1

• Intrinsic-ness of $SO(n, \mathbb{R})$ -invariant Laplacian Δ^S

Calculus on spheres is the simplest non-Euclidean example.

Euclidean calculus on products of circles and lines, and the corresponding harmonic analysis, is the *archimedean* part of much basic number theory.

Calculus on non-Euclidean spaces is even more useful, but requires more preparation.

The *spherical*-geometry case is significantly easier than *hyperbolic*-geometry examples, and simpler than more general situations.

Hecke's identity on Fourier transforms of harmonic-polynomial multiples of Gaussians is a good excuse to introduce a bit of representation theory, especially of compact groups.

What remains is giving an *intrinsic* meaning to Δ^S .

Let G be a subgroup of the group $GL_n(\mathbb{R})$ of multiplicativelyinvertible *n*-by-*n* real matrices.

We are only concerned with very nice subgroups G, probably requiring that G is defined by *polynomial conditions* on the entries of the matrices.

For example, the rotation group (special orthogonal group) $SO(n, \mathbb{R})$ is defined by the collection of quadratic equations arising from the defining condition $g^{\top}g = 1_n$.

Another example is $SL_n(\mathbb{R}) = \{g \in GL_n(\mathbb{R}) : \det g = 1\}.$

These conditions are topologically *closed*, so such groups are closed subgroups of $GL_n(\mathbb{R})$.

The rotation group $SO(n, \mathbb{R})$ is *compact*.

For non-abelian groups, the distinction between *position* and *direction* that can be overlooked in \mathbb{R}^n becomes enormous. Specifically, specifying *direction* (and *directional derivatives*) requires more, as follows.

The *matrix exponential* is given by the expected series

$$e^A = \exp(A) = \sum_{i \ge 0} \frac{A^i}{i!}$$
 (for *n*-by-*n* matrix *A*)

The *n*-by-*n* real or complex matrices form a finite-dimensional vector space over \mathbb{R} or \mathbb{C} , so have a unique (reasonable) topology, although the topology can be described by several different norms. The exponential series converges absolutely for any such norm.

When AB = BA, we do have $e^{A+B} = e^A \cdot e^B$ by the usual argument, but when A and B do not commute this identity *fails*.

For a nice $G \subset GL_n(\mathbb{R})$, the *Lie algebra* of *G* will give *directional derivatives* (=tangent vectors) on *G*. One definition is

Lie
$$G = \mathfrak{g} = \{n \text{-by-}n \ A : e^{tA} \in G \text{ for all } t \in \mathbb{R}\}$$

Claim:

$$\mathfrak{gl}_n(\mathbb{R}) = \operatorname{Lie} GL_n(\mathbb{R}) = \{ \text{all } n\text{-by-}n \ A \}$$

$$\mathfrak{sl}_n(\mathbb{R}) = \operatorname{Lie} SL_n(\mathbb{R}) = \{ n\text{-by-}n \ A \text{ with } \operatorname{tr} A = 0 \}$$

$$\mathfrak{so}(n,\mathbb{R}) = \operatorname{Lie} SO(n,\mathbb{R}) = \{ A + A^{\top} = 0 \text{ and } \operatorname{tr} A = 0 \}$$

Proof: Using Jordan form, det $e^A = e^{\text{tr}A}$. Thus, det $e^A \neq 0$, so is invertible for all A. For trA = 0, det $e^A = e^0 = 1$. For the orthogonal group, ...

... first observe that $(e^A)^{\top} = e^{A^{\top}}$. Thus, the condition $(e^{tA})^{\top}e^{tA} = 1_n$ is

 $(1_n + tA^{\top} + \ldots) \cdot (1_n + tA + \ldots) = 1_n$

The linear-in-t term is $A^{\top} + A = 0_n$, so this condition is *necessary*. With $A^{\top} = -A$,

$$(e^{tA})^{\top}e^{tA} = e^{tA^{\top}} \cdot e^{tA} = e^{-tA} \cdot e^{tA} = e^{0} = 1_n$$

proving *sufficiency*.

The derivative $X_A f$ of a smooth function f on G in direction $A \in \mathfrak{g}$ is 0

$$(X_A f)(g) = \frac{\partial}{\partial t}\Big|_{t=0} f(g e^{tA})$$

///

These differential operators do not commute: the commutator turns out to be

$$[X_A, X_B] = X_A \circ X_B - X_B \circ X_A = X_{AB-BA} = X_{[A,B]}$$

for $A, B \in \mathfrak{g}$. Always $[A, B] \in \mathfrak{g}$ for $A, B \in \mathfrak{g}$. This is suggested by

$$e^{tA}e^{tB}e^{-tA}e^{-tB} = (1 + tA + \frac{t^2A^2}{2} + \dots)(1 + tB + \frac{t^2B^2}{2} + \dots)$$
$$\times (1 - tA + \frac{t^2A^2}{2} + \dots)(1 - tB + \frac{t^2B^2}{2} + \dots)$$
$$= 1 + t^2(AB - BA) + \dots$$

While commutators $[X_A, X_B]$ do arise from $[A, B] \in \mathfrak{g}$, simple compositions $X_A \circ X_B$ do not come from anything in \mathfrak{g} . This awkwardness is remedied as follows.

We want an associative \mathbb{C} -algebra $U\mathfrak{g}$ and a [,]-preserving map $i: \mathfrak{g} \to U\mathfrak{g}$ such that, for all [,]-preserving maps $f: \mathfrak{g} \to \Theta$ to an associative \mathbb{C} -algebra Θ , there is a unique associative algebra map $U\mathfrak{g} \to \Theta$ through which f factors. That is, we have

This characterizes $i: \mathfrak{g} \to U\mathfrak{g}$ uniquely up to unique isomorphism, *if it exists.* In other words, the functor U that creates $U\mathfrak{g}$ from \mathfrak{g} is adjoint to the (forgetful) functor Lie that creates [x, y] = xy - yxon an associative algebra A:

$$\operatorname{Hom}_{\operatorname{assoc}}(U\mathfrak{g}, A) \approx \operatorname{Hom}_{\operatorname{Lie}}(\mathfrak{g}, \operatorname{Lie} A)$$

For existence, in fact, $U\mathfrak{g}$ is a quotient of the *universal associative* algebra $A\mathfrak{g}$ attached to the vector space \mathfrak{g} , forgetting the [,]structure, and requiring that all vector space maps $\mathfrak{g} \to V$ factor through an associative algebra map $A\mathfrak{g} \to V$.

The universal associative algebra is often constructed as

$$A\mathfrak{g} = \bigotimes^{\bullet} \mathfrak{g} = \mathbb{C} \oplus \bigoplus_{n \ge 1} \left(\bigotimes^{n} \mathfrak{g} \right)$$

which has the boring/universal multiplication

 $(x_1 \otimes \ldots \otimes x_m) \cdot (y_1 \otimes \ldots \otimes y_n) = x_1 \otimes \ldots \otimes x_m \otimes y_1 \otimes \ldots \otimes y_n$

The lack of interesting or special features here is exactly the universality. The enveloping algebra $U\mathfrak{g}$ is the quotient by the ideal generated by all $x \otimes y - y \otimes x - [x, y]$. The map $\mathfrak{g} \to U\mathfrak{g}$ is induced from $\mathfrak{g} \to \bigotimes^1 \mathfrak{g} \subset \bigotimes^{\bullet} \mathfrak{g}$.

The image of the tensor $x_1 \otimes \ldots \otimes x_m$ in $U\mathfrak{g}$ is simply written without the tensor symbols, namely, $x_1 \ldots x_m$.

Whenever the action of G on a representation space π is *differentiable*, the Lie algebra \mathfrak{g} acts by

$$Av = \frac{\partial}{\partial t}\Big|_{t=0} \pi(e^{tA})(v)$$
 (for $A \in \mathfrak{g}$ and $v \in \pi$)

This map $\mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(\pi)$ preserves brackets (!), so gives a unique corresponding associative-algebra map $U\mathfrak{g} \to \operatorname{End}_{\mathbb{C}}(\pi)$.

All these actions are compatible with the action of G, since they are induced by it. For example,

$$(\pi(g) \circ A \circ \pi(g)^{-1})(v) = (gAg^{-1})(v)$$

Here, gAg^{-1} is simply matrix conjugation, but/and it has an abstract sense in general, and is called the *Adjoint action* of G on \mathfrak{g} , denoted Adg(A). The lower-case *adjoint action* of \mathfrak{g} on itself is by ad x(y) = [x, y]. The Adjoint action of G on \mathfrak{g} gives rise to a natural action on $\bigotimes^{\bullet} \mathfrak{g}$ and $U\mathfrak{g}$.

There is a possibly-unexpected advantage to considering the universal enveloping algebra, namely, that the *G*-fixed subalgebra $\mathfrak{z} = (U\mathfrak{g})^G$ is quite non-trivial!!!

The simplest non-scalar element in \mathfrak{z} is the *Casimir* element Ω , described as follows. The *trace form* is $\langle A, B \rangle = \operatorname{tr}(AB)$. This is a non-degenerate, symmetric, Ad*G*-invariant pairing on the Lie algebras $\mathfrak{sl}_n(\mathbb{R})$, $\mathfrak{so}(n, \mathbb{R})$, and many others.

Up to a normalizing constant, \langle,\rangle is the *Killing form*, not because it kills anything, but because of pioneering work by Wilhelm Killing.

For $\mathfrak{so}(n, \mathbb{R})$, the trace form is *positive definite*, as is clear from noting the orthogonal basis $\theta_{ij} = e_{ij} - e_{ji}$ for i < j, where e_{ij} has non-zero entry only at the ij^{th} location, with a 1 there.

The non-degenerate pairing on \mathfrak{g} gives a natural identification of \mathfrak{g} with its dual \mathfrak{g}^* , by $\lambda_A(B) = \langle A, B \rangle$.

Consider the natural, G-equivariant maps

$$\operatorname{End}_{\mathbb{C}}(\mathfrak{g}) \approx \mathfrak{g} \otimes \mathfrak{g}^* \approx \mathfrak{g} \otimes \mathfrak{g} \subset \bigotimes^{\bullet} \mathfrak{g} \longrightarrow U\mathfrak{g}$$

At the left end, the identity endomorphism $1_{\mathfrak{g}}$ certainly commutes with Ad G. With a choice of basis x_i for \mathfrak{g} and dual basis x_i^* , the image of $1_{\mathfrak{g}}$ in $g \otimes \mathfrak{g}^*$ is $\sum_i x_i \otimes x_i^*$. Of course, noting that this is the image of $1_{\mathfrak{g}}$, it is *a-fortiori* G-invariant.

Let Ω be the image of $1_{\mathfrak{g}}$ in $U\mathfrak{g}$. By design, $\Omega \in (U\mathfrak{g})^G$, but it is not entirely clear that it is not accidentally 0.

For any choice of basis x_i and dual basis x_i^* , $\Omega = \sum_i x_i x_i^*$.

Remark: Some sources perversely define Ω by the formula in terms of a basis and dual basis, and then prove that the expression is invariant under change-of-basis. It is obviously better to give an intrinsic definition that does not refer to a basis. Non-Euclidean geometries attached to G often have Laplacian given by the corresponding Casimir element.

By design, the action of Ω on a representation space is *intrinsic*, depending only on the isomorphism class. Since Ω commutes with G, by Schur's Lemma it acts by a *scalar* on an irreducible.

For $G = SO(n, \mathbb{R})$, let's compute the effect of Ω on H_d , using the orthogonal basis $\theta_{ij} = e_{ij} - e_{ji}$. All these are length $\sqrt{2}$, so $\Omega = \frac{1}{2} \sum_{i < j} (e_{ij} - e_{ji})^2 \in \mathfrak{z} \subset U\mathfrak{g}$.

Of course,
$$\exp\begin{pmatrix} 0 & t \\ -t & 0 \end{pmatrix} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$$
, so
 $\exp t\theta_{ij} = \begin{pmatrix} 1 & & & \\ & \cos t & \sin t & \\ & & 1 & \\ & -\sin t & \cos t & \\ & & & 1 \end{pmatrix}$

With $G = SO(n, \mathbb{R})$ acting on functions f on S^{n-1} by $g \cdot f(x) = f(xg)$, the summand $\theta_{ij}\theta_{ij}$ acts by

$$\frac{\partial^2}{\partial t^2}\Big|_{t=0} f(x \cdot e^{t\theta_{ij}})$$

$$= \frac{\partial^2}{\partial t^2}\Big|_{t=0} f(\dots, x_i \cos t - x_j \sin t, \dots, x_i \sin t + x_j \cos t, \dots)$$

with something non-trivial only at i^{th} and j^{th} arguments. This is

$$\frac{\partial}{\partial t}\Big|_{t=0} \left((-x_i \sin t - x_j \cos t)f_i + (x_i \cos t - x_j \sin t)f_j \right)$$
$$= -x_i f_i + x_j^2 f_{ii} + x_i^2 f_{jj} - x_j f_j - 2x_i x_j f_{ij}$$

For homogeneous f of total degree d, Euler's $\sum_i x_i f_i = d \cdot f$, and $\sum_{ij} x_i x_j f_{ij} = d(d-1)f$ help simplify:

for f homogeneous of total degree d,

$$\begin{aligned} (\Omega f)(x) &= \sum_{i < j} \left(-x_i f_i + x_j^2 f_{ii} + x_i^2 f_{jj} - x_j f_j - 2x_i x_j f_{ij} \right) \\ &= -(n-1)d \cdot f + \sum_{i < j} \left(x_j^2 f_{ii} + x_i^2 f_{jj} - 2x_i x_j f_{ij} \right) \\ &= -(n-1)d \cdot f + \frac{1}{2} \sum_{i \neq j} \left(x_j^2 f_{ii} + x_i^2 f_{jj} - 2x_i x_j f_{ij} \right) \\ &= -(n-1)d \cdot f + r^2 \Delta f - d(d-1) \cdot f = -d(d+n-2) \cdot f + r^2 \Delta f \\ \text{Seemingly-miraculously, for harmonic } f \text{ of total degree } d, \text{ this recovers the eigenvalue for the extrinsic } \Delta^S, \text{ essentially giving } \\ \Omega f = \Delta^S f. \end{aligned}$$

That is, those eigenvalues are not mere artifacts! They are intrinsic, so depend only on the isomorphism class of the representation, and our argument for Hecke's identity is complete.