Garrett 03-23-2012

Iwasawa-Tate on (-functions and L-functions

After the main part, namely, analytic continuation and functional
equation of global zeta integrals...

e Archimedean Fourier transforms: Hecke’s identity
e Convergence of global half-zeta integrals
e Proof of Hecke’s identity
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Archimedean Fourier transform: Hecke’s identity
Recall:

On R, the Gaussian e~™" is its own Fourier transform.
On R, ze ™ s multiplied by —¢ under Fourier transform.

Less obviously: (z & iy)* e~™(=°+¥°) i an eigenfunction for Fourier

transform, with eigenvalue i ~¢.

Proof (recap): Do (z + iy)* e~ (@ %) Rewrite as

/ e—wi(zﬁ—i—?w) ZE e~ TZZ
C

9 \L o _ Nl
= —T1 —4 — _WZ(Zw_sz) —Tzz — 9 —L —TwWw
(—mi) <8w)/@6 e dz (—mi) (_(9@> e
— (_ﬂ_i)—f(_ﬂ_w)ﬂ e—wwﬁ _ ’i_£ . wﬁ e—wwﬁ

This presumes 0/Jw works as expected, which it does. ///
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Hecke’s identity: Let P be a homogeneous, degree d harmonic

polynomial on R", meaning that AP = 0, where A =} . 02/ ax?
is the usual Laplacian. Let (x,&) = > ;%;&; be the usual pairing.
Then P(z)e ™= is a Fourier transform eigenfunction with

eigenvalue i~

(P@)e ™)) = it P e ™"
Proof postponed...

Remark: The proof of Hecke’s identity will illustrate the
nearly-magical strength of representation theory, as manifest in
eigenfunction problems for invariant differential operators.

Specifically, we will see that harmonic polynomials on R™ have
a useful interpretation as eigenfunctions for a rotation-invariant
Laplacian on the sphere S”~! C R™. Hecke’s identity will result
from comparison of eigenvalues and multiplicities. (!)
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Convergence of half-zeta integrals The point is to genuinely
prove convergence of the half-zeta integrals

/ y|® f(y) dy
J+

with f a Schwartz function on the adeles, for all s € C, not by
dis-assembling this and trying to reduce to the classical situation.

For f Schwartz, for all N

f@)] <ng [ [sup(lzols, 1) (adele z = {x,})
Define the gauge (;)n ideles y by

1

V(:U) — Hsup{|yv|’07 y_

Almost all factors on the right-hand side are 1, so there is no issue
of convergence.

}

v
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Further, note that

1

(sup{a, 1})2 = sup{a?, 1} = a-sup{a, ~} (for a > 0)
a
Applying the latter equality to every factor,
_ _ I _ _ _
[ [sup(yole, 1) =y~ [ [ sup(|yolo, ) V= 1y Nu(y)

Thus, on J* = {|y| > 1}, with N >0,

[Isup(yolo, D72N = [yl Nu(y)™ < v(y)™

v
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Thus, with 0 = Res, for every N > 0

‘/ \ylsf(y)dy) <<f,N/ |7 v(y) N dy
I+ J+

< /J\yla v(y) N dy = 1:[ (/k l” sup(fyl. )~ dy)

|y

For N > |o|, the non-archimedean local integrals are absolutely
convergent:

1 o o
/kx ly° Sup(lyl,m)_N dy = Y a7 N+ > g7 "
£=0 /=1

v

B 1 N qa—N B 1 — q—2N
o leg N 1N (1 N) (17

Note the exponents 2N, N + o, and N — 0.
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The archimedean integrals are convergent for similarly over-
whelming reasons.

1

For N > 3 and N > |o|+ 1, the product over places is

dominated by the Euler product for the completed zeta functions
Ek(N + 0)€ (N — o) /&k(2N), which converges absolutely.

Thus, for all s € C, for all Schwartz f, the half-zeta integrals

/J+ yl® f(y) dy:/ YyI*O3(y) dy  (with 5(y) =) flaw))

/kX aekx

are absolutely convergent. Similarly, for |x| = 1, the same
estimate gives absolute convergence of

/J+ yl° x(y) f(y) dy =/J y|* x(y) 05(y) dy

-l-/k;X

Remark: It would be misguided to try to convert this to a more
classical-sounding argument.
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Lemma: For all N, a Schwartz function f on A satisfies

1f(x)] <N Hsup(\xv\v, 1)—2N (for z € A)

v

Proof: By definition, f € .#(A) is a finite sum of monomials
f =@, fo. Thus, it suffices to consider monomial f, and to prove
the local assertion that for f, € ¥ (k,)

\fo(z)| <N, p, sup(|zy o, 1)_2N (for = € k)

At archimedean places, the definition of the Schwartz space
requires that

sup (1 + |z|,)N - | fo(2)|] < oo (for archimedean k,,, for all V)
xek,
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Thus, for archimedean k,,,
fo(@)] <pn (L4 Jale) ™ < sup(fzfy, 1) 72N

Almost everywhere, f, is the characteristic function of the local
integers. At such places,

1 (for |z], <1)
| fo(z)| = < sup(|xy|v, 1)_2N (for all N)
0 (for |z|, > 1)

At the remaining bad finite primes, f, € (k,) is compactly
supported and locally compact. Then, similar to the good prime
case,
1 (z €sptfy)
| fo(z)[ <y, <. v sup([zy|y, )7 (for all N)
0 (x ¢&sptfs)

This proves the lemma. ///
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Now the proof of

Hecke’s identity: Let P be a homogeneous, degree d harmonic
polynomial on R™, meaning that AP = 0, where A = )_ ; 02/ B:E?
is the usual Laplacian. Let (x,£) = Zj x;&; be the usual pairing.

Then P(z) e "I*I" is a Fourier transform eigenfunction with

eigenvalue i~

(P)e ™)~ g) = i P(g) e ™<F
Proof: Whether or not P is harmonic,

(P(a:) e_”|x|2)/\(§) = /n e 2mHE) P(x) eIzl gy

1 0 : 2
_ P( _) —27mi(€,x) —m|x| d
i) fy T T

1 9 1 d .
P 2. 7 )em2milea)
(—2m' o0& —2mi agn)e P(z)

because
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Since the Gaussian is its own Fourier transform,
1 0 2
P —7T|9U|2)" — P( ) —7|&|
( (z)e () —2mi O¢ ‘

whether or not P is harmonic. Certainly

L 0N xel? _ p#ypy el
P(—zmag)e = Prg)e

for a polynomial P# of total degree at most that of P. Since

Fourier transform commutes with the action of O(n,R) on
functions,

((Pog)@)e™™ ) (&) = (Plgm) e ) ()

= (Pa)e™™ ) (ge) = PH(gg)e T
Thus, P — P# is an O(n,R)-map:
(Pog)” = P¥oy (for g € O(n,R))

11



Garrett 03-23-2012 12

Thus, P — P# gives an O(n,R)-respecting map of the space Vj,
of all polynomials of total degree at most d, to itself.

The sequel: we will show... first, the space H; of homogeneous
degree-d harmonic polynomials is irreducible as O(n, R)-

representation, meaning that it has no proper vector subspace
stable under O(n,R).

Second, as O(n,R)-representation space, meaning as complex
vector space with linear action of O(n,R),

Vo = Hy @ GB (other irreducibles m % Hy)
Third, any O(n, R)-respecting map V; — V3 maps Hy to itself.

Fourth, (an instance of Schur’s Lemma) that any O(n,R)-map of
any irreducible to itself is a scalar.

Fifth, the two-variable case determines the constant i <.



