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• Classfield Theory...

• Slightly refined main statements
• Interlude: finiteneness of ramification
• Recap Hilbert’s theorem 90

• Herbrand quotients: veiled homological ideas
• Recollection of topological antecedents: counting holes
• Toward Hilbert’s theorem 90 as cohomology
• Cyclic extensions of local fields
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Putting pieces of classfield theory together: For an abelian
extension of number fields K/k, the global Artin/reciprocity map
αK/k : J→ Gal(K/k) is essentially the product of the local ones:

At unramified Kw/kv, the local Artin/reciprocity map
k×v → Gal(Kw/kv) is αw/v(x) = (mv,Kw/kv)

ordvx. Identifying
the two cyclic groups Gal(Kw/kv) ≈ Gp by identifying their
corresponding Artin elements (mv,Kw/kv) ←→ (p,K/k), consider
the local Artin map as mapping to Gp, and

αw/v : k×v −→ Gal(Kw/kv) ≈ Gp ⊂ Gal(K/k)

Then the global Artin/reciprocity map αK/k : J −→ Gal(K/k) is

αK/k(x) =
∏
v

∏
w|v

αw/v(xv) (for x = {xv} ∈ Jk)

Remark: The critical part of the assertion of global classfield
theory is that the global αK/k factors through the idele class group
Jk/k×.
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Interlude: finiteness of ramification

It is important that only finitely-many primes ramify in oK/ok,
where K/k is a finite extension of number fields.

In fact, finiteness of ramification is a more general algebraic fact:

Theorem: Only finitely many primes ramify in the integral
closure O of a Dedekind domain o in a finite separable extension
K/k of the field of fractions k of o.

The proof requires some preparation. The inverse different d−1O/o

of O/o is
d−1O/o = {x ∈ K : trKk (xO) ⊂ o}
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Proposition: The inverse different is a fractional ideal of O
containing O.

Proof: Since trKk (O) ⊂ o, certainly O ⊂ d−1K/k.

Given a k-basis xi of K, we can adjust by a non-zero constant in
k so that all xi are in O. Let x̂i be the dual basis with respect to
the trace pairing, which by separability is non-degenerate.

Since
∑
i oxi ⊂ O, certainly d−1 ⊂

∑
i ox̂i, a finitely-generated

o-module inside K. Since o is Noetherian, every submodule of a
finitely-generated o-module is finitely-generated, so d−1 is finitely-
generated as an o-module. Thus, it is certainly finitely-generated
as an O-module, so is a fractional ideal. Since d−1 ⊃ O, its inverse
is contained in O. ///
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Given the proposition, it makes sense to define the different dO/o
to be the fractional-ideal inverse of d−1O/o. When the Dedekind

rings o ⊂ k and O ⊂ K are understood, we may write

dK/k = dO/o

Proposition: The different is multiplicative in towers, that is, for
finite separable extensions k ⊂ K ⊂ L, with k the field of fractions
of Dedekind ok, and for integral closures oK and oL of ok in K
and L,

dL/k = dL/K · dK/k

Proof: On one hand, with x ∈ L and y ∈ K and trLK(xoL) ⊂ oK
and trKk (yoK) ⊂ ok, certainly

trLk (xyoL) = trKk trLK(xyoL) = trKk (y · trLK(xoL)) ⊂ trKk (yoK) ⊂ ok

gives d−1L/K · d
−1
K/k ⊂ d−1L/k. Conversely, ...
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for x ∈ d−1L/k,

trKk (trLKxoL · oK) = trKk (trLKxoL) = trLk (xoL) ⊂ ok

Thus, trLK(d−1L/K) ⊂ d−1K/k, and for x ∈ d−1L/k

trLK(dK/k · xoL) = dK/k · trLK(xoL) ⊂ dK/k · d−1K/k = oK

That is, dK/k · d−1L/k ⊂ d−1L/K . Even though dK/k is not a fractional

ideal in L, the product dK/k · d−1L/k is contained in the finitely-

generated oL-module d−1L/K , and oL is Noetherian. Thus, that

product is a fractional ideal in L. Multiplying the containment
through by the ideal dL/k · dL/K gives dK/k · dL/K ⊂ dL/k. ///
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Corollary: There are only finitely-many primes p in ok ramifying
in oK/ok for finite separable K/k.

Proof: A prime that ramifies in K/k certainly ramifies in the
further (finite, separable) extension to the Galois closure of K over
k, so it suffices to consider the finite Galois case.

Let p · oK = (P1 . . .Pn)e.

trKk (P1−e
1 · oK) = p−1p · trKk (P1−e

1 ) = p−1trKk (pP1−e
1 )

⊂ p−1trKk (P1P
e
2 . . .P

e
n) ⊂ p−1trKk (P1P2 . . .Pn)

⊂ p−1 · (P1P2 . . .Pn ∩ ok) ⊂ p−1 · p = ok

Thus, P1−e
1 ⊂ d−1K/k, which is equivalent to dK/k ⊂ Pe−1

1 , so

Pe−1
1 |dK/k. Since dK/k is a non-zero ideal, only finitely-many

primes divide it. ///
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Recap:

Hilbert’s Theorem 90: In a field extension K/k of degree n
with cyclic Galois group generated by σ, the elements in K of
norm 1 are exactly those of the form σα/α for α ∈ K. ///

Hilbert’s Theorem 90 gives another (the usual?) proof of

Corollary: A cyclic degree n extension K/k of k containing nth

roots of unity and characteristic not dividing n is obtained by
adjoining an nth root. ///

Additive version of Theorem 90: Let K/k be cyclic of degree
n with Galois group generated by σ. Then trKk (β) = 0 if and only
if there is α ∈ K such that β = α− ασ.

Corollary: (Artin-Schreier extensions) Let K/k be cyclic of order
p in characteristic p. Then there is K = k(α) with α satisfying an
(Artin-Schreier) equation xp − x+ a = 0 with a ∈ k. ///
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Post-1940’s reformulations: ... recast some things we already
know, such as Hilbert’s Theorem 90, in other terms.

Herbrand quotients: veiled homological ideas

Homological algebra includes computational devices extending
linear algebra and counting procedures. Motivations also come
from (algebraic) topology, defining and counting holes.

It is easy enough to define the Herbrand quotient, although
explaining its significance, and the meaning of the Key Lemma,
requires more effort:

Let A be an abelian group, with maps f : A → A and g : A → A,
such that f ◦ g = 0 and g ◦ f = 0.

q(A) = qf,g(A) = Herbrand quotient of A, f, g =
[ker f : im g]

[ker g : im f ]

Inscrutable Key Lemma: For finite A, q(A) = 1. For f -
stable, g-stable subgroup A ⊂ B with f, g : B → B, we have
q(B) = q(A) · q(B/A), in the usual sense that if two are finite, so is
the third, and the relation holds.
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The keywords are that this Lemma is about Euler-Poincaré
characteristics of the short exact sequence of complexes
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What does this mean?
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The best-known Euler characteristic refers to the numbers of
vertices V , edges E, and F faces of a polyhedron, and Euler’s
theorem is that, for convex polyhedra,

V − E + F = 2 (Euler char of convex polyhedron)

We are concerned with the linear algebra in this.

Definitions stripped of origins, motivation, or purpose: A complex
of abelian groups Ai is a family of homomorphisms

. . . // Ai
fi // Ai−1

fi−1 // . . .

with the composition of any two consecutive maps 0, that is, with
fi−1 ◦ fi = 0, for all i. The (co)homology, with superscript or
subscript depending on context and numbering conventions, is

Hi(the complex) = Hi(the complex) =
ker fi

im fi±1

The utility of this requires explanation.
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Recollection of topological antecedents: counting holes.

An n-dimensional triangle is an n-simplex. A simplicial complex
[different use of the word!] X is a topological space made by
sticking together simplices in a reasonable way.

An orientation of a simplex is an ordering of its vertices: an
oriented n-simplex is a list σ = [vo, v1, . . . , vn] of n + 1 vertices
vj , with ordering specified modulo even permutations.

The boundary ∂σ is an alternating sum, in the free group
generated by the simplices in X:

∂σ = [v1, . . . , vn]− [vo, v2, . . . , vn] + ...+ (−1)n[vo, v1, . . . , vn−1]

=

n∑
j=0

(−1)j [vo, . . . , v̂j , . . . , vn] (hat denoting omission)

Permuting the vertices in a simplex multiplies it by the sign of the
permutation:

[vπ(0), vπ(1), . . . , vπ(n)] = sign(π) · [v0, v1, . . . , vn]

These symbol-pattern occurs in many places...
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The abelian group Cn of n-chains in X is the free group on
oriented n-dimensional simplices in X, and ∂ = ∂n maps
Cn → Cn−1. A little work shows that ∂n−1 ◦ ∂n = 0 as a map
Cn → Cn−2, so we have a chain complex

. . . // Ci
∂i // Ci−1

∂i−1 // . . . ∂2 // C1
∂1 // C0

with homology

Hi(X) =
ker ∂i

im ∂i+1
=

i-dimensional cycles

i-dimensional boundaries

It is not obvious, but the rank of the free part of Hi(X) is the
number of i-dimensional holes in X, in the following sense.

Basic theorem: The n-sphere Sn has Hi(S
n) = 0 for 0 < i 6= n,

and Hn(Sn) = Z.
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Example computation: First, check that ∂1∂2 = 0:

∂1∂2[v0, v1, v2] = ∂1

(
[v1, v2]− [v0, v2] + [v0, v1]

)
=
(
[v2]− [v1]

)
−
(
[v2]− [v0]

)
+
(
[v1]− [v0]

)
= 0

Second: make a circle S1 as a hollow triangle X by sticking
together three line segments [v0, v1], [v1, v2], [v2, v0]. The whole
chain complex is not very big:

0
∂2 // C1

∂1 // C0

with C1 free of rank 3 made from the three line segments [vi, vj ],
and C0 of rank 3, made from the three vertices.

H1(X) =
ker ∂1
im ∂2

= ker ∂1 = Z ·
(

[v0, v1] + [v1, v2] + [v2, v0]
)

Thus, H1(X) is free, rank one, so this computes that there is one
one-dimensional hole in a circle.
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Another example computation: We can make a 2-sphere by
sticking together four oriented triangles along their edges, forming
a hollow tetrahedron X: [v0, v1, v2], [v1, v2, v3], [v2, v3, v0], and
[v3, v0, v1]. The whole chain complex is not very big:

0 // C2
∂2 // C1

∂1 // C0

with C2 free of rank 4 made from the four triangles, C1 of rank 6
made from the six line segments [vi, vj ], and C0 of rank 4, made
from the four vertices. Note the patterns ∂1[va, vb] = [va] − [vb]
and

∂2[va, vb, vc] = [vb, vc]− [va, vc] + [va, vb]

Linear algebra gives H1(X) ≈ {0} and H2(X) ≈ Z, confirming
that there is no one-dimensional hole in a 2-sphere, but there is a
two-dimensional hole.
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A better computational device: long exact sequence,
Mayer-Vietoris, etc

The homology of spheres Sn is best determined not by direct
computation. Under mild hypotheses on topological spaces X,Y ,
there is a long exact sequence (Recall: A → B → C is exact when
im (A→ B) = ker(B → C)...) . . .

rrdddddddddddddddddddddddddddddddddd

. . . Hi(X ∩ Y ) // Hi(X)⊕Hi(Y ) // Hi(X ∪ Y )

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Hi−1(X ∩ Y ) // Hi−1(X)⊕Hi−1(Y ) // Hi−1(X ∪ Y )

rrdddddddddddddddddddddddddddddddddd

. . .

The long exact sequence is the basic computational device!
Compute homology of spheres by induction...


