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e Recap: Convergence of half-zeta integrals Genuinely prove
convergence of the half-zeta integrals

S d — 89* d
[ swds = [ oy

with f a Schwartz function on the adeles, for all s € C, where

Hﬁ(y) = Zaekx flay).

e Interlude: Harmonic analysis on spheres, representation theory
of orthogonal groups O(n,R) or SO(n,R), to prove

Hecke’s identity: For a homoggneous, degree d harmonic
polynomial P on R", P(z)e~™I*I" is a Fourier transform

eigenfunction with eigenvalue i~

(P(m) e‘”'x‘Q)A(g) = i~%. P(¢) ey

Remark: The proof of Hecke’s identity illustrates the power of
representation theory.
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Proof: Whether or not P is harmonic,

(P(a:) e_”|x|2)’\(§) = /n e 2mHE) P(x) eIzl gy

1 0 : 2
_ P( _) —27mi(€,x) —m|x|
i) fy T T

1 0 1 0
P —_— ... —
(—27m' 061" 7 —2mi 0&,

because

>6—27rz'(£,ac> _ P(ZU)
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Since the Gaussian is its own Fourier transform,
1 0 2
P —7T|9U|2)" — P( ) —7|&|
( (z)e () —2mi O¢ ‘

whether or not P is harmonic. Certainly

L 0N xel? _ p#ypy el
P(—zmag)e = Prg)e

for a polynomial P# of total degree at most that of P. Since
Fourier transform commutes with the action of O(n,R) on
functions,

((Pog)@)e™™ ) (&) = (Plgm) e ) ()

= (Pa)e™™ ) (ge) = PH(gg)e T
Thus, P — P# is an O(n,R)-map:
(Pog)” = P¥oy (for g € O(n,R))
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Thus, P — P# gives an O(n,R)-respecting map of the space Vj,
of all polynomials of total degree at most d, to itself.

The sequel: we will show... first, the space H; of homogeneous
degree-d harmonic polynomials is irreducible as O(n, R)-

representation, meaning that it has no proper vector subspace
stable under O(n,R).

Second, as O(n,R)-representation space, meaning as complex
vector space with linear action of O(n,R),

Vo = Hy @ GB (other irreducibles m % Hy)
Third, any O(n, R)-respecting map V; — V3 maps Hy to itself.

Fourth, (an instance of Schur’s Lemma) that any O(n,R)-map of
any irreducible to itself is a scalar.

Fifth, the two-variable case determines the constant i <.

4
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e Required properties

e Eixistence of the spherical Laplacian

e Polynomial eigenvectors for the spherical Laplacian
e Determination of eigenvectors

e Eixistence of invariant integrals on spheres

e 2 spectral decompositions on spheres

We will see that spheres S®~1 C R”, are quotients
S" 1~ SO(n—1)\ SO(n)

of rotation groups (orthogonal groups) SO(n). Spheres themselves
are rarely groups, but are acted-upon transitively by groups.

It is well known that S is a group, and also

S% ~ {quaternions a + bi + ch +dk : a* +b° +c* +d* =1}
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Write A® for the desired rotation-invariant second-order
differential operator (Laplacian) on functions on S = S™~!, and
| 5 J the desired rotation-invariant integral. Two characterizing
properties are

fs(ASf) o = [of- (A°p) (self-adjointness)
fs(ASf) f <0 (definiteness)

with equality only for f constant. Assume also that A® has real
coefficients, in the sense that AS f = AS f.

There is the natural complex hermitian inner product

(f,9) = / f-g (for differentiable functions f,g on S)
S

6
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A typical linear algebra conclusion, via a typical argument:

Corollary: Granting A° and invariant measure on S™~1... |
eigenvectors f, g for AS with distinct eigenvalues are orthogonal
with respect to (,). Eigenvalues are nmon-positive real numbers.

Proof: Let ASf = X- f and A%g = 11 - g. Assume X\ # 0 (or else
interchange the roles of A and p). Then

un =5 [@nT =5 [157 =37

Since A # 0, f is not identically 0, so the integral of f - f is not
0, and A = ), so X is real. The negative definiteness of A° and
positive-ness of the invariant measure on S give

AU, f) = /S(Asf)-? <0

7
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Next,

) = 5 [ @na =5 [ 180 =% 1

The eigenvalues A, p are real, so for /A # 1 necessarily the
integral is 0. ///

The standard special orthogonal group (=rotation group)
SO(n) = {gc€GL,(R) : g"' g=1, and detg=1}
acts on S by right matrix multiplication,

k x v — zk (for x € S" 1 and k € O(n))

considering elements of R™ as row vectors.

Claim: The action of SO(n) on S"~! is transitive. ///
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The isotropy group SO(n)e, of the last standard basis vector
en =1(0,...,0,1) is

(isotropy group) = SO(n)., = {[61 (1)] :Ae SO(n—1)}
~ SO(n—1)
Thus, by transitivity, as SO(n)-spaces S*™1 ~ SO(n — 1)\SO(n)

The action of k € SO(n) on functions f on the sphere S = S"~1
(or on the ambient R™) is (k - f)(x) = f(zk). The rotation

invariance conditions are

Jok- f = Jof (for kK € SO(n))

AS(k-f) = k-(ASf) (for k € SO(n))
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The spherical Laplacian Grant that the usual Euclidean

Laplacian
0 \? o \?
A= [ — =
(8:61) " *(aa:)

is SO(n)-invariant. For f on S, create a function F' on R™ — 0 by
F(x) = f(x/|z|), and define

ASf = (restriction to S of ) AF
The map f — F that creates from f on S the degree-zero

positive-homogeneous function F' on R™ — 0 commutes with the
action of SO(n). From the definition,

Af = AS5f
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The SO(n)-invariance of the spherical Laplacian follows from the
SO(n)-invariance of the usual Laplacian: for k € SO(n)

AS(k-f) = (Ak-F))ls = (k- (AF))[s = k- (AF)]s

since restriction to the sphere commutes with SO(n), as does
f — F. Thus, A® is SO(n)-invariant.

Claim: For f positive-homogeneous of degree s on R™ — 0
A(lz] ™ f) = —s(s+n=2)|a| " f 4 |a| > Af

Corollary: For f positive-homogeneous of degree s and harmonic,
the restriction f|g of f to S” ! is an eigenfunction for A%,

A%(fls) = —s(s+n—2)-(f[s)
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Proof: (of claim) Computing directly, with r = |z| and f; be the
partial derivative with respect to the ! argument,

AS(fls) = Af(aflal) = Al f) = S 2 ()5 - 7)

- 83:%
1

= (2w (63 £+ (6" £iBig)

2
0

= Z ( - S (7"2)_(%+1) f+sx; (g +1)(2x;) (T2)—(§+2) f

)

—swy(r?) "G f; — 3(2%)(7“2)_(%“) fi + (r*)7/7 fiz’)

(—sxi ()~ G f 4 ()8 fz-)
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which simplifies to
—ns(r?)"GTf 4 sr2(s 4 2) (r2) "Gy

—8(T2)_(§+1)8f + (7“2)_8/2Af

using » . x? = r? and FEuler’s identity: for positive-homogeneous f

of degree s,
in filr) = s-f

Euler’s identity is proven by considering the function g(t) = f(tx)
for ¢t > 0, differentiating with respect to t, and evaluating at ¢t = 1.

Simplifying,
A(lz|75f) = —nsr= G2 fps(s42) r= G2 f25r= 6D gy p=sAf

= —s(n—(s4+2)+2s)r 2 f L5 Af
= —s(n+s—2)r D f 4 psAS as asserted. ///
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Remark: The most tractable homogeneous functions are
homogeneous polynomsaials, so we look for harmonic homogeneous
polynomials before anything subtler.

Gratifyingly, a slightly more sophisticated argument proves that
there are no other eigenfunctions of the spherical Laplacian.

Let H; be homogeneous (total) degree d harmonic elements in
Clx1,...,xy], and Clzy,...,z,]? the homogeneous polynomials
of degree d. Introduce a complex-hermitian form

(,) : Clz1,..., 20| X Clz1,...,25] — C

by

(P,Q) = Q(9) (P(x)) |a=0

where (Q(9) means to replace x; by d/0x; in a polynomial, and
R|;—o means to evaluate R at x = 0.
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Multiplication by 72 is adjoint to application of A:
(Af,g9) = (f,7%9) (with 72 =22 + ... + 22)

Claim: The pairing (,) is positive-definite hermitian.

Proof: For homogeneous polynomials, (P,Q) = 0 unless P, Q are
of the same degree. When restricted to Clz, ... ,xn](d), the form
(,) has an orthogonal basis of distinct monomials, since

8m1 8mn (5[761 xen)

x=0

_ 0 (if any m; # ;) ///

a {mll...mn! (if every m; = e;)

Looking at the orthogonal basis of monomials, (,) is hermitian
and positive definite on Clxy, ..., x,]®.

/1



