in the following sense.

Basic theorem: The *n*-sphere S^n has $H_i(S^n) = 0$ for $0 < i \neq n$, and $H_n(S^n) = \mathbb{Z}$.

Example computation: First, check that $\partial_1 \partial_2 = 0$:

$$\partial_1 \partial_2 [v_0, v_1, v_2] = \partial_1 \left([v_1, v_2] - [v_0, v_2] + [v_0, v_1] \right) \\ = \left([v_2] - [v_1] \right) - \left([v_2] - [v_0] \right) + \left([v_1] - [v_0] \right) = 0$$

Second: make a circle S^1 as a hollow triangle X by sticking together three line segments $[v_0, v_1], [v_1, v_2], [v_2, v_0]$. The whole chain complex is not very big:

$$0 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0$$

with C_1 free of rank 3 made from the three line segments $[v_i, v_j]$, and C_0 of rank 3, made from the three vertices.

$$H_1(X) = \frac{\ker \partial_1}{\operatorname{im} \partial_2} = \ker \partial_1 = \mathbb{Z} \cdot \left([v_0, v_1] + [v_1, v_2] + [v_2, v_0] \right)$$

Thus, $H_1(X)$ is free, rank one, so this computes that there is one one-dimensional hole in a circle.

Another example computation: We can make a 2-sphere by sticking together four oriented triangles along their edges, forming a hollow tetrahedron X: $[v_0, v_1, v_2], [v_1, v_2, v_3], [v_2, v_3, v_0],$ and $[v_3, v_0, v_1]$. The whole chain complex is not very big:

$$0 \longrightarrow C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0$$

with C_2 free of rank 4 made from the four triangles, C_1 of rank 6 made from the six line segments $[v_i, v_j]$, and C_0 of rank 4, made from the four vertices. Note the patterns $\partial_1[v_a, v_b] = [v_a] - [v_b]$ and

$$\partial_2[v_a, v_b, v_c] = [v_b, v_c] - [v_a, v_c] + [v_a, v_b]$$

Linear algebra gives $H_1(X) \approx \{0\}$ and $H_2(X) \approx \mathbb{Z}$, confirming that there is *no* one-dimensional hole in a 2-sphere, but there is a two-dimensional hole.

A better computational device: long exact sequence, Mayer-Vietoris, etc

The homology of spheres S^n is best determined *not* by *direct* computation. Under mild hypotheses on topological spaces X, Y, there is a *long exact sequence* (Recall: $A \to B \to C$ is *exact* when $\operatorname{im}(A \to B) = \operatorname{ker}(B \to C)...$)

The long exact sequence is the basic computational device! Compute homology of spheres *by induction*...