- Interlude: Calculus on spheres: invariant integrals, invariant $\Delta=\Delta^{S}$, integration-by-parts, etc.
Decomposition of $L^{2}\left(S^{n-1}\right)$ into Δ^{S}-eigenfunctions.
Representation theory of orthogonal groups $O(n, \mathbb{R})$ or $S O(n, \mathbb{R})$.
... combine to prove
Hecke's identity: For a homogeneous, degree d harmonic polynomial P on $\mathbb{R}^{n}, P(x) e^{-\pi|x|^{2}}$ is a Fourier transform eigenfunction with eigenvalue i^{-d} :

$$
\left(P(x) e^{-\pi|x|^{2}}\right) \wedge(\xi)=i^{-d} \cdot P(\xi) e^{-\pi|\xi|^{2}}
$$

Proof recap: Whether or not P is harmonic,

$$
\begin{gathered}
\left(P(x) e^{-\pi|x|^{2}}\right) \wedge(\xi)=\int_{\mathbb{R}^{n}} e^{-2 \pi i\langle\xi, x\rangle} P(x) e^{-\pi|x|^{2}} d x \\
\quad=P\left(\frac{1}{-2 \pi i} \frac{\partial}{\partial \xi}\right) \int_{\mathbb{R}^{n}} e^{-2 \pi i\langle\xi, x\rangle} e^{-\pi|x|^{2}} d x \\
\quad=P\left(\frac{1}{-2 \pi i} \frac{\partial}{\partial \xi}\right) e^{-\pi|\xi|^{2}}=P^{\#}(\xi) e^{-\pi|\xi|^{2}}
\end{gathered}
$$

for a polynomial $P^{\#}$ of total degree at most that of P. Since Fourier transform commutes with the action of $O(n, \mathbb{R})$ on functions,

$$
\left((P \circ g)(x) e^{-\pi|x|^{2}}\right) \wedge(\xi)=P^{\#}(g \xi) e^{-\pi|\xi|^{2}}
$$

Thus, $P \rightarrow P^{\#}$ is an $O(n, \mathbb{R})$-map: $(P \circ g)^{\#}=P^{\#} \circ g$ for $g \in O(n, \mathbb{R})$.

Write Δ^{S} for a/the rotation-invariant second-order differential operator (Laplacian) on functions on $S=S^{n-1}$, and $\int_{S} f$ the rotation-invariant integral. Two characterizing properties are

$$
\begin{aligned}
\int_{S}\left(\Delta^{S} f\right) \cdot \varphi & =\int_{S} f \cdot\left(\Delta^{S} \varphi\right) & \text { (self-adjointness) } \\
\int_{S}\left(\Delta^{S} f\right) \cdot \bar{f} & \leq 0 & \text { (definiteness) }
\end{aligned}
$$

with equality only for f constant. Assume also that Δ^{S} has real coefficients, in the sense that $\overline{\Delta^{S} f}=\Delta^{S} \bar{f}$.
There is the natural complex hermitian inner product

$$
\langle f, g\rangle=\int_{S} f \cdot \bar{g} \quad \text { (for differentiable functions } f, g \text { on } S \text {) }
$$

Corollary: Δ^{S}-eigenvectors f, g with distinct eigenvalues are orthogonal. Eigenvalues are non-positive real.

Claim: The action of $S O(n)$ on S^{n-1} is transitive.
The isotropy group $S O(n)_{e_{n}}$ of the last standard basis vector $e_{n}=(0, \ldots, 0,1)$ is

$$
\left\{\left[\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right]: A \in S O(n-1)\right\} \approx S O(n-1)
$$

By transitivity, as $S O(n)$-spaces $S^{n-1} \approx S O(n-1) \backslash S O(n)$
The action of $k \in S O(n)$ on functions f on the sphere $S=S^{n-1}$ (or on the ambient \mathbb{R}^{n}) is $(k \cdot f)(x)=f(x k)$. The rotation invariance conditions are

$$
\int_{S} k \cdot f=\int_{S} f \quad \quad \Delta^{S}(k \cdot f)=k \cdot\left(\Delta^{S} f\right) \quad(\text { for } k \in S O(n))
$$

The spherical Laplacian For f on S, create a function F on $\mathbb{R}^{n}-0$ by $F(x)=f(x /|x|)$, and define

$$
\Delta^{S} f=\left.(\Delta F)\right|_{S}
$$

Then $\Delta^{S} \bar{f}=\overline{\Delta^{S} f}$ and Δ^{S} is $S O(n)$-invariant.
Claim: For f positive-homogeneous of degree s on $\mathbb{R}^{n}-0$

$$
\Delta\left(|x|^{-s} f\right)=-s(s+n-2)|x|^{-(s+2)} f+|x|^{-s} \Delta f
$$

Corollary: For f positive-homogeneous of degree s and harmonic, the restriction $\left.f\right|_{S}$ of f to S^{n-1} is an eigenfunction for Δ^{S},

$$
\Delta^{S}\left(\left.f\right|_{S}\right)=-s(s+n-2) \cdot\left(\left.f\right|_{S}\right)
$$

The proof is a direct computation, except for one interesting fact, Euler's identity:

$$
\sum_{i} x_{i} f_{i}(x)=s \cdot f \quad(f \text { positive-homogeneous degree } s)
$$

Euler's identity is proven by considering the function $g(t)=f(t x)$ for $t>0$, differentiating with respect to t, and evaluating at $t=1$. Define complex-hermitian (,) on $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by

$$
(P, Q)=\left.\bar{Q}(\partial)(P(x))\right|_{x=0}
$$

where $Q(\partial)$ means to replace x_{i} by $\partial / \partial x_{i}$ in a polynomial, and $\left.R\right|_{x=0}$ means to evaluate R at $x=0$.

Multiplication by r^{2} is adjoint to application of Δ :

$$
(\Delta f, g)=\left(f, r^{2} g\right) \quad\left(\text { with } r^{2}=x_{1}^{2}+\ldots+x_{n}^{2}\right)
$$

Claim: $\Delta: \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d)} \longrightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d-2)}$
is surjective. Harmonic polynomials f in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d)}$ are orthogonal to polynomials $r^{2} h$ with $h \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d-2)}$.
Proof: For $h \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d-2)}$, if $(\Delta f, h)=0$ for all f in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d)}$, then

$$
0=(\Delta f, h)=\left(f, r^{2} h\right) \quad(\text { for all } f)
$$

so $r^{2} h=0$, so $h=0$, by the positive-definiteness of $($,$) . This also$ proves the second assertion.

Corollary: $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d)}=H_{d} \oplus r^{2} H_{d-2} \oplus r^{4} H_{d-4}+\ldots / / /$

Corollary: Polynomials restricted to the n-sphere are equal to linear combinations of harmonic polynomials.

Proof: Use the observation

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d)}=H_{d} \oplus r^{2} H_{d-2} \oplus r^{4} H_{d-4}+\ldots
$$

to write a homogeneous polynomial as

$$
f=f_{0}+r^{2} f_{2}+r^{4} f_{4}+\ldots
$$

with each f_{i} harmonic. Restricting to the sphere,

$$
\left.f\right|_{S}=\left.\left(f_{0}+r^{2} f_{2}+r^{4} f_{4}+\ldots\right)\right|_{S}=\left.\left(f_{0}+f_{2}+f_{4}+\ldots\right)\right|_{S}
$$

since $r^{2}=1$ on the sphere.

Remark: From computations above,

$$
\Delta^{S} f=-d(d+n-2) \cdot f \quad\left(\text { for } f \in H_{d}\right)
$$

Since $d \geq 0$,

$$
\lambda_{d}=-d(d+n-2)=-\left(d+\frac{n-2}{2}\right)^{2}+\left(\frac{n-2}{2}\right)^{2} \leq 0
$$

The eigenvalues $\lambda_{d}=-d(d+n-2)$ are strictly decreasing as $d \rightarrow+\infty$, so the spaces H_{d} are distinguished by their eigenvalues for the spherical Laplacian.
Remark: For S^{1}, the 0-eigenspace is 1-dimensional and for $d>0$ the $\left(-d^{2}\right)$-eigenspace is 2-dimensional, with basis $(x \pm i y)^{d}$. In contrast, for $n>1$ the dimensions of eigenspaces are unbounded as the degree d goes to $+\infty$. Specifically, ...

Claim: $\operatorname{dim}_{\mathbb{C}} H_{d}=\operatorname{dim} \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d)}-\operatorname{dim} \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d-2)}$

$$
=\binom{n+d-1}{n-1}-\binom{n+d-3}{n-1} \sim \text { constant } \cdot d^{n-2}
$$

Proof: From above, $\Delta: \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d)} \longrightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d-2)}$ is surjective, so $\operatorname{dim} H_{d}$ is the difference of dimensions.

The dimension of total-degree d polynomials in n variables is the number of monomials $x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}$ with $\sum_{i} e_{i}=d$. Imagine each exponent as the corresponding number of marks, with $n-1$ additional marks to separate the marks corresponding to the n distinct variables x_{i}, for a total of $n+d-1$. The choice of location of the separating marks is the binomial coefficient.

Corollary (instance of Weyl's Law) The dimension of the direct sum of (polynomial) Δ^{S}-eigenspaces with $|\lambda|<T$ grows like $T^{\frac{n-1}{2}}=T^{\frac{1}{2} \operatorname{dim} S^{n-1}}$.

Invariant integrals on spheres, integration by parts for Δ^{S}.
We have used an $S O(n)$-invariant integral on S^{n-1} to show that eigenvalues for the spherical Laplacian Δ^{S} are non-positive, in determining all eigenvectors, using integration by parts on S^{n-1}. Instead of invoking Haar measure, we could write a formula as follows, using $S O(n)$-invariance of the measure on \mathbb{R}^{n}. For continuous f on S, define

$$
\int_{S} f=\int_{\mathbb{R}^{n}-0} \gamma\left(|x|^{2}\right) f(x /|x|) d x
$$

where γ is a fixed smooth non-negative function on $[0, \infty)$ with

$$
\int_{\mathbb{R}^{n}} \gamma\left(|x|^{2}\right) d x=1
$$

For convenience, we may at some moments suppose that γ has compact support and vanishes identically on a neighborhood of 0 .

For $k \in S O(n)$ we have the $S O(n)$-invariance of this integral:

$$
\begin{gathered}
\int_{S} k \cdot f=\int_{\mathbb{R}^{n}-0} \gamma\left(|x|^{2}\right) f\left(\frac{x k}{|x k|}\right) d x=\int_{\mathbb{R}^{n}-0} \gamma\left(\left|x k^{-1}\right|^{2}\right) f\left(\frac{x}{|x|}\right) d x \\
=\int_{\mathbb{R}^{n}-0} \gamma\left(|x|^{2}\right) f\left(\frac{x}{|x|}\right) d x=\int_{S} f
\end{gathered}
$$

by changing variables to replace x by $x k^{-1}$, and using $\left|x k^{-1}\right|=|x|$. Less trivial is proof of the desired integration-by-parts-twice result from this clunky viewpoint:
Proposition: For differentiable functions f, φ on S^{n},

$$
\int_{S}\left(\Delta^{S} f\right) \cdot \varphi=\int_{S} f \cdot \Delta^{S} \varphi
$$

Further, Δ^{S} is negative-definite in the sense that $\int_{S}\left(\Delta^{S} f\right) \cdot \bar{f} \leq 0$ with equality only for f constant.

Proof: Let $F(x)=f(x / r)$ and $\Phi(x)=\varphi(x / r)$. By definition,

$$
\int_{S}\left(\Delta^{S} f\right) \cdot \varphi=\int_{\mathbb{R}^{n}-0} \gamma\left(r^{2}\right) r^{2} \cdot(\Delta F)(x) \Phi(x) d x
$$

where r^{2} is inserted so $r^{2} \Delta F$ is positive-homogeneous of degree 0 as required. Integrating by parts on \mathbb{R}^{n}, this becomes

$$
-\int_{\mathbb{R}^{n}-0} \sum_{i} \frac{\partial F}{\partial x_{i}} \frac{\partial}{\partial x_{i}}\left(r^{2} \cdot \gamma\left(r^{2}\right) \Phi(x)\right) d x
$$

With $\beta\left(r^{2}\right)=r^{2} \gamma\left(r^{2}\right)$, the derivative $\frac{\partial}{\partial x_{i}}\left[r^{2} \cdot \gamma\left(r^{2}\right) \Phi(x)\right]$ is

$$
\frac{\partial}{\partial x_{i}}\left[\beta\left(r^{2}\right) \Phi(x)\right]=2 x_{i} \beta^{\prime}\left(r^{2}\right) \Phi(x)+\beta\left(r^{2}\right) \frac{\partial \Phi}{\partial x_{i}}
$$

Thus, the whole is

$$
\begin{gathered}
-\int_{\mathbb{R}^{n}-0} \sum_{i} \frac{\partial F}{\partial x_{i}}\left[2 x_{i} \beta^{\prime}\left(r^{2}\right) \Phi(x)+\beta\left(r^{2}\right) \frac{\partial \Phi}{\partial x_{i}}\right] d x \\
=-\int_{\mathbb{R}^{n}-0} \sum_{i} \frac{\partial F}{\partial x_{i}} \beta\left(r^{2}\right) \frac{\partial \Phi}{\partial x_{i}} d x
\end{gathered}
$$

since by Euler's identity $\sum_{i} x_{i} \frac{\partial F}{\partial x_{i}}=($ degree $F) \cdot F=0$. The last expression for the integral is symmetric in F and Φ. And with $\Phi=\bar{F}$ the last expression is non-positive, and 0 only for $\partial F / \partial x_{i}=0$ for all i, only if F is constant, only if f is constant.

Remark: A more persuasive argument will be given later.

Spectral decomposition of $L^{2}\left(S^{n-1}\right)$ Functions on the sphere

 should be sums of eigenfunctions for Δ^{S}, with convergence in L^{2}. L^{2} convergence does not imply pointwise convergence, but for smooth functions eventually prove convergence in $C^{\infty}\left(S^{n-1}\right)$.
Theorem:

$$
L^{2}\left(S^{n-1}\right)=\text { completion }\left.\bigoplus_{d \geq 0} H_{d}\right|_{S^{n-1}} \quad \text { (orthogonal direct sum) }
$$

Proof: For completeness, we will prove that restrictions to the sphere of harmonic polyomials are dense in $C^{o}\left(S^{n-1}\right)$, which is dense in $L^{2}\left(S^{n-1}\right)$.

With $S^{n-1} \subset \mathbb{R}^{n}$, a short-cut is available: invoke Weierstrass approximation to know that polynomials are sup-norm dense in $C^{o}(E)$ on any compact subset E of \mathbb{R}^{n}. From above, polynomials restricted to S^{n-1} are equal to harmonic polynomials.

Thus, every L^{2} function f on S^{n-1} has an L^{2} Fourier-Laplace expansion

$$
f=\sum_{d=0}^{\infty} f_{d} \quad\left(\text { in } L^{2}\left(S^{n-1}\right)\right)
$$

where f_{d} is the orthogonal projection of f in $L^{2}\left(S^{n-1}\right)$ to the space H_{d} of homogeneous degree d harmonic polynomials restricted to the sphere.
The $d^{\text {th }}$ component f_{d} is an eigenfunction for Δ^{S} with eigenvalue $\lambda_{d}=-d(d+n-2)$.
Note: the Δ^{S}-eigenvalues $\lambda_{d}=-d(d+n-2)$ on H_{d} are distinct. Next, we look at this decomposition of $L^{2}\left(S^{n-1}\right)$ in terms of the representation theory of $S O(n, \mathbb{R})$.

