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• Classfield Theory In brief, global classfield theory classifies
abelian extensions of number fields, while local classfield theory
does the analogous things for local fields, finite extensions of Qp.

The details subsume all known (abelian) reciprocity laws.

Approaching classfield theory:
• Rough classical statement of global classfield theory
• Statement of local classfield theory
• Recollection of facts about extensions of finite fields
• Unramified extensions of local fields
• Special case: unramified local classfield theory
• Special case: quadratic local classfield theory over Qp
• Kummer theory
• ...
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Main Theorem of Global Classfield Theory
(classical form): The abelian (Galois) extensions K of a number
field k are in bijection with generalized ideal class groups, which
are quotients of ray class groups of conductor (a non-zero ideal) f

I(f)/P+
f

||

fractional ideals prime to f

principal ideals with totally positive generators 1 mod f

Further, the bijection sends a given generalized ideal class
group to the (abelian) Galois group of the extension, via the
Artin/Frobenius map/symbols p→ (p,K/k), characterized by

(p,K/k)(x) = xq mod P (x ∈ K, P over p, q = #ok/p)
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Main Theorem of Local Classfield Theory: The abelian
(Galois) extensions K of a local field k are in bijection with the
open, finite-index subgroups of k×, by

K/k ←→ k×/NK
k (K×)

This bijection is given by an isomorphism of the Galois group with
k×/NK

k K
× via Artin/Frobenius.

Cyclic local-global principle for norms: In a cyclic extension
K/k of number fields, an element of k is a global norm if and only
if it is a local norm everywhere. That is, for α ∈ k,

α ∈ NK
k (K×) ⇐⇒ α ∈ NKw

kv
(K×w ) for all v, w

Proof by analytic properties of zeta functions of simple algebras.
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Finite fields: Recall the classification of finite algebraic field
extensions of Fq with q a power of a prime p.

Unique extension of given degree: inside a fixed algebraic
closure Fp of Fp, there is a unique field extension K of given
degree n over Fq. This extension is the collection of roots of
xq

n − x = 0 in the fixed algebraic closure.

Galois group of Fqn/Fq: is cyclic, generated by the Frobenius
element α→ αq.

Surjectivity of norms on finite fields: The Galois norm
N : Fqn → Fq is surjective:

Surjectivity of traces on finite fields: The Galois trace tr :
Fqn → Fq is surjective:

Linear independence of characters: Distinct field maps
χj : k → Ω are linearly independent:

∑
j cjχj = 0 for cj ∈ Ω,

as a map k → Ω, only for cj all 0.
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Unramified extensions of Qp: Inside a fixed algebraic closure
of Qp, for each positive integer n there is a unique unramified
extension K of Qp of degree n over Qp. It is generated by a
primitive pn − 1 root of unity.

Proof: Recall that the local ramification degree e and residue class
field extension degree f satisfy ef = n. The unramified-ness is
e = 1, so f = n. There is a primitive pn − 1 root of unity in Fpn .

The (pn−1)th cyclotomic polynomial Φ has no repeated roots mod
p, since xp

n−1 − 1 has none. Let ζ1 ∈ oK reduce to a primitive
pn − 1 root mod p, so Φ(ζ1) = 0 mod p and Φ′(ζ1) 6= 0 mod p.
Hensel produces a primitive (pn − 1)th root of unity ζ in K, and
K = Qp(ζ). All (pn−1)th roots of unity are powers of a given one,
proving uniqueness of K. ///

Remark: The (pn − 1)th cyclotomic polynomial Φ is not
irreducible over Qp, since any root of Φ(x) = 0 generates a degree
n extension of Qp! It is a product of ϕ(pn − 1)/n irreducibles each
of degree n, where ϕ is Euler’s ϕ-function.



Garrett 04-11-2012 6

Remark: The same proof works over an arbitrary local field
k with residue field having q elements: the unique unramified
extension of degree n over k is obtained by adjoining a primitive
(qn − 1)th root of unity to k.

Therefore, the (qn − 1)th cyclotomic polynomial Φ factors into
ϕ(qn − 1)/n irreducibles of degree n over k.

Artin/Frobenius elements in Galois groups over Qp
In any finite extension K/Qp, there is certainly a unique prime p
over p. Thus, the decomposition group Gp = {g ∈ Gal(K/Qp) :
gp = p} is the whole Galois group Gal(K/Qp).

Decomposition groups always surject to the residue field Galois
groups. For unramified K/Qp, the latter is cyclic order n,
generated by Frobenius. Since [K : Qp] = n, this surjection is
an isomorphism.

Thus, Gal(K/Qp) = Gp is cyclic order n, with canonical generator
denoted (p,K/Qp) called the Artin symbol, a special case of
Frobenius, characterized by reducing mod p to the finite-field
Frobenius.
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Remark: The same discussion applies to unramified extensions
of arbitrary local fields: an unramified extension K/k of a
local field k has cyclic Galois group with canonical generator
the Artin/Frobenius (p,K/k), where p is the prime in ok,
characterized by

(p,K/k)(x) = xq mod poK (x ∈ oK , where q = #ok/p)

In situations like this where there is a single prime lying over p

Claim: The Galois norm N : K → k of local fields gives a
surjection on local units o×K → o×k .

[Proof was by surjectivity of norms on finite fields, as well as
surjectivity of traces, and completeness of k.]
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A very special sub-case: unramified local classfield theory:

(Mock) Theorem: Unramified extensions K of a local field k are
in bijection with finite-index subgroups of k× containing o×k , by

finite-index subgroup H ⊃ o×k ←→ NK
k (K×)

The Galois group is Gal(K/k) ≈ k×/NK
k (K×), via the map to

Artin/Frobenius:

p −→ (p,K/k) (giving x→ xq mod poK)

Proof: We have shown that an unramified extension K of k
of degree n is cyclic Galois, obtained by adjoining a primitive
(qn − 1)th root of unity ω, and the map from Gal(K/k) to
the Galois group of residue fields is an isomorphism. Thus, the
Artin/Frobenius (p,K/k) generates Gal(K/k), and is order n.
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Since the norm NK
k : o×K → o×k is surjective, the image NK

k (K×)
contains the open subgroup o×k of k×, so is open. Since K/k is
unramified, a local parameter $ in k remains a local parameter in
K, and NK

k ($) = $n. Thus,

k×/NK
k (K×) ≈ $Z/$nZ

which gives the Galois group, by the map $` → (p,K/k)`.

On the other hand, for H ⊃ o×k of finite index n, since

k×/o×k ≈ $Z, necessarily H = $nZ · o×k . Adjoining a primitive
(qn − 1)th root of unity produces an unramified degree n extension
K such that NK

k (K×) = H. ///

Remark: This reformulation of the classification of unramified
extensions of local fields is not terribly useful, but illustrates the
type of formulation necessary for more general abelian extensions,
in local classfield theory.



Garrett 04-11-2012 10

Another special sub-case: quadratic extensions of Qp, p 6= 2:

(Mock) Theorem: Let p > 2. The quadratic extensions K of Qp
are in bijection with the subgroups H of index 2 in Q×p , by

K ←→ Q×p /NK
Qp

(K×)

The extension K/Qp is unramified if and only if NK
Qp

(K×) ⊃ Z×p .

Remark: Since every field contains ±1, and ±1 are distinct
in characteristic not 2, the theory of quadratic extensions is a
special case of Kummer theory, which more generally discusses
cyclic extensions of order n over ground fields of characteristic not
dividing n and containing nth roots of unity.

Proof: The unramified quadratic case is included in the general
discussion of unramified extensions, of course. But the immediate
issue is to understand the Kummer-theory quotient k×/(k×)2.
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Recall that the exponential map x → ex =
∑∞
n=0

xn

n! converges
p-adically for ordpx >

1
p−1 , since

ordp n! <
n

p
+
n

p2
+ . . . =

n/p

1− 1
p

= n · 1

p− 1

This also applies to ordp and/or | · |p extended to field extensions
K of Qp. Not composed with Galois norm, but, rather, extended.
Similarly, − log(1− x) =

∑
n≥1

xn

n converges for ordpx > 0, since

ordp n ≤ logp n �ε nε (for all ε > 0)

The immediate point of considering these functions is to give the
isomorphism of the subgroup of units 1 + pZp ⊂ Z×p to pZp. In
particular, everything in 1+pZp is a square for p > 2, since 2 ∈ Z×p .

(This, or some equivalent, is the most technical part of this
discussion.)
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Next, to understand squares in Z×p , consider

1 −→ 1 + pZ×p −→ Z×p −→ (Z/p)× −→ 1

Since everything in 1 + pZp is a square, an element of Z×p is a
square if and only if its image in (Z/p)× is a square. The latter
group is cyclic of order p− 1, so the squares are of index 2.

To understand squares in Q×p , choice of the usual local parameter

p gives a splitting Q×p ≈ Z×p × pZ, and

1 → (Z×p )2 × (p2)Z → Z×p × pZ → {1, ε} × {1, p} → 1
|| ||

(Q×p )2 Q×p
where ε is a non-square unit (modulo squares of units). Thus,
Q×p modulo squares is a 2, 2 group, with representatives 1, ε, p, εp.
Since Qp(

√
p) and Qp(

√
εp) are visibly ramified: the square root is

a uniformizer in the extension, and has ordp = 1
2 . Equally visibly,

Qp(
√
ε) is the unique unramified quadratic extension. (This all

uses p > 2!)
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To make this a special case of local classfield theory, examine the
norms from each of the three quadratic extensions for p > 2.

In the unramified extension, local units are norms, and the norm
of pZ hits p2Z, so the norm index is 2, and p is not a norm.

For the ramified quadratic extensions K, the norm is

N(a+ b
√
εp) = a2 − εpb2

Certainly −εp is a norm, and is a local parameter, so Q×p /N(K×)
has representatives among units. From the norm expression, unit
norms are squares mod p. Thus, the index is at least 2.

Thus, it suffices to show that 1 + pZp is hit by norms. Since
N(1 + px) = (1 + px)2 for x ∈ Qp, and 1 + pZp consists entirely
of squares for p > 2, the index inside the units is exactly 2 for
ramified quadratic extensions. ///
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General Kummer theory: Recall that cyclic extensions K of
degree dividing n of a field k of characteristic not dividing n and
containing nth roots of unity are in bijection with cyclic subgroups
of k×/(k×)n, by K = k(n

√
α)←→ 〈α〉 mod (k×)n.

Proof: On one hand, certainly k(n
√
α) = k(n

√
αβn).

On another hand, let G be the Galois group of cyclic K over
k. Since k contains nth roots of unity, the commuting k-linear
endomorphisms of K given by G are simultaneously diagonalizable.
Since this assertion is central to this proof of the theorem of
Kummer theory, we give details.

To get an idea how to proceed, observe that the minimal
polynomial P (x) =

∏
ζ(x − ζ) of a generator g of G has roots

nth roots of unity. For each root ζ, with Qζ(x) = P (x)/(x − ζ),
Qζ(g) is not the 0 endomorphism of K, so there is α ∈ K such
that Qζ(g)(α) 6= 0. Nevertheless, (g − ζ)Qζ(g)(α) = P (g)(α) = 0.
Thus, Qζ(g)(α) is a (non-zero) ζ-eigenvector for g.
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Since gn = 1, the minimal polynomial of g divides xn − 1, which
has no repeated roots when the characteristic does not divide n.
Thus, g is diagonalizable, meaning that K is the direct sum of
g’s eigenspaces. Indeed, as ζ runs over roots of P (x) = 0, the
quotients Qζ(x) = P (x)/(x − ζ) have collective common factor 1.
Thus, there are monic Rζ(x) ∈ k[x] such that

1 =
∑
ζ

Rζ(x) ·Qζ(x) and 1 =
∑
ζ

Rζ(g) ·Qζ(g)

Thus, K =
⊕

ζ

(
Rζ(g) · Qζ(g)

)
(K) and the ζth summand(

Rζ(g) ·Qζ(g)
)
(K) is the ζ-eigenspace, proving diagonalizability.

For g of order exactly m, with m|n, let ζ be a primitive mth root
of unity, and v ∈ K a ζ-eigenvector. Then vm is fixed by G, so is
in k, while v itself is fixed by no proper subgroup of G. By Galois
theory K = k(m

√
vm) = k(n

√
vn)... [cont’d]


