• Interlude: Calculus on spheres: invariant integrals, invariant $\Delta = \Delta^S$, integration-by-parts, etc.

Decomposition of $L^2(S^{n-1})$ into Δ^S -eigenfunctions.

Representation theory of orthogonal groups $O(n, \mathbb{R})$ or $SO(n, \mathbb{R})$.

... combine to prove

Hecke's identity: For a homogeneous, degree d harmonic polynomial P on \mathbb{R}^n , $P(x) e^{-\pi |x|^2}$ is a Fourier transform eigenfunction with eigenvalue i^{-d} :

$$(P(x) e^{-\pi |x|^2})^{\hat{}}(\xi) = i^{-d} \cdot P(\xi) e^{-\pi |\xi|^2}$$

Proof recap: Whether or not P is harmonic,

$$\left(P(x)e^{-\pi|x|^2}\right)^{\hat{}}(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i \langle \xi, x \rangle} P(x)e^{-\pi|x|^2} dx$$

$$= P\left(\frac{1}{-2\pi i}\frac{\partial}{\partial \xi}\right) \int_{\mathbb{R}^n} e^{-2\pi i \langle \xi, x \rangle} e^{-\pi|x|^2} dx$$

$$= P\left(\frac{1}{-2\pi i}\frac{\partial}{\partial \xi}\right) e^{-\pi|\xi|^2} = P^{\#}(\xi) e^{-\pi|\xi|^2}$$

for a polynomial $P^{\#}$ of total degree at most that of P. Since Fourier transform commutes with the action of $O(n, \mathbb{R})$ on functions,

Tunctions, $(P \circ g)(x) e^{-\pi |x|^2}$ $(\xi) = P^{\#}(g\xi) e^{-\pi |\xi|^2}$ Thus, $P \to P^{\#}$ is an $O(n, \mathbb{R})$ -map: $(P \circ g)^{\#} = P^{\#} \circ g$ for $g \in O(n, \mathbb{R})$. Write Δ^S for a/the rotation-invariant second-order differential operator (Laplacian) on functions on $S = S^{n-1}$, and $\int_S f$ the rotation-invariant integral. Two characterizing properties are

$$\begin{array}{lcl} \int_S (\Delta^S f) \cdot \varphi & = & \int_S f \cdot (\Delta^S \varphi) & (\text{self-adjointness}) \\ \\ \int_S (\Delta^S f) \cdot \overline{f} & \leq & 0 & (\text{definiteness}) \end{array}$$

with equality only for f constant. Assume also that Δ^S has real coefficients, in the sense that $\overline{\Delta^S f} = \Delta^S \overline{f}$.

There is the natural complex hermitian inner product

$$\langle f, g \rangle = \int_{S} f \cdot \overline{g}$$
 (for differentiable functions f, g on S)

4

Corollary: Δ^S -eigenvectors f, g with distinct eigenvalues are orthogonal. Eigenvalues are non-positive real.

///

Claim: The action of SO(n) on S^{n-1} is transitive.

///

The isotropy group $SO(n)_{e_n}$ of the last standard basis vector $e_n = (0, \dots, 0, 1)$ is

$$\left\{ \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix} : A \in SO(n-1) \right\} \approx SO(n-1)$$

By transitivity, as SO(n)-spaces $S^{n-1} \approx SO(n-1)\backslash SO(n)$

The action of $k \in SO(n)$ on functions f on the sphere $S = S^{n-1}$ (or on the ambient \mathbb{R}^n) is $(k \cdot f)(x) = f(xk)$. The rotation invariance conditions are

$$\int_{S} k \cdot f = \int_{S} f \qquad \Delta^{S}(k \cdot f) = k \cdot (\Delta^{S} f) \qquad (\text{for } k \in SO(n))$$

The spherical Laplacian For f on S, create a function F on $\mathbb{R}^n - 0$ by F(x) = f(x/|x|), and define

$$\Delta^S f = (\Delta F)\big|_S$$

Then $\Delta^S \overline{f} = \overline{\Delta^S f}$ and Δ^S is SO(n)-invariant.

Claim: For f positive-homogeneous of degree s on $\mathbb{R}^n - 0$

$$\Delta(|x|^{-s} f) = -s(s+n-2)|x|^{-(s+2)} f + |x|^{-s} \Delta f$$

Corollary: For f positive-homogeneous of degree s and harmonic, the restriction $f|_S$ of f to S^{n-1} is an eigenfunction for Δ^S ,

$$\Delta^{S}(f|_{S}) = -s(s+n-2) \cdot (f|_{S})$$

The proof is a direct computation, except for one interesting fact, *Euler's identity:*

$$\sum_{i} x_i f_i(x) = s \cdot f \qquad (f \text{ positive-homogeneous degree } s)$$

Euler's identity is proven by considering the function g(t) = f(tx) for t > 0, differentiating with respect to t, and evaluating at t = 1.

Define complex-hermitian (,) on $\mathbb{C}[x_1,\ldots,x_n]$ by

$$(P,Q) = \overline{Q}(\partial) (P(x))|_{x=0}$$

where $Q(\partial)$ means to replace x_i by $\partial/\partial x_i$ in a polynomial, and $R|_{x=0}$ means to evaluate R at x=0.

Multiplication by r^2 is adjoint to application of Δ :

$$(\Delta f, g) = (f, r^2 g)$$
 (with $r^2 = x_1^2 + \ldots + x_n^2$)

Claim: $\Delta : \mathbb{C}[x_1, \dots, x_n]^{(d)} \longrightarrow \mathbb{C}[x_1, \dots, x_n]^{(d-2)}$ is surjective. Harmonic polynomials f in $\mathbb{C}[x_1, \dots, x_n]^{(d)}$ are orthogonal to polynomials r^2h with $h \in \mathbb{C}[x_1, \dots, x_n]^{(d-2)}$.

Proof: For $h \in \mathbb{C}[x_1, \dots, x_n]^{(d-2)}$, if $(\Delta f, h) = 0$ for all f in $\mathbb{C}[x_1, \dots, x_n]^{(d)}$, then

$$0 = (\Delta f, h) = (f, r^2 h)$$
 (for all f)

so $r^2h=0$, so h=0, by the positive-definiteness of (,). This also proves the second assertion.

Corollary:
$$\mathbb{C}[x_1, \dots, x_n]^{(d)} = H_d \oplus r^2 H_{d-2} \oplus r^4 H_{d-4} + \dots ///$$

Corollary: Polynomials restricted to the n-sphere are equal to linear combinations of harmonic polynomials.

Proof: Use the observation

$$\mathbb{C}[x_1,\ldots,x_n]^{(d)} = H_d \oplus r^2 H_{d-2} \oplus r^4 H_{d-4} + \ldots$$

to write a homogeneous polynomial as

$$f = f_0 + r^2 f_2 + r^4 f_4 + \dots$$

with each f_i harmonic. Restricting to the sphere,

$$f|_S = (f_0 + r^2 f_2 + r^4 f_4 + \ldots)|_S = (f_0 + f_2 + f_4 + \ldots)|_S$$

since $r^2 = 1$ on the sphere. ///

Remark: From computations above,

$$\Delta^{S} f = -d(d+n-2) \cdot f \qquad (for \ f \in H_d)$$

Since $d \geq 0$,

$$\lambda_d = -d(d+n-2) = -\left(d + \frac{n-2}{2}\right)^2 + \left(\frac{n-2}{2}\right)^2 \le 0$$

The eigenvalues $\lambda_d = -d(d+n-2)$ are strictly decreasing as $d \to +\infty$, so the spaces H_d are distinguished by their eigenvalues for the spherical Laplacian.

Remark: For S^1 , the 0-eigenspace is 1-dimensional and for d > 0 the $(-d^2)$ -eigenspace is 2-dimensional, with basis $(x \pm iy)^d$. In contrast, for n > 1 the dimensions of eigenspaces are unbounded as the degree d goes to $+\infty$. Specifically, ...

Claim: $\dim_{\mathbb{C}} H_d = \dim \mathbb{C}[x_1, \dots, x_n]^{(d)} - \dim \mathbb{C}[x_1, \dots, x_n]^{(d-2)}$

$$= \binom{n+d-1}{n-1} - \binom{n+d-3}{n-1} \sim \operatorname{constant} \cdot d^{n-2}$$

Proof: From above, $\Delta: \mathbb{C}[x_1,\ldots,x_n]^{(d)} \longrightarrow \mathbb{C}[x_1,\ldots,x_n]^{(d-2)}$ is surjective, so dim H_d is the difference of dimensions.

The dimension of total-degree d polynomials in n variables is the number of monomials $x_1^{e_1} \dots x_n^{e_n}$ with $\sum_i e_i = d$. Imagine each exponent as the corresponding number of marks, with n-1 additional marks to separate the marks corresponding to the n distinct variables x_i , for a total of n+d-1. The choice of location of the separating marks is the binomial coefficient.

Corollary (instance of Weyl's Law) The dimension of the direct sum of (polynomial) Δ^S -eigenspaces with $|\lambda| < T$ grows like $T^{\frac{n-1}{2}} = T^{\frac{1}{2}\dim S^{n-1}}$.

Invariant integrals on spheres, integration by parts for Δ^S .

We have used an SO(n)-invariant integral on S^{n-1} to show that eigenvalues for the spherical Laplacian Δ^S are non-positive, in determining all eigenvectors, using *integration by parts* on S^{n-1} .

Instead of invoking Haar measure, we could write a formula as follows, using SO(n)-invariance of the measure on \mathbb{R}^n . For continuous f on S, define

$$\int_{S} f = \int_{\mathbb{R}^{n} - 0} \gamma(|x|^{2}) f(x/|x|) dx$$

where γ is a fixed smooth non-negative function on $[0, \infty)$ with

$$\int_{\mathbb{R}^n} \gamma(|x|^2) \, dx = 1$$

For convenience, we may at some moments suppose that γ has compact support and vanishes identically on a neighborhood of 0.

For $k \in SO(n)$ we have the SO(n)-invariance of this integral:

$$\int_{S} k \cdot f = \int_{\mathbb{R}^{n} - 0} \gamma(|x|^{2}) f(\frac{xk}{|xk|}) dx = \int_{\mathbb{R}^{n} - 0} \gamma(|xk^{-1}|^{2}) f(\frac{x}{|x|}) dx$$
$$= \int_{\mathbb{R}^{n} - 0} \gamma(|x|^{2}) f(\frac{x}{|x|}) dx = \int_{S} f$$

by changing variables to replace x by xk^{-1} , and using $|xk^{-1}| = |x|$. Less trivial is proof of the desired integration-by-parts-twice result from this clunky viewpoint:

Proposition: For differentiable functions f, φ on S^n ,

$$\int_{S} (\Delta^{S} f) \cdot \varphi = \int_{S} f \cdot \Delta^{S} \varphi$$

Further, Δ^S is negative-definite in the sense that $\int_S (\Delta^S f) \cdot \overline{f} \leq 0$ with equality only for f constant.

Proof: Let F(x) = f(x/r) and $\Phi(x) = \varphi(x/r)$. By definition,

$$\int_{S} (\Delta^{S} f) \cdot \varphi \ = \ \int_{\mathbb{R}^{n} - 0} \gamma(r^{2}) \ r^{2} \cdot (\Delta F)(x) \ \Phi(x) \ dx$$

where r^2 is inserted so $r^2\Delta F$ is positive-homogeneous of degree 0 as required. Integrating by parts on \mathbb{R}^n , this becomes

$$-\int_{\mathbb{R}^n - 0} \sum_{i} \frac{\partial F}{\partial x_i} \frac{\partial}{\partial x_i} \left(r^2 \cdot \gamma(r^2) \Phi(x) \right) dx$$

With $\beta(r^2) = r^2 \gamma(r^2)$, the derivative $\frac{\partial}{\partial x_i} \left[r^2 \cdot \gamma(r^2) \Phi(x) \right]$ is

$$\frac{\partial}{\partial x_i} \left[\beta(r^2) \, \Phi(x) \right] = 2x_i \beta'(r^2) \Phi(x) + \beta(r^2) \frac{\partial \Phi}{\partial x_i}$$

Thus, the whole is

$$-\int_{\mathbb{R}^{n}-0} \sum_{i} \frac{\partial F}{\partial x_{i}} \left[2x_{i}\beta'(r^{2})\Phi(x) + \beta(r^{2})\frac{\partial \Phi}{\partial x_{i}} \right] dx$$
$$= -\int_{\mathbb{R}^{n}-0} \sum_{i} \frac{\partial F}{\partial x_{i}} \beta(r^{2})\frac{\partial \Phi}{\partial x_{i}} dx$$

since by Euler's identity $\sum_i x_i \frac{\partial F}{\partial x_i} = (\text{degree } F) \cdot F = 0$. The last expression for the integral is symmetric in F and Φ . And with $\Phi = \overline{F}$ the last expression is non-positive, and 0 only for $\partial F/\partial x_i = 0$ for all i, only if F is constant, only if f is constant.

///

Remark: A more persuasive argument will be given later.

Spectral decomposition of $L^2(S^{n-1})$ Functions on the sphere should be sums of eigenfunctions for Δ^S , with convergence in L^2 . L^2 convergence does not imply pointwise convergence, but for smooth functions eventually prove convergence in $C^{\infty}(S^{n-1})$.

Theorem:

$$L^{2}(S^{n-1}) = \text{completion } \bigoplus_{d>0} H_{d}|_{S^{n-1}} \quad \text{(orthogonal direct sum)}$$

Proof: For *completeness*, we will prove that restrictions to the sphere of harmonic polyomials are dense in $C^o(S^{n-1})$, which is dense in $L^2(S^{n-1})$.

With $S^{n-1} \subset \mathbb{R}^n$, a short-cut is available: invoke Weierstrass approximation to know that polynomials are sup-norm dense in $C^o(E)$ on any compact subset E of \mathbb{R}^n . From above, polynomials restricted to S^{n-1} are equal to harmonic polynomials.

Thus, every L^2 function f on S^{n-1} has an L^2 Fourier-Laplace expansion

$$f = \sum_{d=0}^{\infty} f_d \qquad (\text{in } L^2(S^{n-1}))$$

where f_d is the orthogonal projection of f in $L^2(S^{n-1})$ to the space H_d of homogeneous degree d harmonic polynomials restricted to the sphere.

The d^{th} component f_d is an eigenfunction for Δ^S with eigenvalue $\lambda_d = -d(d+n-2)$.

Note: the Δ^S -eigenvalues $\lambda_d = -d(d+n-2)$ on H_d are distinct.

Next, we look at this decomposition of $L^2(S^{n-1})$ in terms of the representation theory of $SO(n, \mathbb{R})$.