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• Recap: Convergence of half-zeta integrals Genuinely prove
convergence of the half-zeta integrals∫

J+
|y|s f(y) dy =

∫
J+/k×

|y|s θ∗f (y) dy

with f a Schwartz function on the adeles, for all s ∈ C, where
θ∗f (y) =

∑
α∈k× f(αy).

• Interlude: Harmonic analysis on spheres, representation theory
of orthogonal groups O(n,R) or SO(n,R), to prove

Hecke’s identity: For a homogeneous, degree d harmonic
polynomial P on Rn, P (x) e−π|x|

2

is a Fourier transform
eigenfunction with eigenvalue i−d:(

P (x) e−π|x|
2
)̂(ξ) = i−d · P (ξ) e−π|ξ|

2

Remark: The proof of Hecke’s identity illustrates the power of
representation theory.
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Proof: Whether or not P is harmonic,(
P (x) e−π|x|

2
)̂(ξ) =

∫
Rn

e−2πi〈ξ,x〉 P (x) e−π|x|
2

dx

= P
( 1

−2πi

∂

∂ξ

)∫
Rn

e−2πi〈ξ,x〉 e−π|x|
2

dx

because

P
( 1

−2πi

∂

∂ξ1
, . . . ,

1

−2πi

∂

∂ξn

)
e−2πi〈ξ,x〉 = P (x)
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Since the Gaussian is its own Fourier transform,(
P (x) e−π|x|

2
)̂(ξ) = P

( 1

−2πi

∂

∂ξ

)
e−π|ξ|

2

whether or not P is harmonic. Certainly

P
( 1

−2πi

∂

∂ξ

)
e−π|ξ|

2

= P#(ξ) e−π|ξ|
2

for a polynomial P# of total degree at most that of P . Since
Fourier transform commutes with the action of O(n,R) on
functions,(

(P ◦ g)(x) e−π|x|
2
)̂(ξ) =

(
P (gx) e−π|gx|

2
)̂(ξ)

=
(
P (x) e−π|x|

2
)̂(gξ) = P#(gξ) e−π|ξ|

2

Thus, P → P# is an O(n,R)-map:

(P ◦ g)# = P# ◦ g (for g ∈ O(n,R))
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Thus, P → P# gives an O(n,R)-respecting map of the space Vd,
of all polynomials of total degree at most d, to itself.

The sequel: we will show... first, the space Hd of homogeneous
degree-d harmonic polynomials is irreducible as O(n,R)-
representation, meaning that it has no proper vector subspace
stable under O(n,R).

Second, as O(n,R)-representation space, meaning as complex
vector space with linear action of O(n,R),

Vd = Hd ⊕
⊕

(other irreducibles π 6≈ Hd)

Third, any O(n,R)-respecting map Vd → Vd maps Hd to itself.

Fourth, (an instance of Schur’s Lemma) that any O(n,R)-map of
any irreducible to itself is a scalar.

Fifth, the two-variable case determines the constant i−d.
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• Required properties
• Existence of the spherical Laplacian
• Polynomial eigenvectors for the spherical Laplacian
• Determination of eigenvectors
• Existence of invariant integrals on spheres
• L2 spectral decompositions on spheres

We will see that spheres Sn−1 ⊂ Rn, are quotients

Sn−1 ≈ SO(n− 1) \ SO(n)

of rotation groups (orthogonal groups) SO(n). Spheres themselves
are rarely groups, but are acted-upon transitively by groups.

It is well known that S1 is a group, and also

S3 ≈ {quaternions a+ bi+ ch+ dk : a2 + b2 + c2 + d2 = 1}
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Write ∆S for the desired rotation-invariant second-order
differential operator (Laplacian) on functions on S = Sn−1, and∫
S
f the desired rotation-invariant integral. Two characterizing

properties are∫
S

(∆Sf) · ϕ =
∫
S
f · (∆Sϕ) (self-adjointness)∫

S
(∆Sf) · f ≤ 0 (definiteness)

with equality only for f constant. Assume also that ∆S has real
coefficients, in the sense that ∆Sf = ∆S f .

There is the natural complex hermitian inner product

〈f, g〉 =

∫
S

f · g (for differentiable functions f, g on S)
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A typical linear algebra conclusion, via a typical argument:

Corollary: Granting ∆S and invariant measure on Sn−1... ,
eigenvectors f, g for ∆S with distinct eigenvalues are orthogonal
with respect to 〈, 〉. Eigenvalues are non-positive real numbers.

Proof: Let ∆Sf = λ · f and ∆Sg = µ · g. Assume λ 6= 0 (or else
interchange the roles of λ and µ). Then

〈f, f〉 =
1

λ

∫
S

(∆Sf) · f =
1

λ

∫
S

f ∆Sf =
λ

λ

∫
S

f f

Since λ 6= 0, f is not identically 0, so the integral of f · f is not
0, and λ = λ, so λ is real. The negative definiteness of ∆S and
positive-ness of the invariant measure on S give

λ · 〈f, f〉 =

∫
S

(∆Sf) · f < 0



Garrett 03-26-2012 8

Next,

〈f, g〉 =
1

λ

∫
S

(∆Sf) · g =
1

λ

∫
S

f ·∆Sg =
µ

λ

∫
S

f · g

The eigenvalues λ, µ are real, so for µ/λ 6= 1 necessarily the
integral is 0. ///

The standard special orthogonal group (=rotation group)

SO(n) = {g ∈ GLn(R) : g> g = 1n and det g = 1}

acts on S by right matrix multiplication,

k × x −→ xk (for x ∈ Sn−1 and k ∈ O(n))

considering elements of Rn as row vectors.

Claim: The action of SO(n) on Sn−1 is transitive. ///
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The isotropy group SO(n)en of the last standard basis vector
en = (0, . . . , 0, 1) is

(isotropy group) = SO(n)en = {
[
A 0
0 1

]
: A ∈ SO(n− 1)}

≈ SO(n− 1)

Thus, by transitivity, as SO(n)-spaces Sn−1 ≈ SO(n− 1)\SO(n)

The action of k ∈ SO(n) on functions f on the sphere S = Sn−1

(or on the ambient Rn) is (k · f)(x) = f(xk). The rotation
invariance conditions are∫

S
k · f =

∫
S
f (for k ∈ SO(n))

∆S(k · f) = k · (∆Sf) (for k ∈ SO(n))
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The spherical Laplacian Grant that the usual Euclidean
Laplacian

∆ =

(
∂

∂x1

)2

+ . . .+

(
∂

∂xn

)2

is SO(n)-invariant. For f on S, create a function F on Rn − 0 by
F (x) = f(x/|x|), and define

∆Sf = (restriction to S of ) ∆F

The map f → F that creates from f on S the degree-zero
positive-homogeneous function F on Rn − 0 commutes with the
action of SO(n). From the definition,

∆S f = ∆S f
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The SO(n)-invariance of the spherical Laplacian follows from the
SO(n)-invariance of the usual Laplacian: for k ∈ SO(n)

∆S(k · f) = (∆(k · F ))|S = (k · (∆F ))|S = k · (∆F )|S

since restriction to the sphere commutes with SO(n), as does
f → F . Thus, ∆S is SO(n)-invariant.

Claim: For f positive-homogeneous of degree s on Rn − 0

∆(|x|−s f) = −s(s+ n− 2)|x|−(s+2) f + |x|−s ∆f

Corollary: For f positive-homogeneous of degree s and harmonic,
the restriction f |S of f to Sn−1 is an eigenfunction for ∆S ,

∆S(f |S) = −s(s+ n− 2) · (f |S)
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Proof: (of claim) Computing directly, with r = |x| and fi be the
partial derivative with respect to the ith argument,

∆S(f |S) = ∆f(x/|x|) = ∆
(
|x|−s · f

)
=
∑
i

∂2

∂x2i

(
(r2)−

s
2 · f

)

=
∑
i

∂

∂xi

(
− s

2
(2xi) (r2)−(

s
2+1) f + (r2)−s/2 fiBig))

=
∑
i

∂

∂xi

(
−sxi (r2)−(

s
2+1) f + (r2)−s/2 fi

)
=
∑
i

(
− s (r2)−(

s
2+1) f + sxi (

s

2
+ 1)(2xi) (r2)−(

s
2+2) f

−sxi(r2)−(
s
2+1) fi −

s

2
(2xi)(r

2)−(
s
2+1) fi + (r2)−s/2 fii

)
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which simplifies to
−ns(r2)−(

s
2+1)f + sr2(s+ 2) (r2)−(

s
2+2)f

−s(r2)−(
s
2+1)sf + (r2)−s/2∆f

using
∑
i x

2
i = r2 and Euler’s identity: for positive-homogeneous f

of degree s, ∑
i

xi fi(x) = s · f

Euler’s identity is proven by considering the function g(t) = f(tx)
for t > 0, differentiating with respect to t, and evaluating at t = 1.

Simplifying,

∆(|x|−sf) = −ns r−(s+2)f+s(s+2) r−(s+2)f−2s r−(s+2) sf+r−s∆f

= −s(n− (s+ 2) + 2s) r−(s+2) f + r−s ∆f

= −s(n+ s− 2) r−(s+2) f + r−s ∆f as asserted. ///
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Remark: The most tractable homogeneous functions are
homogeneous polynomials, so we look for harmonic homogeneous
polynomials before anything subtler.

Gratifyingly, a slightly more sophisticated argument proves that
there are no other eigenfunctions of the spherical Laplacian.

Let Hd be homogeneous (total) degree d harmonic elements in
C[x1, . . . , xn], and C[x1, . . . , xn](d) the homogeneous polynomials
of degree d. Introduce a complex-hermitian form

(, ) : C[x1, . . . , xn]× C[x1, . . . , xn] −→ C

by
(P,Q) = Q(∂) (P (x)) |x=0

where Q(∂) means to replace xi by ∂/∂xi in a polynomial, and
R|x=0 means to evaluate R at x = 0.
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Multiplication by r2 is adjoint to application of ∆:

(∆f, g) = (f, r2g) (with r2 = x21 + . . .+ x2n)

Claim: The pairing (, ) is positive-definite hermitian.

Proof: For homogeneous polynomials, (P,Q) = 0 unless P,Q are
of the same degree. When restricted to C[x1, . . . , xn](d), the form
(, ) has an orthogonal basis of distinct monomials, since(

∂m1

∂xm1
1

. . .
∂mn

∂xmn
n

)
(xe11 . . . xenn )

∣∣∣∣
x=0

=

{
0 (if any mi 6= ei)

m1! . . .mn! (if every mi = ei)
///

Looking at the orthogonal basis of monomials, (, ) is hermitian
and positive definite on C[x1, . . . , xn](d). ///


