Iwasawa-Tate on ζ-functions and L-functions
After the main part, namely, analytic continuation and functional equation of global zeta integrals...

- [recap] Local functional equations

$$
\frac{Z_{v}\left(s, f_{v}\right)}{Z_{v}\left(1-s, \widehat{f}_{v}\right)}=\frac{Z_{v}\left(s, g_{v}\right)}{Z_{v}\left(1-s, \widehat{g}_{v}\right)} \quad\left(\text { for } f, g \in \mathscr{S}\left(k_{v}\right)\right)
$$

- [recap] Unramified and ramified archimedean zeta integrals
- Convergence of local zeta integrals
- Archimedean Fourier transform eigenfunctions (Hecke's identity)

Local functional equations: For $0<\operatorname{Re}(s)<1$, the local zeta integrals are absolutely convergent, and

$$
\frac{Z_{v}\left(s, \chi, f_{v}\right)}{Z_{v}\left(1-s, \bar{\chi}, \widehat{f}_{v}\right)}=\frac{Z_{v}\left(s, \chi, g_{v}\right)}{Z\left(1-s, \bar{\chi}, \widehat{g}_{v}\right)} \quad\left(\text { for } f, g \in \mathscr{S}\left(k_{v}\right)\right)
$$

The first point is that local zeta integrals with any Schwartz functions whatsoever are meromorphic, granting that one (nonzero) local zeta integral at v is meromorphic:

$$
Z_{v}(1-s, \bar{\chi}, \widehat{g})=\frac{Z_{v}(1-s, \bar{\chi}, \bar{f}) \cdot Z_{v}(s, \chi, g)}{Z_{v}(s, \chi, f)}
$$

gives the meromorphic continuation of $Z_{v}(s, \widehat{g})$, etc.
Remark: The local functional equations do not yield the global functional equation! They only prove the essential irrelevance of the Schwartz data.

Proof: [Recap with $\chi \ldots$...] Take $0<\operatorname{Re}(s)<1$, so local zeta integrals for both $Z(s, \chi, f)$ and $Z(1-s, \bar{\chi}, \widehat{g})$ converge absolutely. Direct computation: expand the definition and change variables... Suppress all subscripts.

$$
\begin{gathered}
Z(s, \chi, f) Z(1-s, \bar{\chi}, \widehat{g}) \\
=\int_{k^{\times}} \int_{k^{\times}}|x|^{s} \chi(x) f(x)|y|^{1-s} \bar{\chi}(y) \widehat{g}(y) d^{\times} x d^{\times} y \\
=\int_{k^{\times}} \int_{k^{\times}} \int_{k} \bar{\psi}(y \eta)|x|^{s} \chi(x) f(x)|y|^{1-s} \bar{\chi}(y) g(\eta) d^{+} \eta d^{\times} y d^{\times} x
\end{gathered}
$$

Replacing y by $\frac{y x}{\eta}$, this is

$$
\begin{aligned}
& \int_{k} \int_{k^{\times}} \int_{k^{\times}} \bar{\psi}(y x)|x|^{s} f(x)\left|\frac{y x}{\eta}\right|^{1-s} \bar{\chi}(y) \chi(\eta) g(\eta) d^{\times} y d^{\times} x d^{+} \eta \\
= & \int_{k} \int_{k^{\times}} \int_{k^{\times}} \bar{\psi}(y x)|x|^{1} f(x) \bar{\chi}(y)|y|^{1-s} \chi(\eta)|\eta|^{s-1} g(\eta) d^{\times} y d^{\times} x d^{+} \eta
\end{aligned}
$$

The measure $|x| \cdot d^{\times} x$ is a constant multiple of the additive Haar measure $d^{+} x$. The constant is irrelevant, since it cancels itself in the rearrangement:

$$
|x||\eta|^{-1} d^{\times} x d^{+} \eta=d^{+} x d^{\times} \eta
$$

Continuing,

$$
\begin{aligned}
& Z(s, \chi, f) Z(1-s, \bar{\chi}, \widehat{g}) \\
& =\int_{k^{\times}} \int_{k} \int_{k^{\times}} \bar{\psi}(y x) f(x) \bar{\chi}(y)|y|^{1-s} \chi(\eta)|\eta|^{s} g(\eta) d^{\times} y d^{+} x d^{\times} \eta \\
& =\int_{k^{\times}} \int_{k^{\times}} \widehat{f}(y) \bar{\chi}(y)|y|^{1-s} \chi(\eta)|\eta|^{s} g(\eta) d^{\times} y d^{\times} \eta \\
& =Z(1-s, \bar{\chi}, \widehat{f}) Z(s, \chi, g)
\end{aligned}
$$

This proves the local functional equation in $0<\operatorname{Re}(s)<1$. The general assertion follows from the Identity Principle.

Complex zeta integrals [Recap]

The product formula requires

$$
|z|_{\mathbb{C}}=\left|N_{\mathbb{R}}^{\mathbb{C}}(z)\right|_{\mathbb{R}}=|z|^{2} \quad \text { (the latter the usual norm) }
$$

Similarly, the additive character $\psi_{\mathbb{C}}(z)$ is

$$
\psi_{\mathbb{C}}(z)=\psi_{\mathbb{R}}\left(\operatorname{tr}_{\mathbb{R}}^{\mathbb{C}}(z)\right)=e^{2 \pi i(z+\bar{z})}=e^{4 \pi i \operatorname{Re}(z)}
$$

The proper normalization of measure on \mathbb{C} for Iwasawa-Tate is

$$
d_{\mathbb{C}}(z)=2 \cdot d_{\text {usual }}(z)
$$

The proper normalization of Gaussian to be its own Fourier transform is

$$
f_{\mathbb{C}}(w)=e^{-2 \pi w \bar{w}}
$$

The standard unramified complex zeta integral is

$$
\int_{\mathbb{C}}|z|_{\mathbb{C}}^{s} e^{-2 \pi z \bar{z}} \frac{2 d z}{|z|_{\mathbb{C}}}=2 \pi \cdot(2 \pi)^{-s} \Gamma(s)
$$

The ramified unitary characters of \mathbb{C}^{\times}are

$$
\chi_{\ell}\left(r e^{i \theta}\right)\left|r e^{i \theta}\right|_{\mathbb{C}}^{s}=e^{i \ell \theta} \cdot r^{2 s} \quad(\text { for } \ell \in \mathbb{Z})
$$

The standard choice of Schwartz function for the complex zeta integral depends on the sign of $\ell \in \mathbb{Z}$. For $\ell \geq 0$, it is

$$
\int_{\mathbb{C}}|z|_{\mathbb{C}}^{s} \chi_{\ell}(z) \bar{z}^{\ell} e^{-2 \pi z \bar{z}} \frac{2 d z}{|z|_{\mathbb{C}}}=2 \pi \cdot(2 \pi)^{-\left(s+\frac{\ell}{2}\right)} \Gamma\left(s+\frac{\ell}{2}\right)
$$

For $\ell \leq 0$, the standard ramified complex local zeta integral is

$$
\begin{gathered}
\int_{\mathbb{C}}|z|_{\mathbb{C}}^{s} \chi_{\ell}(z) z^{|\ell|} e^{-2 \pi z \bar{z}} \frac{2 d z}{|z|_{\mathbb{C}}} \\
=\int_{0}^{2 \pi} \int_{0}^{\infty} r^{2 s} e^{i \ell \theta}\left(r e^{i \theta}\right)^{-\ell} e^{-2 \pi z \bar{z}} \frac{2 d z}{|z|_{\mathbb{C}}} \\
=4 \pi \int_{0}^{\infty} r^{2 s-\ell} e^{-2 \pi r^{2}} r \frac{d r}{r^{2}}=4 \pi \int_{0}^{\infty} r^{2 s-\ell} e^{-2 \pi r^{2}} \frac{d r}{r} \\
=2 \pi \int_{0}^{\infty} r^{s-\frac{\ell}{2}} e^{-2 \pi r} \frac{d r}{r}=2 \pi \cdot(2 \pi)^{-\left(s-\frac{\ell}{2}\right)} \int_{0}^{\infty} r^{s-\frac{\ell}{2}} e^{-r} \frac{d r}{r} \\
=2 \pi \cdot(2 \pi)^{-\left(s-\frac{\ell}{2}\right)} \Gamma\left(s-\frac{\ell}{2}\right) \quad(\text { for } \ell \leq 0)
\end{gathered}
$$

Thus, for both $\ell \geq 0$ and $\ell \leq 0$, the local zeta integral is

$$
2 \pi \cdot(2 \pi)^{-\left(s+\frac{|\ell|}{2}\right)} \Gamma\left(s+\frac{|\ell|}{2}\right)
$$

(for both $\ell \geq 0$ and $\ell \leq 0$)

Convergence of local zeta integrals in $\operatorname{Re} s>0$:
As usual, suppose χ_{v} is unitary meaning $\left|\chi_{v}\right|=1$, since any non-unitary part could be absorbed into $|\cdot|^{s}$. Use the standard notation $\sigma=\operatorname{Re}(s)$.

Treat the non-archimedean case first. Since $f_{v} \in \mathscr{S}\left(k_{v}\right)$, for some n the support of f is contained in $\varpi^{-n} \mathfrak{o}_{v}$. Since f is locally constant and compactly supported, it has a finite bound C. Then

$$
\begin{gathered}
\left|Z_{v}\left(s, \chi_{v}, f_{v}\right)\right| \leq \int_{k_{v}^{\times}}|x|^{\sigma}|\chi(x)||f(x)| d x \\
\leq C \cdot \int_{k_{v}^{\times} \cap \varpi^{-n} \mathfrak{o}_{v}}|x|^{\sigma} d x=C \cdot \int_{\left(k_{v}^{\times} \cap \varpi^{-n} \mathfrak{o}_{v}\right) / \mathfrak{o}_{v}^{\times}}|x|^{\sigma}\left(\int_{\mathfrak{o}_{v}^{\times}} 1\right) d x \\
=C \cdot \sum_{\ell=-n}^{\infty}\left|\varpi^{\ell}\right|_{v}^{\sigma}=C \cdot \frac{q_{v}^{n \sigma}}{1-q_{v}^{-\sigma}}<\infty \quad(\text { for } \sigma=\operatorname{Re}(s)>0)
\end{gathered}
$$

For $k_{v} \approx \mathbb{R}$, given $f \in \mathscr{S}(\mathbb{R})$ for each N that

$$
|f(x)| \ll N_{N}\left(1+|x|^{2}\right)^{-N}
$$

With $\sigma=\operatorname{Re}(s)>0$, the local zeta integral is

$$
\begin{gathered}
\left|Z_{v}\left(s, \chi_{v}, f_{v}\right)\right| \lll \int_{\mathbb{R}^{\times}}|x|^{\sigma}\left|\chi_{v}(x)\right|\left(1+x^{2}\right)^{-N} \frac{d x}{|x|} \\
\ll \int_{0}^{\infty}|x|^{\sigma-1}\left(1+x^{2}\right)^{-N} d x \\
\ll \int_{0}^{1}|x|^{\sigma-1} d x+\int_{1}^{\infty}|x|^{\sigma-1-2 N} d x
\end{gathered}
$$

Given $\sigma>0$, take N large enough so that $\sigma-1-2 N<-1$ gives convergence.

Convergence of the complex integrals is similar...

Archimedean Fourier transform eigenfunctions (Hecke's identity)

Whenever possible, we want local Schwartz functions f_{v} which are eigenfunctions for Fourier transform, preferably unchanged.

We want this so that in the global functional equation $Z(s, \chi, f)=$ $Z(1-s, \bar{\chi}, \widehat{f})$ as many local factors as possible are the same on both sides, apart from $s \leftrightarrow 1-s$ and $\chi \leftrightarrow \bar{\chi}$.

For absolutely unramified k_{v} / \mathbb{Q}_{p}, the characteristic function of the local integers \mathfrak{o}_{v} is its own Fourier transform. For χ_{v} unramified at v, this gives the desired symmetry.
On \mathbb{R}, the Gaussian $e^{-\pi x^{2}}$ is its own Fourier transform.
On \mathbb{R}, for ramified $\chi_{\mathbb{R}}$, that is, for $\operatorname{sgn}(x)|x|^{s}$, the function $f_{v}(x)=x e^{-\pi x^{2}}$ is multiplied by $-i$ under Fourier transform.

Proof: One argument is by contour-shifting:

$$
\begin{gathered}
\widehat{f_{v}}(\xi)=\int_{\mathbb{R}} e^{-2 \pi i \xi x} x e^{-\pi x^{2}} d x \\
=\int_{\mathbb{R}} e^{-2 \pi i \xi(x-i \xi)}(x-i \xi) e^{-\pi(x-i \xi)^{2}} d x \\
=e^{-\pi \xi^{2}} \int_{\mathbb{R}}(x-i \xi) e^{-\pi x^{2}} d x=e^{-\pi \xi^{2}} \cdot(0-i \xi)=-i \xi e^{-\pi \xi^{2}}
\end{gathered}
$$

Done.
Remark: While contour-shifting arguments have certain virtues, their computation-intense, somewhat non-conceptual nature is not as helpful as we might hope.

Fourier transforms of Schwartz functions for ramified characters on $k_{v} \approx \mathbb{C}$ are the critical sub-case of Hecke's identity on \mathbb{R}^{n}. With, usual normalizations:
Claim: The Schwartz function $(x \pm i y)^{\ell} e^{-\pi\left(x^{2}+y^{2}\right)}$ is an eigenfunction for Fourier transform, with eigenvalue $i^{-\ell}$.
Proof: Just do the case $(x+i y)^{\ell} e^{-\pi\left(x^{2}+y^{2}\right)}$. Rewrite this as $z^{\ell} e^{-\pi z \bar{z}}$, and rewrite the Fourier transform as

$$
\begin{gathered}
\int_{\mathbb{C}} e^{-\pi i(z \bar{w}+\bar{z} w)} z^{\ell} e^{-\pi z \bar{z}} d z \\
=(-\pi i)^{-\ell}\left(\frac{\partial}{\partial \bar{w}}\right)^{\ell} \int_{\mathbb{C}} e^{-\pi i(z \bar{w}+\bar{z} w)} e^{-\pi z \bar{z}} d z=(-\pi i)^{-\ell}\left(\frac{\partial}{\partial \bar{w}}\right)^{\ell} e^{-\pi w \bar{w}} \\
=(-\pi i)^{-\ell}(-\pi w)^{\ell} e^{-\pi w \bar{w}}=i^{-\ell} \cdot w^{\ell} e^{-\pi w \bar{w}}
\end{gathered}
$$

This presumes $\partial / \partial \bar{w}$ works as expected, which it does.

Hecke's identity: Let P be a homogeneous, degree d harmonic polynomial on \mathbb{R}^{n}, meaning that $\Delta P=0$, where $\Delta=\sum_{j} \partial^{2} / \partial x_{j}^{2}$ is the usual Laplacian. Let $\langle x, \xi\rangle=\sum_{j} x_{j} \xi_{j}$ be the usual pairing. Then $P(x) e^{-\pi|x|^{2}}$ is a Fourier transform eigenfunction with eigenvalue i^{-d} :

$$
\left(P(x) e^{-\pi|x|^{2}}\right) \wedge(\xi)=i^{-d} \cdot P(\xi) e^{-\pi|\xi|^{2}}
$$

[Proof later.]
Remark: Any other non-degenerate pairing $x \times \xi \rightarrow\langle x, \xi\rangle$ and suitable associated operator Δ works the same way.
Remark: Since $f^{\wedge \wedge}(x)=f(-x)$, necessarily $f^{\wedge \wedge へ}=f$, for all f. Thus, the only possible eigenvalues of Fourier transform are $\pm 1, \pm i$. Further, the corresponding components are easy to pick out: with $\varepsilon \in\{ \pm 1, \pm i\}$, the $\varepsilon^{t h}$ component of f is

$$
f+\varepsilon^{-1} \widehat{f}+\varepsilon^{-2} f^{-}+\varepsilon^{-3} f^{へ-}
$$

