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e Interlude: Calculus on spheres: invariant integrals, invariant
A = A?® integration-by-parts, etc.

Decomposition of L?(S"~1) into A®-eigenfunctions.

Representation theory of orthogonal groups O(n,R) or SO(n,R).

. combine to prove

Hecke’s identity: For a homoggneous, degree d harmonic
polynomial P on R™, P(x)e~™*" is a Fourier transform

eigenfunction with eigenvalue i ~%:

(P)e )2 (g) = i P(g) e m<F
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Proof recap: Whether or not P is harmonic,

(P(x) e‘”'m’2)A(§) = /n e 2TUHE) P(z) eIl gy

1 0 : 2
_ P( _) —2mi(€,x) ,—wlal® g
prige) o ¢ e

1 0 2 2
— et — p# 7€
= P( i §>e = P7(¢&)e

for a polynomial P# of total degree at most that of P. Since
Fourier transform commutes with the action of O(n,R) on

functions, , 2
((P og)(x) b >A<§) — p#<g€) el

Thus, P — P# is an O(n,R)-map: (P o g)¥ = P¥ o g for
g € O(n,R).
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Write A® for a/the rotation-invariant second-order differential
operator (Laplacian) on functions on S = S™~', and [, f the
rotation-invariant integral. Two characterizing properties are

fS(ASf) o = [of- (A®p) (self-adjointness)
fs(ASf) f <0 (definiteness)

with equality only for f constant. Assume also that A has real
coefficients, in the sense that ASf = A® f.

There is the natural complex hermitian inner product

(f,g9) = / f-g (for differentiable functions f,g on S)
S
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Corollary: A°-eigenvectors f, g with distinct eigenvalues are
orthogonal. Eigenvalues are non-positive real. ///

Claim: The action of SO(n) on S*"~! is transitive. ///

The isotropy group SO(n)., of the last standard basis vector
en = (0,...,0,1) is

{[6‘ ‘1)] . AeSO(n—1)} ~ SO(n—1)
By transitivity, as SO(n)-spaces S"~! ~ SO(n —1)\SO(n)

The action of k € SO(n) on functions f on the sphere S = S"~1
(or on the ambient R™) is (k - f)(x) = f(zk). The rotation
invariance conditions are

/k-f:/f AS(k-f) =k (ASF) (for k € SO(n))
S S
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The spherical Laplacian For f on S, create a function F' on
R™ — 0 by F(z) = f(z/|z|), and define

ASf = (AF)|

Then A® f = AS f and A% is SO(n)-invariant.

Claim: For f positive-homogeneous of degree s on R™ — 0
Al f) = —s(s+n—=2)[a| " f 4 || > Af

Corollary: For f positive-homogeneous of degree s and harmonic,
the restriction f|g of f to S” ! is an eigenfunction for A,

AS(fls)=—s(s+n—2)(fls)
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The proof is a direct computation, except for one interesting fact,
Euler’s identity:

Zazi filr) = s- f (f positive-homogeneous degree s)

Euler’s identity is proven by considering the function g(t) = f(tx)

6

for t > 0, differentiating with respect to t, and evaluating at ¢t = 1.

Define complex-hermitian (,) on Clzy,...,x,] by

(P,Q) = Q(9) (P(2)) a=0

where Q(0) means to replace x; by 9/0z; in a polynomial, and
R|.—o means to evaluate R at x = 0.
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Multiplication by 72 is adjoint to application of A:
(Af,g9) = (f,7°9) (with r? = 2f + ... +27)

Claim: A : Clxy,...,z,] 9 — Clxy,...,z,]@2
is surjective. Harmonic polynomials f in Clzy,...,2,]® are
orthogonal to polynomials 72h with h € Clxy,. .., x,]d2).

Proof: For h € Clxy,...,z,]@ 2, if (Af,h) = 0 for all f in
Clx1,...,2,] P, then

0 = (AfB) = (f.17h) (for all f)
so r?h = 0, so h = 0, by the positive-definiteness of (,). This also
proves the second assertion. ///

Corollary: Clzy,...,2,]'Y = Hi®r?Hy o ®r*Hg sy +...///
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Corollary: Polynomials restricted to the n-sphere are equal to

linear combinations of harmonic polynomials.

Proof: Use the observation

C[xl,...,a;n](d) = Hd@TZHd_QEBT4Hd_4—|—...

to write a homogeneous polynomial as

f=fotr'fatrifat...

with each f; harmonic. Restricting to the sphere,

fls = (fo+r?fot+rifat+. Vs = (fo+fot+ fit+...

since r? = 1 on the sphere.

8

///
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Remark: From computations above,

ASf = —d(d+n—2)-f (for f € Hy)
Since d > 0,
DN 9\ 2
o= —dld+n-2)=-(d+ =)+ (555) <0
The eigenvalues A\y = —d(d + n — 2) are strictly decreasing as

d — 400, so the spaces H; are distinguished by their eigenvalues
for the spherical Laplacian.

Remark: For S!, the 0-eigenspace is 1-dimensional and for d > 0
the (—d?)-eigenspace is 2-dimensional, with basis (z & iy)9. In
contrast, for n > 1 the dimensions of eigenspaces are unbounded as
the degree d goes to +o00. Specifically, ...
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Claim: dim¢ Hy = dimC[zy,...,2,] — dim Clzy,. .., z,]4"?
d—1 d—3
= <n—|— 1 ) <n—|— 1 ) ~ constant - d" 2
n— n—
Proof: From above, A : Clxy,...,2,]Y — Clay,...,2,]% 2 is

surjective, so dim H, is the difference of dimensions.

The dimension of total-degree d polynomials in n variables is

the number of monomials x7" ... 25" with ). e; = d. Imagine
each exponent as the corresponding number of marks, with n — 1
additional marks to separate the marks corresponding to the n
distinct variables x;, for a total of n+d— 1. The choice of location

of the separating marks is the binomial coefficient. ///

Corollary (instance of Weyl’s Law) The dimension of the direct
sum of (polynomial) A®-eigenspaces with |A\| < T grows like

n—1

T 7 = T3dimsS"" ///
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Invariant integrals on spheres, integration by parts for A~.

We have used an SO(n)-invariant integral on S™~1 to show that
eigenvalues for the spherical Laplacian A® are non-positive, in
determining all eigenvectors, using integration by parts on S™~1.

Instead of invoking Haar measure, we could write a formula
as follows, using SO(n)-invariance of the measure on R"™. For
continuous f on S, define

[1= [ e f@fla) do

where 7 is a fixed smooth non-negative function on [0, 00) with

| AtiaPyde =1

For convenience, we may at some moments suppose that v has
compact support and vanishes identically on a neighborhood of 0.
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For k € SO(n) we have the SO(n)-invariance of this integral:
[her = [ ey = [ ek ) A da
S R"—0 k| Rm—0 |z

~ [ Pty = [ 5

by changing variables to replace x by xk~!, and using
lzk™1] = |z|. Less trivial is proof of the desired integration-by-
parts-twice result from this clunky viewpoint:

Proposition: For differentiable functions f, ¢ on S",

/SASf /fAS

Further, A® is negative-definite in the sense that fS(ASf) - f <0
with equality only for f constant.
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Proof: Let F(x) = f(x/r) and ®(z) = p(x/r). By definition,

/ (ASf) . o = / A(2) 2 (AF)(x) B(x) di
S R»—0

where 72 is inserted so r2AF is positive-homogeneous of degree 0

as required. Integrating by parts on R", this becomes

OF 0 2 ,
/Rn 028% 8% y(r )@(aj)) dx

With 8(r?) = r?y(r?), the derivative 22— [r? - v(r?) ®(z)] is

K2

[80%) (a)] = 208 ()0 (a) + B0
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Thus, the whole is

OF 9
- /]Rn_o z; ox; [2%6’(7“2)(1)(33) + 6(T2>3xi dx

B OF o, 0P
— /Rnozi: oz, B(r >8xi dx

since by Euler’s identity ) . a:z-g—gi = (degree F) - FF = 0. The
last expression for the integral is symmetric in F' and ®. And
with ® = F the last expression is non-positive, and 0 only for
O0F/0x; = 0 for all ¢, only if F' is constant, only if f is constant.

///

Remark: A more persuasive argument will be given later.
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Spectral decomposition of L?(S™~!) Functions on the sphere
should be sums of eigenfunctions for A°, with convergence in
L?. L? convergence does not imply pointwise convergence, but
for smooth functions eventually prove convergence in C>(S"~1).

Theorem:

L*(S™ 1) = completion @Hd| gn—1 (orthogonal direct sum)
d>0

Proof: For completeness, we will prove that restrictions to the

sphere of harmonic polyomials are dense in C°(S™~1), which is

dense in L?(S™1).

With S7~! ¢ R", a short-cut is available: invoke Weierstrass
approximation to know that polynomials are sup-norm dense in
C°(F) on any compact subset E of R™. From above, polynomials
restricted to S™~1 are equal to harmonic polynomials. ///
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Thus, every L? function f on S™~! has an L? Fourier-Laplace
expansion

F=> fa (in L*(S"71))
d=0

where f; is the orthogonal projection of f in L*(S™™1) to
the space H; of homogeneous degree d harmonic polynomials
restricted to the sphere.

The d'* component f, is an eigenfunction for A® with eigenvalue
Ag = —d(d+n—2).

Note: the A°-eigenvalues \g = —d(d+mn —2) on Hy are distinct.

Next, we look at this decomposition of L?(S™™!) in terms of the
representation theory of SO(n,R).



