- Recap: Convergence of half-zeta integrals Genuinely prove convergence of the half-zeta integrals

$$
\int_{\mathbb{J}^{+}}|y|^{s} f(y) d y=\int_{\mathbb{J}+k^{\times}}|y|^{s} \theta_{f}^{*}(y) d y
$$

with f a Schwartz function on the adeles, for all $s \in \mathbb{C}$, where $\theta_{f}^{*}(y)=\sum_{\alpha \in k^{\times}} f(\alpha y)$.

- Interlude: Harmonic analysis on spheres, representation theory of orthogonal groups $O(n, \mathbb{R})$ or $S O(n, \mathbb{R})$, to prove

Hecke's identity: For a homogeneous, degree d harmonic polynomial P on $\mathbb{R}^{n}, P(x) e^{-\pi|x|^{2}}$ is a Fourier transform eigenfunction with eigenvalue i^{-d} :

$$
\left(P(x) e^{-\pi|x|^{2}}\right) \wedge(\xi)=i^{-d} \cdot P(\xi) e^{-\pi|\xi|^{2}}
$$

Remark: The proof of Hecke's identity illustrates the power of representation theory.

Proof: Whether or not P is harmonic,

$$
\begin{gathered}
\left(P(x) e^{-\pi|x|^{2}}\right) \wedge(\xi)=\int_{\mathbb{R}^{n}} e^{-2 \pi i\langle\xi, x\rangle} P(x) e^{-\pi|x|^{2}} d x \\
=P\left(\frac{1}{-2 \pi i} \frac{\partial}{\partial \xi}\right) \int_{\mathbb{R}^{n}} e^{-2 \pi i\langle\xi, x\rangle} e^{-\pi|x|^{2}} d x
\end{gathered}
$$

$$
P\left(\frac{1}{-2 \pi i} \frac{\partial}{\partial \xi_{1}}, \ldots, \frac{1}{-2 \pi i} \frac{\partial}{\partial \xi_{n}}\right) e^{-2 \pi i\langle\xi, x\rangle}=P(x)
$$

Since the Gaussian is its own Fourier transform,

$$
\left(P(x) e^{-\pi|x|^{2}}\right) \wedge(\xi)=P\left(\frac{1}{-2 \pi i} \frac{\partial}{\partial \xi}\right) e^{-\pi|\xi|^{2}}
$$

whether or not P is harmonic. Certainly

$$
P\left(\frac{1}{-2 \pi i} \frac{\partial}{\partial \xi}\right) e^{-\pi|\xi|^{2}}=P^{\#}(\xi) e^{-\pi|\xi|^{2}}
$$

for a polynomial $P^{\#}$ of total degree at most that of P. Since Fourier transform commutes with the action of $O(n, \mathbb{R})$ on functions,

$$
\begin{gathered}
\left((P \circ g)(x) e^{-\pi|x|^{2}}\right) \wedge(\xi)=\left(P(g x) e^{-\pi|g x|^{2}}\right) \wedge(\xi) \\
=\left(P(x) e^{-\pi|x|^{2}}\right) \wedge(g \xi)=P^{\#}(g \xi) e^{-\pi|\xi|^{2}}
\end{gathered}
$$

Thus, $P \rightarrow P^{\#}$ is an $O(n, \mathbb{R})$-map:

$$
(P \circ g)^{\#}=P^{\#} \circ g \quad(\text { for } g \in O(n, \mathbb{R}))
$$

Thus, $P \rightarrow P^{\#}$ gives an $O(n, \mathbb{R})$-respecting map of the space V_{d}, of all polynomials of total degree at most d, to itself.

The sequel: we will show... first, the space H_{d} of homogeneous degree- d harmonic polynomials is irreducible as $O(n, \mathbb{R})$ representation, meaning that it has no proper vector subspace stable under $O(n, \mathbb{R})$.

Second, as $O(n, \mathbb{R})$-representation space, meaning as complex vector space with linear action of $O(n, \mathbb{R})$,

$$
V_{d}=H_{d} \oplus \bigoplus\left(\text { other irreducibles } \pi \not \approx H_{d}\right)
$$

Third, any $O(n, \mathbb{R})$-respecting map $V_{d} \rightarrow V_{d}$ maps H_{d} to itself.
Fourth, (an instance of Schur's Lemma) that any $O(n, \mathbb{R})$-map of any irreducible to itself is a scalar.

Fifth, the two-variable case determines the constant i^{-d}.

- Required properties
- Existence of the spherical Laplacian
- Polynomial eigenvectors for the spherical Laplacian
- Determination of eigenvectors
- Existence of invariant integrals on spheres
- L^{2} spectral decompositions on spheres

We will see that spheres $S^{n-1} \subset \mathbb{R}^{n}$, are quotients

$$
S^{n-1} \approx S O(n-1) \backslash S O(n)
$$

of rotation groups (orthogonal groups) $S O(n)$. Spheres themselves are rarely groups, but are acted-upon transitively by groups.
It is well known that S^{1} is a group, and also

$$
S^{3} \approx\left\{\text { quaternions } a+b i+c h+d k: a^{2}+b^{2}+c^{2}+d^{2}=1\right\}
$$

Write Δ^{S} for the desired rotation-invariant second-order differential operator (Laplacian) on functions on $S=S^{n-1}$, and $\int_{S} f$ the desired rotation-invariant integral. Two characterizing properties are

$$
\begin{aligned}
\int_{S}\left(\Delta^{S} f\right) \cdot \varphi & =\int_{S} f \cdot\left(\Delta^{S} \varphi\right) \\
& \quad \text { (self-adjointness) } \\
\int_{S}\left(\Delta^{S} f\right) \cdot \bar{f} & \leq 0
\end{aligned} \quad \text { (definiteness) }
$$

with equality only for f constant. Assume also that Δ^{S} has real coefficients, in the sense that $\overline{\Delta^{S} f}=\Delta^{S} \bar{f}$.
There is the natural complex hermitian inner product

$$
\langle f, g\rangle=\int_{S} f \cdot \bar{g} \quad \text { (for differentiable functions } f, g \text { on } S \text {) }
$$

A typical linear algebra conclusion, via a typical argument:
Corollary: Granting Δ^{S} and invariant measure on $S^{n-1} \ldots$, eigenvectors f, g for Δ^{S} with distinct eigenvalues are orthogonal with respect to \langle,$\rangle . Eigenvalues are non-positive real numbers.$
Proof: Let $\Delta^{S} f=\lambda \cdot f$ and $\Delta^{S} g=\mu \cdot g$. Assume $\lambda \neq 0$ (or else interchange the roles of λ and μ). Then

$$
\langle f, f\rangle=\frac{1}{\lambda} \int_{S}\left(\Delta^{S} f\right) \cdot \bar{f}=\frac{1}{\lambda} \int_{S} f \overline{\Delta^{S} f}=\frac{\bar{\lambda}}{\lambda} \int_{S} f \bar{f}
$$

Since $\lambda \neq 0, f$ is not identically 0 , so the integral of $f \cdot \bar{f}$ is not 0 , and $\lambda=\bar{\lambda}$, so λ is real. The negative definiteness of Δ^{S} and positive-ness of the invariant measure on S give

$$
\lambda \cdot\langle f, f\rangle=\int_{S}\left(\Delta^{S} f\right) \cdot \bar{f}<0
$$

Next,

$$
\langle f, g\rangle=\frac{1}{\lambda} \int_{S}\left(\Delta^{S} f\right) \cdot \bar{g}=\frac{1}{\lambda} \int_{S} f \cdot \overline{\Delta^{S} g}=\frac{\bar{\mu}}{\lambda} \int_{S} f \cdot \bar{g}
$$

The eigenvalues λ, μ are real, so for $\mu / \lambda \neq 1$ necessarily the integral is 0 .

The standard special orthogonal group (=rotation group)

$$
S O(n)=\left\{g \in G L_{n}(\mathbb{R}): g^{\top} g=1_{n} \quad \text { and } \quad \operatorname{det} g=1\right\}
$$

acts on S by right matrix multiplication,

$$
k \times x \longrightarrow x k \quad\left(\text { for } x \in S^{n-1} \text { and } k \in O(n)\right)
$$

considering elements of \mathbb{R}^{n} as row vectors.
Claim: The action of $S O(n)$ on S^{n-1} is transitive.

The isotropy group $S O(n)_{e_{n}}$ of the last standard basis vector $e_{n}=(0, \ldots, 0,1)$ is

$$
\begin{gathered}
\left(\text { isotropy group }=S O(n)_{e_{n}}=\left\{\left[\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right]: A \in S O(n-1)\right\}\right. \\
\approx S O(n-1)
\end{gathered}
$$

Thus, by transitivity, as $S O(n)$-spaces $S^{n-1} \approx S O(n-1) \backslash S O(n)$ The action of $k \in S O(n)$ on functions f on the sphere $S=S^{n-1}$ (or on the ambient \mathbb{R}^{n}) is $(k \cdot f)(x)=f(x k)$. The rotation invariance conditions are

$$
\begin{array}{lll}
\int_{S} k \cdot f & =\int_{S} f & (\text { for } k \in S O(n)) \\
\Delta^{S}(k \cdot f) & =k \cdot\left(\Delta^{S} f\right) & (\text { for } k \in S O(n))
\end{array}
$$

The spherical Laplacian Grant that the usual Euclidean Laplacian

$$
\Delta=\left(\frac{\partial}{\partial x_{1}}\right)^{2}+\ldots+\left(\frac{\partial}{\partial x_{n}}\right)^{2}
$$

is $S O(n)$-invariant. For f on S, create a function F on $\mathbb{R}^{n}-0$ by $F(x)=f(x /|x|)$, and define

$$
\Delta^{S} f=(\text { restriction to } S \text { of }) \Delta F
$$

The map $f \rightarrow F$ that creates from f on S the degree-zero positive-homogeneous function F on \mathbb{R}^{n} - 0 commutes with the action of $S O(n)$. From the definition,

$$
\Delta^{S} \bar{f}=\overline{\Delta^{S} f}
$$

The $S O(n)$-invariance of the spherical Laplacian follows from the $S O(n)$-invariance of the usual Laplacian: for $k \in S O(n)$

$$
\Delta^{S}(k \cdot f)=\left.(\Delta(k \cdot F))\right|_{S}=\left.(k \cdot(\Delta F))\right|_{S}=\left.k \cdot(\Delta F)\right|_{S}
$$

since restriction to the sphere commutes with $S O(n)$, as does $f \rightarrow F$. Thus, Δ^{S} is $S O(n)$-invariant.
Claim: For f positive-homogeneous of degree s on $\mathbb{R}^{n}-0$

$$
\Delta\left(|x|^{-s} f\right)=-s(s+n-2)|x|^{-(s+2)} f+|x|^{-s} \Delta f
$$

Corollary: For f positive-homogeneous of degree s and harmonic, the restriction $\left.f\right|_{S}$ of f to S^{n-1} is an eigenfunction for Δ^{S},

$$
\Delta^{S}\left(\left.f\right|_{S}\right)=-s(s+n-2) \cdot\left(\left.f\right|_{S}\right)
$$

Proof: (of claim) Computing directly, with $r=|x|$ and f_{i} be the partial derivative with respect to the $i^{t h}$ argument,

$$
\begin{gathered}
\Delta^{S}\left(\left.f\right|_{S}\right)=\Delta f(x /|x|)=\Delta\left(|x|^{-s} \cdot f\right)=\sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}\left(\left(r^{2}\right)^{-\frac{s}{2}} \cdot f\right) \\
\left.=\sum_{i} \frac{\partial}{\partial x_{i}}\left(-\frac{s}{2}\left(2 x_{i}\right)\left(r^{2}\right)^{-\left(\frac{s}{2}+1\right)} f+\left(r^{2}\right)^{-s / 2} f_{i} B i g\right)\right) \\
=\sum_{i} \frac{\partial}{\partial x_{i}}\left(-s x_{i}\left(r^{2}\right)^{-\left(\frac{s}{2}+1\right)} f+\left(r^{2}\right)^{-s / 2} f_{i}\right) \\
=\sum_{i}\left(-s\left(r^{2}\right)^{-\left(\frac{s}{2}+1\right)} f+s x_{i}\left(\frac{s}{2}+1\right)\left(2 x_{i}\right)\left(r^{2}\right)^{-\left(\frac{s}{2}+2\right)} f\right. \\
\left.-s x_{i}\left(r^{2}\right)^{-\left(\frac{s}{2}+1\right)} f_{i}-\frac{s}{2}\left(2 x_{i}\right)\left(r^{2}\right)^{-\left(\frac{s}{2}+1\right)} f_{i}+\left(r^{2}\right)^{-s / 2} f_{i i}\right)
\end{gathered}
$$

which simplifies to

$$
\begin{aligned}
& -n s\left(r^{2}\right)^{-\left(\frac{s}{2}+1\right)} f+s r^{2}(s+2)\left(r^{2}\right)^{-\left(\frac{s}{2}+2\right)} f \\
& \quad-s\left(r^{2}\right)^{-\left(\frac{s}{2}+1\right)} s f+\left(r^{2}\right)^{-s / 2} \Delta f
\end{aligned}
$$

using $\sum_{i} x_{i}^{2}=r^{2}$ and Euler's identity: for positive-homogeneous f of degree s,

$$
\sum_{i} x_{i} f_{i}(x)=s \cdot f
$$

Euler's identity is proven by considering the function $g(t)=f(t x)$ for $t>0$, differentiating with respect to t, and evaluating at $t=1$. Simplifying,

$$
\begin{aligned}
& \Delta\left(|x|^{-s} f\right)=-n s r^{-(s+2)} f+s(s+2) r^{-(s+2)} f-2 s r^{-(s+2)} s f+r^{-s} \Delta f \\
&=-s(n-(s+2)+2 s) r^{-(s+2)} f+r^{-s} \Delta f \\
&=-s(n+s-2) r^{-(s+2)} f+r^{-s} \Delta f \quad \text { as asserted. /// }
\end{aligned}
$$

Remark: The most tractable homogeneous functions are homogeneous polynomials, so we look for harmonic homogeneous polynomials before anything subtler.

Gratifyingly, a slightly more sophisticated argument proves that there are no other eigenfunctions of the spherical Laplacian.

Let H_{d} be homogeneous (total) degree d harmonic elements in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, and $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d)}$ the homogeneous polynomials of degree d. Introduce a complex-hermitian form

$$
(,): \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \times \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \longrightarrow \mathbb{C}
$$

by

$$
(P, Q)=\left.\bar{Q}(\partial)(P(x))\right|_{x=0}
$$

where $Q(\partial)$ means to replace x_{i} by $\partial / \partial x_{i}$ in a polynomial, and $\left.R\right|_{x=0}$ means to evaluate R at $x=0$.

Multiplication by r^{2} is adjoint to application of Δ :

$$
(\Delta f, g)=\left(f, r^{2} g\right) \quad\left(\text { with } r^{2}=x_{1}^{2}+\ldots+x_{n}^{2}\right)
$$

Claim: The pairing (,) is positive-definite hermitian.
Proof: For homogeneous polynomials, $(P, Q)=0$ unless P, Q are of the same degree. When restricted to $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d)}$, the form (,) has an orthogonal basis of distinct monomials, since

$$
\begin{aligned}
&\left.\left(\frac{\partial^{m_{1}}}{\partial x_{1}^{m_{1}}} \ldots \frac{\partial^{m_{n}}}{\partial x_{n}^{m_{n}}}\right)\left(x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}\right)\right|_{x=0} \\
&=\left\{\begin{array}{cl}
0 & \left(\text { if any } m_{i} \neq e_{i}\right) \\
m_{1}!\ldots m_{n}! & \text { (if every } \left.m_{i}=e_{i}\right) \quad \quad / / /
\end{array}\right.
\end{aligned}
$$

Looking at the orthogonal basis of monomials, (,) is hermitian and positive definite on $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{(d)}$.

