Garrett 04-13-2012

e Classfield Theory...

e More modern statement of part of global classfield theory

e Recall facts about extensions of finite fields

e Recall: unramified extensions of local fields

e Recall: special case, unramified local classfield theory

e Recall: special case: quadratic local classfield theory over Q,
e Recall: general Kummer theory
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Part of Global Classfield Theory: The Galois groups of finite
abelian extensions K of a number field k are the finite quotients of
the idele class group Ji/k*, namely

(In/k*) /N Tk /K*) «— K[k

The maps of quotients of idele class groups to Galois groups are
natural, in the sense that, for finite abelian extensions L D K D k
there is a commutative diagram

In/k7) /NE(TL/L7) —L Gal(L/k)

quot \L lquot

e /kX) /NS Tk /KX)o Gal(K/k)

The maps «,/;, are Artin maps or reciprocity law maps



Garrett 04-13-2012 3

Main Theorem of Local Classfield Theory: The Galois
groups of finite abelian extensions K of a local field £ are the

quotients
X /NE(KX) «— K/k

The maps to Galois groups are natural, in the sense that, for finite
abelian extensions L D K D k there is a commutative diagram

kX INE(L*) —L Gal(L/k)

quot \L \L quot

B N (KX)o Gal(K/k)
The maps «,;, are local Artin or local reciprocity law maps.

Remark: We’'d want a precise connection between local and
global, too.



Garrett 04-13-2012 4

Note that the adelic rewrite of global classfield theory shows the
connection to norms.

In cyclic extensions, the connection between global and local
norms is clear:

Cyclic local-global principle for norms: In a cyclic extension
K /k of number fields, an element of k is a global norm if and only
if it is a local norm everywhere. That is, for a € k,

a e NE(KX) <= ac N]fiw(Kf;) for all v, w

Proof by analytic properties of zeta functions of simple algebras.

Norm index inequalities play a central role in proofs of classfield
theory.
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Unramified extensions of local fields: Inside a fixed algebraic
closure of a local field k, for each positive integer n there is a
unique unramified extension K of k of degree n. It is generated

by a primitive g™ — 1 root of unity, where #oy/p = q. ///

Artin/Frobenius elements in Galois groups over local
fields An unramified extension K/k of a local field k has cyclic
Galois group with canonical generator the Artin/Frobenius

(p, K/k), where p is the prime in oy, characterized by

(p, K/k)(x) = 27 mod pog (x € 0k, where g = #0i/p)
Claim: The Galois norm N : K — k of local fields gives a
surjection on local units 0y — 0. ///

[Proof was by surjectivity of norms on finite fields, as well as
surjectivity of traces, and completeness of k.]
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Two very special sub-cases:

(Mock) Theorem: Unramified local classfield theory: Galois
groups of unramified extensions K of a local field k£ are in
bijection with finite-index subgroups of k* containing o}, by

KX /NE(K*) ~ Gal(K/k) (reciprocity law map)

(Mock) Theorem: Let p > 2. The quadratic extensions K of Q,
are in bijection with the subgroups H of index 2 in Q, by

Q, /N(gp (K*) =~ Gal(K/Qp) (reciprocity law map)

The extension K/Q,, is unramified if and only if N6 (K*)DZ.
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For unramified extensions L O K D k of a local field k£, we do have
the commutative compatibility diagram

kX INE(L*) —L Gal(L/k) L

quotl lquo‘c
kKX /NE(K>) Crvre Gal(K/k) for unramified K
k

Remark: Again, the maps ag  are Artin maps or reciprocity
law maps. It is typically not obvious how to recover classical
reciprocity laws.
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General Kummer theory: Recall: cyclic extensions K of
degree dividing n of a field k containing n'” roots of unity, of
characteristic not dividing n, are in bijection with cyclic subgroups
of k*/(k*)", by K = k({/a) «+— (a) mod (k*)™.

Proof: On one hand, certainly k({/a) = k(/apm).

In one direction, in K = k({/a), any g € Gal(K/k) sends a = {/a
to another n'" root of a, which is w, - a for some n'” root of unity
wg. The map g — wy is a group homomorphism, and is injective
because the effect of g is determined by its effect on «a, so G is
cyclic of order dividing n.

On another hand, let G be the Galois group of cyclic K over
k, with order dividing n. Since k contains nt” roots of unity,
the commuting k-linear endomorphisms of K given by G are
simultaneously diagonalizable. Since this assertion is central to
this proof of the theorem of Kummer theory, we give details.
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To get an idea how to proceed, observe that the minimal
polynomial P(z) = [[.(x — () of a generator g of G has roots

n'" roots of unity. For each root ¢, with Q¢(z) = P(z)/(x — (),
Q¢ (g) is not the 0 endomorphism of K, so there is @« € K such

9

that Q¢(g)(a) # 0. Nevertheless, (g — ()Q¢(g9)(a) = P(g)(a) = 0.

Thus, Q¢(g)() is a (non-zero) (-eigenvector for g.

Since g" = 1, the minimal polynomial of g divides "™ — 1, which
has no repeated roots when the characteristic does not divide n.
Thus, g is diagonalizable, meaning that K is the direct sum of
g’s eigenspaces. Indeed, as  runs over roots of P(xz) = 0, the
quotients Q¢(z) = P(x)/(x — ¢) have collective common factor 1.
Thus, there are monic R¢(z) € k[x] such that

) = 3 Re(2) Qe(r)  and  1x = Y Re(g) Qclg)
¢ e
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Thus,
K = 1K = @ (Re(9)Qcl9) ) (K)
¢
and the (' summand is the (-eigenspace:

(9-0)- (Re(9)Qc(9))(K) = Re(9)((9-OQc(9)(K)) = Re(9)(0)

This proves the simultaneous diagonalizability of Gal(K/k) on K.

For g of order exactly m, with m|n, let ( be a primitive m*" root

of unity, and v € K a (-eigenvector. Then g(v"™) = (gv)™ =
(Cv)™ = v™, so v™ is in k, while v itself is fixed by no proper
subgroup of G. By Galois theory K = k(Y/v™) = k(V/v™). ///
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Interaction of the various extensions of k by n'* roots:

Fix 2 < ¢ € Z, k a field of characteristic not dividing ¢, containing
a primitive ¢!* root of unity. Let a1,...,a, € kX, and a; = Vaj
in a fixed finite Galois extension K of k.

Suppose that, for any pair of indices ¢ # j, there is o € Gal(K/k)
such that o(a;)/ou # o(j)/a;.

Remark: Since o(co;) = w; - oy for some £t root of unity w;
(depending on o), the hypothesis is equivalent to a;/a; not being
an nt" power in k.

That is, the hypothesis is that the one-dimensional representations
of Gal(K/k) on the lines k - a; are pairwise non-isomorphic. This
description of the situation correctly suggests the proof of

Proposition: The «a;’s are linearly independent over k.
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Proof: Let > ;¢j - & = 0 be a shortest non-trivial linear relation
with ¢; € k. For indices ¢ # j appearing in this relation, take
o € Gal(K/k) such that o(o;)/a; # o(a;)/cj. Then

U(aozﬁ 0—0(0) = U;ii)th-at—a(th-ozt)

t t

0 =

_ th o (0;%) B O'(Oét)>

i 87

The coefficient of «; is 0, while the coefficient of «; is non-zero,
by arrangement. This would contradict the assumption that the
relation is shortest. Thus, there is no non-trivial relation. ///

Remark: The argument reproves the impossibility of mapping

a sum of mutually non-isomorphic irreducibles of Gal(K/k) non-
trivially to the trivial representation. The argument resembles the
argument for linear independence of characters.
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Corollary: For (pairwise) relatively prime square-free integers

ai, ..., an, the 2™ algebraic numbers ,/a;, - a;, with i; <... <ig
and 0 < k < n are linearly independent over @, so are a QQ-basis
for Q(y/a1,...,/an). In particular, the degree of that field over Q

is the maximum possible, 2.

Proof: The ratios (ai, ...a;,) /(aj, ...a;,) have some prime
appearing in the numerator or denominator, not both, and to first
power, so is not a square, by unique factorization. ///

Corollary: Let k be a field containing n'® roots of unity, with
characteristic not dividing n. For a subgroup © of k* containing
(k)™ and with ©/(k*)™ finite,

[k(nth roots of a € @) k] = #0O/k)"
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Proof: We really adjoin only n'® roots of representatives for
©/(k*)™. Let K be the finite abelian extension obtained by
adjoining all these roots. Given a,b in © but distinct mod (k*)",
let o« = {/a and B = {/b. Necessarily there is g € Gal(K/k) such
that ga/a # gB/5, or else /3 is fixed by Gal(K/k), and then
a/b=(a/B)" € (k*)", contradiction.

Thus, by the proposition, the n** roots of representatives are
linearly independent over k. This computes the degree of the field
extension. ///

Remark: Reformulate to resemble classfield theory as closely as
possible?



