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• Interlude: Calculus on spheres: invariant integrals, invariant
∆ = ∆S, integration-by-parts, etc.

Decomposition of L2(Sn−1) into ∆S-eigenfunctions.

Representation theory of orthogonal groups O(n,R) or SO(n,R).

... combine to prove

Hecke’s identity: For a homogeneous, degree d harmonic
polynomial P on Rn, P (x) e−π|x|2 is a Fourier transform
eigenfunction with eigenvalue i−d:(

P (x) e−π|x|2
)
̂(ξ) = i−d · P (ξ) e−π|ξ|2

We need the representation theory of SO(n,R)
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A little representation theory: Given a (topological) group
G, a group homomorphism T : G → AutoC(V ) to the group of
continuous C linear automorphisms of a complex vector space V
is a representation of G (on V ). The representation is finite-

dimensional when V is. When the group homomorphism G →
AutoC(V ) is understood, the standard abuse is to say that V itself
is the representation, not naming the homomorphism. In that
case, rather than writing (Tg)(v) for g ∈ G and v ∈ V , write
simply gv for the action of g on v.

There is a continuity requirement, that

G × V −→ V is continuous

For finite-dimensional V , there is a (provably) unique (topological
vector space) topology, so need not be specified explicitly.
Topologies on infinite-dimensional V must be specified. The
topology on G should be clear from context.
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A G-subrepresentation of a representation V of G is a complex
vector subspace W of V stable under the action of G... and when
V is infinite-dimensional W must be topologically closed.

A representation V of G is irreducible if there is no proper G-
subrepresentation, that is, if there is no G-subrepresentation of V
other than {0} and V itself.

A G-homomorphism from one G-representation V to another G-
representation W is a complex-linear map ϕ : V → W commuting
with the action of G in the sense that

ϕ(gv) = g ϕ(v) (for g ∈ G, v ∈ V )

Such G-homomorphisms are also called G-morphisms, G-maps,
or also G-intertwinings, or G-intertwining operators. The
collection of all G-intertwinings of V to W is HomG(V,W ).
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Theorem: (instance of Schur’s Lemma) For a finite-dimensional
irreducible representation V of a group G, any G-intertwining
ϕ : V → V of V to itself is scalar.

Proof: First, claim that the collection HomG(V, V ) of all G-
intertwinings of finite-dimensional V to itself is a division ring.
Indeed, given ϕ 6= 0 in the ring HomG(V, V ), the image ϕ(V )
is readily seen to be a G-subrepresentation of V . For ϕ not the
zero map, since V is irreducible, the image is either {0} or V , so
must be V since ϕ 6= 0, and ϕ is surjective. Similarly, the kernel
of ϕ is a G-subrepresentation, so is either the whole V , impossible
since ϕ is not the zero map, or is {0}. Thus, ϕ is injective. Thus,
ϕ is a bijection, and therefore has an inverse (easily seen to be a
G-map). Thus, non-zero elements of the ring HomG(V, V ) have
multiplicative inverses, and HomG(V, V ) is a division ring.
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For V finite-dimensional the whole collection of complex-linear
endomorphisms of V is finite-dimensional. Certainly C naturally
lies inside the center of HomG(V, V ). For ϕ ∈ HomG(V, V ), the
collection of rational expressions C(ϕ) is a field, and is finite-
dimensional as a vector space over the copy of C lying in the
center of HomG(V, V ), so is algebraic. But C is algebraically
closed (by Liouville’s theorem), so ϕ ∈ C. ///

Theorem: The space Hd of harmonic homogeneous total-degree d
polynomials is an irreducible SO(n,R)-representation.

Proof: Suppose, to the contrary, that X is a proper SO(n,R)-
subspace of Hd. Then the orthogonal complement Y of X inside
Hd with respect to the SO(n,R)-invariant inner product is also
SO(n,R)-stable.
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The subspace X consists of continuous functions, so, for x ∈ Sn−1,
the functional f → f(x) is a linear functional on X. By an
especially easy case of Riesz-Fischer, there is Fx ∈ X such that
f(x) = 〈f, Fx〉 for all f ∈ X. Since X is rotation-invariant and
not {0}, the functional f → f(x) cannot be 0 on all of X, so
Fx 6= 0 ∈ X.

Similarly, there is 0 6= Φx ∈ Y such that f(x) = 〈f,Φx〉 for all
f ∈ Y .

By rotating, without loss of generality x = en. Then the following
funny lemma proves that Fx and Φx must be scalar multiples of
each other, contradiction. ///
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Let SO(n − 1) be the smaller orthogonal group which is the
isotropy group of the point en = (0, . . . , 0, 1).

Lemma: On Rn, for each fixed d, in Hd there is a unique (up to
constant multiples) SO(n − 1,R)-fixed vector f , that is, so that
h · f = f for every h ∈ SO(n − 1,R).

Proof: A function invariant under SO(n − 1) must be of the form

fo(x) = F (ρ2, t) (where ρ2 = x2
1 + . . . + x2

n−1 and t = xn)

Computing,

∆f0 =
∑

i

∂

∂xi
(2xiF1) + F22 =

∑
i (2F1 + 4x2

i F11) + F22

= 2(n − 1)F1 + 4ρ2F11 + F22

where subscripts denote derivatives.
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Write the function as a polynomial in t with coefficients functions
of ρ. These coefficients are necessarily homogeneous functions of ρ,
so are powers of ρ. Write these as powers of ρ2.

fo(x) = F (ρ2, t)

= cdt
d + cd−1t

d−1(ρ2)1/2 + cd−2t
d−2(ρ2)1 + . . . + co(ρ

2)d/2

The harmonic-ness 0 = 2(n − 1)F1 + 4ρ2F11 + F22 rewritten in
powers of t gives a recurrence for the coefficients ci. Explicitly,
looking at the (i − 2)th power of t in the harmonic-ness condition,
...
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0 = 2(n − 1)
( ∂

∂(ρ2)

)(
ci−2(ρ

2)(d−i+2)/2
)

+4ρ2
( ∂

∂(ρ2)

)2(
ci−2(ρ

2)(d−i+2)/2
)
i(i − 1)ci(ρ

2)(d−i)/2

=
[
2(n − 1)

1

2
(d − i + 2) + 4 ·

1

2
(d − i + 2)

1

2
(d − i)

]
(ρ2)(d−i)/2ci−2

+i(i − 1)(ρ2)(d−i)/2ci

Thus,
i(i − 1)ci = −(d − i + 2)(n − 1 + d − i)ci−2

and the ci are determined completely from c1 and co.
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On the other hand, looking at the td−1 term in the harmonic-ness
relation,

0 = [2(n − 1)
1

2
(ρ2)−1/2 + 4ρ2 1

2
(−

1

2
)(ρ2)−3/2]c1 = [(n − 1) − 1]ρ

So unless n = 2 we have c1 = 0, and all coefficients are determined
by co, giving the desired uniqueness result.

The case n = 2 can be treated more directly, from the easily
demonstrable fact that

Hd = C · (x + iy)d ⊕ C · (x − iy)d (on R2)

This proves the uniqueness lemma, and the irreducibility of Hd as
SO(n,R) representation. ///
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The irreducibility of Hd is the key point, but there are a few other
small requirements before Hecke’s identity is completed.

As expected, two G-representations V,W are isomorphic when
there is a vector space isomorphism V → W that is a G-hom.
When the vector spaces are infinite-dimensional, the map is
required to be a topological vector space isomorphism, as expected.

Similar to Schur’s Lemma:

Proposition: For non-isomorphic irreducible finite-dimensional
G-representations V,W , the only G-hom ϕ : V → W is the zero
map.

Proof: The kernel and image of ϕ are G-subrepresentations, so
are either the whole space or {0}. The case that ϕ : V → W is
a vector space isomorphism is excluded by the non-isomorphism
assumption. ///
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Proposition: (Complete Reducibility) A finite-dimensional G
representation V with a G-invariant inner product 〈, 〉 is a finite
orthogonal direct sum of irreducible G-subrepresentations.

Remark: A representation space with a G-invariant inner
product is said to be unitary.

Proof: Induction on dimension. For V irreducible, we are done.
Otherwise, V has a proper subrepresentation W , which is a direct
sum of irreducibles, by induction. The orthogonal complement
W⊥ of W is immediately G-stable, so is a G-subrepresentation,
and also is a direct sum of irreducibles, by induction. ///

Remark: There is no straightforward infinite-dimensional
analogue of the previous, even for Hilbert spaces. The
orthogonality argument still succeeds, but induction fails.
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The idea is that the SO(n,R)-map

# : Hd −→ C[x]≤d ≈ Hd ⊕ (other irreducibles)

must map Hd to the other copy of Hd, and, by Schur’s lemma, be
a scalar.

This idea is correct, but has not quite been proven so far.

Specifically, although we easily showed that, for irreducibles σ, τ ,
the space of G-homs HomG(σ, τ) is either 0 or C depending on
whether σ 6≈ τ or σ ≈ τ , this does not instantly address the
question of G-maps to sums of irreducibles.

It is best to examines some clarifying structure.
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Isotypes and co-isotypes A direct sum of a number of copies of
an irreducible π is denoted

m · π = π ⊕ . . . ⊕ π︸ ︷︷ ︸
m

Given an irreducible π of G, we want to specify a G-sub V π of a
G-rep’n V such that any map m ·π → V factors (uniquely) through
V π, that is, m · π → V π ⊂ V , the π-isotype of V .

Dually, the π-co-isotype Vπ of V is the quotient of V such that
any map V → m · π factors through Vπ: V → Vπ → m · π.

A priori, existence is unclear, but on categorical grounds they are
unique up to unique isomorphism if they do exist at all.

For unitary representations, the kernel of the map to the co-
isotype has an orthogonal complement, so the co-isotype is
naturally isomorphic to a sub-object, ... but in general we should
not expect this simplicity.
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Happily, for finite-dimensional irreducibles π of compact G, there
is a natural projector to the π-isotype.

It is not obvious, but the history of these issues does reasonably
lead to the following. For a finite-dimensional irreducible π of
compact G, the character χπ of G is a function on G defined by

χπ(g) = traceπ(g)

Proposition: For any G-representation V , the map

v −→ χπ · v =

∫

G

χπ(g) g v dg

is a G-hom projecting V → V π, where π∨ is the contragredient
(dual) representation of π.


