- Intrinsic-ness of $S O(n, \mathbb{R})$-invariant Laplacian Δ^{S}

Calculus on spheres is the simplest non-Euclidean example.
Euclidean calculus on products of circles and lines, and the corresponding harmonic analysis, is the archimedean part of much basic number theory.

Calculus on non-Euclidean spaces is even more useful, but requires more preparation.

The spherical-geometry case is significantly easier than hyperbolicgeometry examples, and simpler than more general situations.

Hecke's identity on Fourier transforms of harmonic-polynomial multiples of Gaussians is a good excuse to introduce a bit of representation theory, especially of compact groups.

What remains is giving an intrinsic meaning to Δ^{S}.

Let G be a subgroup of the group $G L_{n}(\mathbb{R})$ of multiplicativelyinvertible n-by- n real matrices.

We are only concerned with very nice subgroups G, probably requiring that G is defined by polynomial conditions on the entries of the matrices.

For example, the rotation group (special orthogonal group) $S O(n, \mathbb{R})$ is defined by the collection of quadratic equations arising from the defining condition $g^{\top} g=1_{n}$.
Another example is $S L_{n}(\mathbb{R})=\left\{g \in G L_{n}(\mathbb{R}): \operatorname{det} g=1\right\}$.
These conditions are topologically closed, so such groups are closed subgroups of $G L_{n}(\mathbb{R})$.

The rotation group $S O(n, \mathbb{R})$ is compact.

For non-abelian groups, the distinction between position and direction that can be overlooked in \mathbb{R}^{n} becomes enormous. Specifically, specifying direction (and directional derivatives) requires more, as follows.

The matrix exponential is given by the expected series

$$
e^{A}=\exp (A)=\sum_{i \geq 0} \frac{A^{i}}{i!} \quad(\text { for } n \text {-by- } n \text { matrix } A)
$$

The n-by- n real or complex matrices form a finite-dimensional vector space over \mathbb{R} or \mathbb{C}, so have a unique (reasonable) topology, although the topology can be described by several different norms. The exponential series converges absolutely for any such norm.
When $A B=B A$, we do have $e^{A+B}=e^{A} \cdot e^{B}$ by the usual argument, but when A and B do not commute this identity fails.

For a nice $G \subset G L_{n}(\mathbb{R})$, the Lie algebra of G will give directional derivatives (=tangent vectors) on G. One definition is

$$
\text { Lie } G=\mathfrak{g}=\left\{n \text {-by- } n A: e^{t A} \in G \text { for all } t \in \mathbb{R}\right\}
$$

Claim:

$$
\begin{aligned}
& \mathfrak{g l}_{n}(\mathbb{R})=\operatorname{Lie} G L_{n}(\mathbb{R}) \\
& \mathfrak{s l}_{n}(\mathbb{R})=\{\text { all } n \text {-by- } n A\} \\
& \mathfrak{s o}(n, \mathbb{R})=\operatorname{Lie} S L_{n}(\mathbb{R})=\{n \text {-by- } n A \text { with } \operatorname{tr} A=0\} \\
& \text { Lie } S O(n, \mathbb{R})=\left\{A+A^{\top}=0 \text { and } \operatorname{tr} A=0\right\}
\end{aligned}
$$

Proof: Using Jordan form, $\operatorname{det} e^{A}=e^{\operatorname{tr} A}$. Thus, $\operatorname{det} e^{A} \neq 0$, so is invertible for all A. For $\operatorname{tr} A=0$, $\operatorname{det} e^{A}=e^{0}=1$. For the orthogonal group, ...
... first observe that $\left(e^{A}\right)^{\top}=e^{A^{\top}}$. Thus, the condition $\left(e^{t A}\right)^{\top} e^{t A}=1_{n}$ is

$$
\left(1_{n}+t A^{\top}+\ldots\right) \cdot\left(1_{n}+t A+\ldots\right)=1_{n}
$$

The linear-in- t term is $A^{\top}+A=0_{n}$, so this condition is necessary. With $A^{\top}=-A$,

$$
\left(e^{t A}\right)^{\top} e^{t A}=e^{t A^{\top}} \cdot e^{t A}=e^{-t A} \cdot e^{t A}=e^{0}=1_{n}
$$

proving sufficiency.
The derivative $X_{A} f$ of a smooth function f on G in direction $A \in \mathfrak{g}$ is

$$
\left(X_{A} f\right)(g)=\left.\frac{\partial}{\partial t}\right|_{t=0} f\left(g e^{t A}\right)
$$

These differential operators do not commute: the commutator turns out to be

$$
\left[X_{A}, X_{B}\right]=X_{A} \circ X_{B}-X_{B} \circ X_{A}=X_{A B-B A}=X_{[A, B]}
$$

for $A, B \in \mathfrak{g}$. Always $[A, B] \in \mathfrak{g}$ for $A, B \in \mathfrak{g}$. This is suggested by

$$
\begin{gathered}
e^{t A} e^{t B} e^{-t A} e^{-t B}=\left(1+t A+\frac{t^{2} A^{2}}{2}+\ldots\right)\left(1+t B+\frac{t^{2} B^{2}}{2}+\ldots\right) \\
\times\left(1-t A+\frac{t^{2} A^{2}}{2}+\ldots\right)\left(1-t B+\frac{t^{2} B^{2}}{2}+\ldots\right) \\
\\
=1+t^{2}(A B-B A)+\ldots
\end{gathered}
$$

While commutators $\left[X_{A}, X_{B}\right]$ do arise from $[A, B] \in \mathfrak{g}$, simple compositions $X_{A} \circ X_{B}$ do not come from anything in \mathfrak{g}. This awkwardness is remedied as follows.

We want an associative \mathbb{C}-algebra $U \mathfrak{g}$ and a [,]-preserving map $i: \mathfrak{g} \rightarrow U \mathfrak{g}$ such that, for all [,]-preserving maps $f: \mathfrak{g} \rightarrow \Theta$ to an associative \mathbb{C}-algebra Θ, there is a unique associative algebra map $U \mathfrak{g} \rightarrow \Theta$ through which f factors. That is, we have

This characterizes $i: \mathfrak{g} \rightarrow U \mathfrak{g}$ uniquely up to unique isomorphism, if it exists. In other words, the functor U that creates $U \mathfrak{g}$ from \mathfrak{g} is adjoint to the (forgetful) functor Lie that creates $[x, y]=x y-y x$ on an associative algebra A :

$$
\operatorname{Hom}_{\text {assoc }}(U \mathfrak{g}, A) \approx \operatorname{Hom}_{\text {Lie }}(\mathfrak{g}, \operatorname{Lie} A)
$$

For existence, in fact, $U \mathfrak{g}$ is a quotient of the universal associative algebra $A \mathfrak{g}$ attached to the vector space \mathfrak{g}, forgetting the [,] structure, and requiring that all vector space maps $\mathfrak{g} \rightarrow V$ factor through an associative algebra map $A \mathfrak{g} \rightarrow V$.

The universal associative algebra is often constructed as

$$
A \mathfrak{g}=\bigotimes^{\bullet} \mathfrak{g}=\mathbb{C} \oplus \bigoplus_{n \geq 1}\left(\bigotimes^{n} \mathfrak{g}\right)
$$

which has the boring/universal multiplication

$$
\left(x_{1} \otimes \ldots \otimes x_{m}\right) \cdot\left(y_{1} \otimes \ldots \otimes y_{n}\right)=x_{1} \otimes \ldots \otimes x_{m} \otimes y_{1} \otimes \ldots \otimes y_{n}
$$

The lack of interesting or special features here is exactly the universality. The enveloping algebra $U \mathfrak{g}$ is the quotient by the ideal generated by all $x \otimes y-y \otimes x-[x, y]$. The map $\mathfrak{g} \rightarrow U \mathfrak{g}$ is induced from $\mathfrak{g} \rightarrow \bigotimes^{1} \mathfrak{g} \subset \bigotimes^{\bullet} \mathfrak{g}$.

The image of the tensor $x_{1} \otimes \ldots \otimes x_{m}$ in $U \mathfrak{g}$ is simply written without the tensor symbols, namely, $x_{1} \ldots x_{m}$.

Whenever the action of G on a representation space π is differentiable, the Lie algebra \mathfrak{g} acts by

$$
A v=\left.\frac{\partial}{\partial t}\right|_{t=0} \pi\left(e^{t A}\right)(v) \quad(\text { for } A \in \mathfrak{g} \text { and } v \in \pi)
$$

This map $\mathfrak{g} \rightarrow \operatorname{End}_{\mathbb{C}}(\pi)$ preserves brackets (!), so gives a unique corresponding associative-algebra map $U \mathfrak{g} \rightarrow \operatorname{End}_{\mathbb{C}}(\pi)$.
All these actions are compatible with the action of G, since they are induced by it. For example,

$$
\left(\pi(g) \circ A \circ \pi(g)^{-1}\right)(v)=\left(g A g^{-1}\right)(v)
$$

Here, $g A g^{-1}$ is simply matrix conjugation, but/and it has an abstract sense in general, and is called the Adjoint action of G on \mathfrak{g}, denoted $\operatorname{Ad} g(A)$. The lower-case adjoint action of \mathfrak{g} on itself is by ad $x(y)=[x, y]$. The Adjoint action of G on \mathfrak{g} gives rise to a natural action on $\bigotimes^{\bullet} \mathfrak{g}$ and $U \mathfrak{g}$.

There is a possibly-unexpected advantage to considering the universal enveloping algebra, namely, that the G-fixed subalgebra $\mathfrak{z}=(U \mathfrak{g})^{G}$ is quite non-trivial!!!

The simplest non-scalar element in \mathfrak{z} is the Casimir element Ω, described as follows. The trace form is $\langle A, B\rangle=\operatorname{tr}(A B)$. This is a non-degenerate, symmetric, $\mathrm{Ad} G$-invariant pairing on the Lie algebras $\mathfrak{s l}_{n}(\mathbb{R}), \mathfrak{s o}(n, \mathbb{R})$, and many others.
Up to a normalizing constant, \langle,$\rangle is the Killing form, not because$ it kills anything, but because of pioneering work by Wilhelm Killing.

For $\mathfrak{s o}(n, \mathbb{R})$, the trace form is positive definite, as is clear from noting the orthogonal basis $\theta_{i j}=e_{i j}-e_{j i}$ for $i<j$, where $e_{i j}$ has non-zero entry only at the $i j^{t h}$ location, with a 1 there.

The non-degenerate pairing on \mathfrak{g} gives a natural identification of \mathfrak{g} with its dual \mathfrak{g}^{*}, by $\lambda_{A}(B)=\langle A, B\rangle$.

Consider the natural, G-equivariant maps

$$
\operatorname{End}_{\mathbb{C}}(\mathfrak{g}) \approx \mathfrak{g} \otimes \mathfrak{g}^{*} \approx \mathfrak{g} \otimes \mathfrak{g} \subset \bigotimes^{\bullet} \mathfrak{g} \longrightarrow U \mathfrak{g}
$$

At the left end, the identity endomorphism $1_{\mathfrak{g}}$ certainly commutes with Ad G. With a choice of basis x_{i} for \mathfrak{g} and dual basis x_{i}^{*}, the image of $1_{\mathfrak{g}}$ in $g \otimes \mathfrak{g}^{*}$ is $\sum_{i} x_{i} \otimes x_{i}^{*}$. Of course, noting that this is the image of $1_{\mathfrak{g}}$, it is a-fortiori G-invariant.
Let Ω be the image of $1_{\mathfrak{g}}$ in $U \mathfrak{g}$. By design, $\Omega \in(U \mathfrak{g})^{G}$, but it is not entirely clear that it is not accidentally 0 .

For any choice of basis x_{i} and dual basis $x_{i}^{*}, \Omega=\sum_{i} x_{i} x_{i}^{*}$.
Remark: Some sources perversely define Ω by the formula in terms of a basis and dual basis, and then prove that the expression is invariant under change-of-basis. It is obviously better to give an intrinsic definition that does not refer to a basis.

Non-Euclidean geometries attached to G often have Laplacian given by the corresponding Casimir element.

By design, the action of Ω on a representation space is intrinsic, depending only on the isomorphism class. Since Ω commutes with G, by Schur's Lemma it acts by a scalar on an irreducible.

For $G=S O(n, \mathbb{R})$, let's compute the effect of Ω on H_{d}, using the orthogonal basis $\theta_{i j}=e_{i j}-e_{j i}$. All these are length $\sqrt{2}$, so $\Omega=\frac{1}{2} \sum_{i<j}\left(e_{i j}-e_{j i}\right)^{2} \in \mathfrak{z} \subset U \mathfrak{g}$.
Of course, $\exp \left(\begin{array}{cc}0 & t \\ -t & 0\end{array}\right)=\left(\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right)$, so

$$
\exp t \theta_{i j}=\left(\begin{array}{ccccc}
1 & & & & \\
& \cos t & & \sin t & \\
& & 1 & & \\
& -\sin t & & \cos t & \\
& & & & 1
\end{array}\right)
$$

With $G=S O(n, \mathbb{R})$ acting on functions f on S^{n-1} by $g \cdot f(x)=$ $f(x g)$, the summand $\theta_{i j} \theta_{i j}$ acts by

$$
\begin{gathered}
\left.\frac{\partial^{2}}{\partial t^{2}}\right|_{t=0} f\left(x \cdot e^{t \theta_{i j}}\right) \\
=\left.\frac{\partial^{2}}{\partial t^{2}}\right|_{t=0} f\left(\ldots, x_{i} \cos t-x_{j} \sin t, \ldots, x_{i} \sin t+x_{j} \cos t, \ldots\right)
\end{gathered}
$$

with something non-trivial only at $i^{t h}$ and $j^{t h}$ arguments. This is

$$
\begin{gathered}
\left.\frac{\partial}{\partial t}\right|_{t=0}\left(\left(-x_{i} \sin t-x_{j} \cos t\right) f_{i}+\left(x_{i} \cos t-x_{j} \sin t\right) f_{j}\right) \\
=-x_{i} f_{i}+x_{j}^{2} f_{i i}+x_{i}^{2} f_{j j}-x_{j} f_{j}-2 x_{i} x_{j} f_{i j}
\end{gathered}
$$

For homogeneous f of total degree d, Euler's $\sum_{i} x_{i} f_{i}=d \cdot f$, and $\sum_{i j} x_{i} x_{j} f_{i j}=d(d-1) f$ help simplify:
for f homogeneous of total degree d,

$$
\begin{gathered}
(\Omega f)(x)=\sum_{i<j}\left(-x_{i} f_{i}+x_{j}^{2} f_{i i}+x_{i}^{2} f_{j j}-x_{j} f_{j}-2 x_{i} x_{j} f_{i j}\right) \\
=-(n-1) d \cdot f+\sum_{i<j}\left(x_{j}^{2} f_{i i}+x_{i}^{2} f_{j j}-2 x_{i} x_{j} f_{i j}\right) \\
=-(n-1) d \cdot f+\frac{1}{2} \sum_{i \neq j}\left(x_{j}^{2} f_{i i}+x_{i}^{2} f_{j j}-2 x_{i} x_{j} f_{i j}\right) \\
=-(n-1) d \cdot f+r^{2} \Delta f-d(d-1) \cdot f=-d(d+n-2) \cdot f+r^{2} \Delta f
\end{gathered}
$$

Seemingly-miraculously, for harmonic f of total degree d, this recovers the eigenvalue for the extrinsic Δ^{S}, essentially giving $\Omega f=\Delta^{S} f$.
That is, those eigenvalues are not mere artifacts! They are intrinsic, so depend only on the isomorphism class of the representation, and our argument for Hecke's identity is complete.

