Iwasawa-Tate on ζ-functions and L-functions
After the main part, namely, analytic continuation and functional equation of global zeta integrals:

- [recap] The elementary global integral is

$$
\int_{\mathbb{J}^{+} / k^{\times}}|x|^{1-s} d x=\frac{\left|\mathbb{J}^{1} / k^{\times}\right|}{s-1} \quad(\text { for } \operatorname{Re}(s)>1)
$$

- [done] Vanishing of ramified elementary integrals
- [recap] Good finite-prime local zeta integrals

$$
\int_{k_{v}^{\times} \cap \mathfrak{o}_{v}}|x|^{s} d x=\frac{1}{1-q_{v}^{-s}}
$$

$$
(\text { for } \operatorname{Re}(s)>0)
$$

- Local functional equations

$$
\frac{Z_{v}\left(s, f_{v}\right)}{Z_{v}\left(1-s, \widehat{f}_{v}\right)}=\frac{Z_{v}\left(s, g_{v}\right)}{Z_{v}\left(1-s, \widehat{g}_{v}\right)} \quad\left(\text { for } f, g \in \mathscr{S}\left(k_{v}\right)\right)
$$

- Unramified and ramified archimedean zeta integrals

The elementary global integral :

The poles and residues of zeta integrals are multiples of an elementary integral over $\mathbb{J}^{+} / k^{\times}$, which we claim is

$$
\int_{\mathbb{J}+/ k^{\times}}|x|^{1-s} d^{\times} x=\frac{\left|\mathbb{J}^{1} / k^{\times}\right|}{s-1}
$$

Multiplicative measures on \mathbb{J} and k_{v}^{\times}are completely determined by giving local units $\mathfrak{o}_{v}^{\times}$measure 1 at all finite places, and $d^{\times} x=\frac{d^{+} x}{|x|_{v}}$ at archimedean places.
For abelian (hence, unimodular) topological groups, the general riff

$$
\int_{G} f(g) d g=\int_{H \backslash G}\left(\int_{H} f(h \dot{g}) d h\right) d \dot{g}
$$

applies: fixing any two of the three measures uniquely specifies the normalizing constant for the third so that the equation holds.

Measures on k_{v}^{\times}specifies the measure on \mathbb{J}. Counting measure on k^{\times}uniquely specifies the measure on \mathbb{J} / k^{\times}by the above identity

$$
\int_{\mathbb{J}} f(g) d g=\int_{\mathbb{J} / k^{\times}} \sum_{h \in k^{\times}} f(h \dot{g}) d \dot{g}
$$

Since \mathbb{J}^{1} is the kernel of $|\cdot|, \mathbb{J}^{1} / k^{\times}$fits into an exact sequence

$$
1 \longrightarrow \mathbb{J}^{1} / k^{\times} \longrightarrow \mathbb{J} / k^{\times} \longrightarrow \mathbb{R}^{+} \longrightarrow 1 \quad\left(\mathbb{R}^{+}=(0,+\infty)\right)
$$

Thus, the usual measure $\frac{d x}{x}$ on \mathbb{R}^{+}and the measure on \mathbb{J} / k^{\times} uniquely determine the measure on $\mathbb{J}^{1} / k^{\times}$by

$$
\begin{aligned}
\int_{\mathbb{J} / k^{\times}} f(g) d g & =\int_{\left(\mathbb{J} / k^{\times}\right) /\left(\mathbb{J}^{1} / k^{\times}\right)}\left(\int_{\mathbb{J}^{1} / k^{\times}} f(h \dot{g}) d h\right) d \dot{g} \\
& =\int_{\mathbb{R}^{+}}\left(\int_{\mathbb{J}^{1} / k^{\times}} f(h \dot{g}) d h\right) d \dot{g}
\end{aligned}
$$

It is not necessary, but it is easy to identify a section $\sigma: \mathbb{R}^{+} \rightarrow \mathbb{J}$ with

$$
|\sigma(t)|=t
$$

For $k=\mathbb{Q}$, just map $t \rightarrow(t, 1,1, \ldots)$, the idele with trivial entries except at $\mathbb{Q}_{\infty}^{\times} \approx \mathbb{R}^{\times}$, where the entry is t. For general number fields k, with r_{1}, r_{2} real-and-complex completions, let

$$
\sigma(t)=\left(t^{\frac{1}{r_{1}+r_{2}}}, \ldots, t^{\frac{1}{r_{1}+r_{2}}}, 1,1,1,1, \ldots\right)
$$

with non-trivial entries at archimedean places.

With f being the product of $|\cdot|^{1-s}$ and the characteristic function of $\mathbb{J}^{+} / k^{\times}$, this gives

$$
\begin{gather*}
\int_{\mathbb{J}^{+} / k^{\times}}|g|^{1-s} d g=\int_{\left(\mathbb{J}^{+} / k^{\times}\right) /\left(\mathbb{J}^{1} / k^{\times}\right)}\left(\int_{\mathbb{J}^{1} / k^{\times}}|g h|^{1-s} d h\right) d \dot{g} \\
=\int_{\left(\mathbb{J}^{+} / k^{\times}\right) /\left(\mathbb{J}^{1} / k^{\times}\right)}\left(\int_{\mathbb{J}^{1} / k^{\times}}|g|^{1-s} d h\right) d \dot{g} \\
=\int_{[1,+\infty)}|\dot{g}|^{1-s}\left(\int_{\mathbb{J}^{1} / k^{\times}} 1 d h\right) d \dot{g}=\left|\mathbb{J}^{1} / k^{\times}\right| \cdot \int_{1}^{\infty} t^{1-s} \frac{d t}{t} \\
= \\
\left|\mathbb{J}^{1} / k^{\times}\right| \cdot \int_{1}^{\infty} t^{-s} d t=\left|\mathbb{J}^{1} / k^{\times}\right| \cdot\left[\frac{t^{1-s}}{1-s}\right]_{1}^{\infty}=\frac{\left|\mathbb{J}^{1} / k^{\times}\right|}{s-1}
\end{gather*}
$$

Remark: Postpone the non-elementary computation that

$$
\left|\mathbb{J}^{1} / k^{\times}\right|=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h R}{D_{k}^{\frac{1}{2}} w}
$$

Good finite-prime local integrals: $\int_{k_{v}^{\times} \cap \mathfrak{o}_{v}}|x|_{v}^{s} d^{\times} x$

Good includes the assertion that the local Schwartz function f_{v} in the local zeta integral is the characteristic function of the local integers \mathfrak{o}_{v}.

By convention, archimedean primes are never good.
The good prime assumption includes the assertion that k_{v} is absolutely unramified, meaning k_{v} is unramified over the corresponding completion \mathbb{Q}_{p}, meaning p stays prime in \mathfrak{o}_{v}.

We will show that unramifiedness entails that the natural measure is $\left|\mathfrak{o}_{v}\right|=1$, and the Fourier transform of the characteristic function of \mathfrak{o}_{v} is itself. These points do not affect the local multiplicative computation.

At finite primes, the multiplicative Haar measure is always normalized so that $\left|\mathfrak{o}_{v}^{\times}\right|=1$. Then the usual

$$
\int_{G} f(g) d g=\int_{G / H} \int_{H} f(\dot{g} h) d h d g
$$

with f the product of $|\cdot|_{v}^{s}$ and the characteristic function of \mathfrak{o}_{v} gives

$$
\begin{gathered}
\int_{k_{v}^{\times}} f(g) d g=\int_{k_{v}^{\times} / \mathfrak{o}_{v}^{\times}} \int_{\mathfrak{o}_{v}^{\times}} f(\dot{g} h) d h d g \\
=\int_{\left(k_{v}^{\times} \cap \mathfrak{o}_{v}\right) / \mathfrak{o}_{v}^{\times}} \int_{\mathfrak{o}_{v}^{\times}}|\dot{g} h|_{v}^{s} d h d g=\int_{\left(k_{v}^{\times} \cap \mathfrak{o}_{v}\right) / \mathfrak{o}_{v}^{\times}}|\dot{g}|_{v}^{s}\left(\int_{\mathfrak{o}_{v}^{\times}} 1 d h\right) d g \\
=\int_{\left(k_{v}^{\times} \cap \mathfrak{o}_{v}\right) / \mathfrak{o}_{v}^{\times}}|\dot{g}|_{v}^{s} d g=\sum_{n=0}^{\infty}\left|p^{n}\right|_{v}^{s}=\frac{1}{1-|p|_{v}^{-s}}=\frac{1}{1-q_{v}^{-s}}
\end{gathered}
$$

where $q_{v}=|p|_{v}^{-1}$ is the residue field cardinality.

The same computation applies to the seemingly more general

$$
Z_{v}\left(s, \chi_{v}, f_{v}\right)=\int_{k_{v}^{\times}}|x|_{v}^{s} \chi_{v}(x) f_{v}(x) d^{\times} x
$$

with f_{v} the characteristic function of \mathfrak{o}_{v} and χ_{v} unramified, meaning that χ_{v} is trivial on $\mathfrak{o}_{v}^{\times}$. That is, the group homomorphism χ_{v} is \mathfrak{o}_{v}-invariant, so is inescapably of the form

$$
\chi_{v}(x)=|x|_{v}^{i t_{\chi}} \quad\left(\text { for some } t_{\chi} \in \mathbb{R} \text { depending on } \chi_{v}\right)
$$

Then the unramified non-archimedean local zeta factor is

$$
\begin{aligned}
& Z_{v}\left(s, \chi_{v}, f_{v}\right)=\int_{k_{v}^{\times}}|x|_{v}^{s} \chi_{v}(x) f_{v}(x) d^{\times} x \\
& =\int_{k_{v}^{\times}}|x|_{v}^{s+i t_{\chi}} f_{v}(x) d^{\times} x=\frac{1}{1-q_{v}^{-s-i t_{\chi}}}
\end{aligned}
$$

This kind of shifting occurs for all kinds of L-functions...

For example, for groundfield $k=\mathbb{Q}$, for Dirichlet L-functions $L(s, \chi)$ the good-prime factors are

$$
\frac{1}{1-\frac{\chi(p)}{p^{s}}}=\frac{1}{1-p^{-s+\frac{i \theta_{p}}{\log p}}} \quad \quad\left(\text { where } \chi(p)=e^{i \theta_{p}}\right)
$$

That is, here the local characters at unramified $p \sim v$ are

$$
\chi_{v}(x)=|x|_{v}^{-\frac{i \theta_{p}}{\log p}}
$$

with $e^{i \theta_{p}}$ a root of unity. For an ideal class character χ, for number field k, for local parameter ϖ_{v} in k_{v},

$$
\chi_{v}\left(\varpi_{v}\right)^{h}=1 \quad(\text { with } h=h(\mathfrak{o}))
$$

so $\chi_{v}\left(x_{v}\right)=|x|_{v}^{\frac{2 \pi i \ell}{h \log q_{v}}}$ for some $\ell \in \mathbb{Z}$.
For general großencharakteren there is no connection to roots of unity.

Local functional equations: For $0<\operatorname{Re}(s)<1$, all the local zeta integrals in the following are absolutely convergent, and

$$
\frac{Z_{v}\left(s, f_{v}\right)}{Z_{v}\left(1-s, \widehat{f}_{v}\right)}=\frac{Z_{v}\left(s, g_{v}\right)}{Z\left(1-s, \widehat{g}_{v}\right)} \quad\left(\text { for } f, g \in \mathscr{S}\left(k_{v}\right)\right)
$$

We also want the version of this for ramified characters.
The first point of this local functional equation is to prove that local zeta integrals with any Schwartz functions whatsoever are meromorphic, granting that one (non-zero) local zeta integral at v is meromorphic.

Proof: Postpone the convergence argument. Take $0<\operatorname{Re}(s)<$ 1 , so local zeta integrals for both $Z(s, f)$ and $Z(1-s, \widehat{g})$ converge absolutely. Then the local functional equation is a direct computation: expand the definition and change variables...

Suppress all the subscripts v ! Replace y by $y x / \eta$ in

$$
\begin{aligned}
& Z(s, f) Z(1-s, \widehat{g})=\int_{k^{\times}} \int_{k^{\times}}|x|^{s} f(x)|y|^{1-s} \widehat{g}(y) d^{\times} x d^{\times} y \\
& \quad=\int_{k^{\times}} \int_{k^{\times}} \int_{k} \bar{\psi}(y \eta)|x|^{s} f(x)|y|^{1-s} g(\eta) d^{+} \eta d^{\times} y d^{\times} x \\
& =\int_{k} \int_{k^{\times}} \int_{k^{\times}} \bar{\psi}(y x)|x|^{s} f(x)|y x / \eta|^{1-s} g(\eta) d^{\times} y d^{\times} x d^{+} \eta \\
& =\int_{k} \int_{k^{\times}} \int_{k^{\times}} \bar{\psi}(y x)|x|^{1} f(x)|y|^{1-s}|\eta|^{s-1} g(\eta) d^{\times} y d^{\times} x d^{+} \eta
\end{aligned}
$$

The measure $|x| \cdot d^{\times} x$ is a constant multiple of the additive Haar measure $d^{+} x$. The precise constant is irrelevant, since it cancels itself in the necessary rearrangement:

$$
|x||\eta|^{-1} d^{\times} x d^{+} \eta=d^{+} x d^{\times} \eta
$$

Remark: In general, there is no compulsion to superscript the multiplicative and additive Haar measures, but here the change back-and-forth makes this necessary.

It is convenient that for local fields k and k^{\times}differ by a single point, of additive measure 0 . Thus, continuing,

$$
\begin{gathered}
Z(s, f) Z(1-s, \widehat{g}) \\
=\int_{k^{\times}} \int_{k} \int_{k^{\times}} \bar{\psi}(y x) f(x)|y|^{1-s}|\eta|^{s} g(\eta) d^{\times} y d^{+} x d^{\times} \eta \\
=\int_{k^{\times}} \int_{k^{\times}} \widehat{f}(y)|y|^{1-s}|\eta|^{s} g(\eta) d^{\times} y d^{\times} \eta=Z(1-s, \widehat{f}) Z(s, g)
\end{gathered}
$$

This proves the local functional equation in $0<\operatorname{Re}(s)<1$. The general assertion follows from the Identity Principle. ///

Remark: The local functional equations do not yield the global functional equation! They only prove the essential irrelevance of the Schwartz data.

Real zeta integrals:

Although archimedean places are never good, they are tractable. The standard unramified local integral for $v \approx \mathbb{R}$ uses the Gaussian $f(x)=e^{-\pi x^{2}}$:

$$
\begin{gathered}
Z_{\mathbb{R}}\left(s, e^{-\pi x^{2}}\right)=\int_{\mathbb{R}^{\times}}|y|^{s} e^{-\pi y^{2}} \frac{d y}{|y|}=2 \int_{0}^{\infty}|y|^{s} e^{-\pi y^{2}} \frac{d y}{y} \\
\left.=\int_{0}^{\infty}|y|^{\frac{s}{2}} e^{-\pi y} \frac{d y}{y} \quad \quad \text { (replacing } y \text { by } \sqrt{y}\right) \\
=\pi^{-\frac{s}{2}} \int_{0}^{\infty}|y|^{\frac{s}{2}} e^{-y} \frac{d y}{y}=\pi^{-\frac{s}{2}} \cdot \Gamma\left(\frac{s}{2}\right)
\end{gathered}
$$

Remark: This recovers Riemann's gamma factor, despite the integral starting out with a different-looking normalization than Riemann's integral representation

$$
\int_{0}^{\infty} y^{\frac{s}{2}} \frac{\theta(i y)-1}{2} \frac{d y}{y}
$$

The only ramified character on \mathbb{R}^{\times}is $y \rightarrow \operatorname{sgn}(y)|y|^{s}$.
The standard ramified local integral for $v \approx \mathbb{R}$ uses $f(x)=x e^{-\pi x^{2}}$:

$$
\begin{aligned}
& Z_{\mathbb{R}}\left(s, \operatorname{sgn}, x e^{-\pi x^{2}}\right)=\int_{\mathbb{R}^{\times}}|y|^{s} \operatorname{sgn}(y) \cdot y e^{-\pi y^{2}} \frac{d y}{|y|} \\
&= \int_{\mathbb{R}^{\times}}|y|^{s} \cdot|y| \cdot e^{-\pi y^{2}} \frac{d y}{|y|}=2 \int_{0}^{\infty}|y|^{s+1} e^{-\pi y^{2}} \frac{d y}{y} \\
&\left.=\int_{0}^{\infty}|y|^{\frac{s+1}{2}} e^{-\pi y} \frac{d y}{y} \quad \quad \text { (replacing } y \text { by } \sqrt{y}\right) \\
&=\pi^{-\frac{s+1}{2}} \int_{0}^{\infty}|y|^{\frac{s+1}{2}} e^{-y} \frac{d y}{y}=\pi^{-\frac{s+1}{2}} \Gamma\left(\frac{s+1}{2}\right)
\end{aligned}
$$

This recovers the gamma factor for odd Dirichlet character L-functions $L(s, \chi)$, for example.

Complex zeta integrals

The correct normalization of measure, norm, and Fourier transform on $k_{v} \approx \mathbb{C}$ require some attention. This is typical of non-archimedean extensions k_{v} / \mathbb{Q}_{p}, too, but we have less prejudice about computations there than on \mathbb{C}.

Again, the product formula requires

$$
|z|_{\mathbb{C}}=\left|N_{\mathbb{R}}^{\mathbb{C}}(z)\right|_{\mathbb{R}}=|z|^{2} \quad \text { (the latter the usual norm) }
$$

That is, our usual norm is the extension from \mathbb{R} to \mathbb{C}, while the product formula demands something else, namely, composition with Galois norm.

Similarly, the additive character $\psi_{\mathbb{C}}(z)$ is

$$
\psi_{\mathbb{C}}(z)=\psi_{\mathbb{R}}\left(\operatorname{tr}_{\mathbb{R}}^{\mathbb{C}}(z)\right)=e^{2 \pi i(z+\bar{z})}=e^{4 \pi i \operatorname{Re}(z)}
$$

Since we cannot talke about ramification of primes, nor local or global differents $\mathfrak{d}_{v}, \mathfrak{d}$ as for non-archimedean places, suitable normalization of measure on $k_{v} \approx \mathbb{C}$ is determined by choice of character and the requirement that Fourier inversion hold with the same measure on both copies of \mathbb{C}, the original as well as the spectral side.

That is, determine a measure constant c by requiring, for all $f \in \mathscr{S}(\mathbb{C})$,

$$
f(z)=\int_{\mathbb{C}} \int_{\mathbb{C}} \psi_{\mathbb{C}}(z w) \psi_{\mathbb{C}}(-w \zeta) f(\zeta) c d \zeta c d w
$$

That is, letting $z=x+i y, w=u+i v$, and $\zeta=\xi+i \eta$,

$$
\begin{aligned}
& f(z)=c^{2} \cdot \int_{\mathbb{C}} \int_{\mathbb{C}} e^{2 \pi i \operatorname{tr}(w(z-\zeta))} f(\zeta) d \zeta d w \\
= & c^{2} \cdot \int_{\mathbb{C}} \int_{\mathbb{C}} e^{2 \pi i((2 u)(x-\xi)+(-2 v)(y-\eta))} f(\zeta) d \zeta d w
\end{aligned}
$$

We know Fourier inversion holds with the usual measure on \mathbb{C}, and with character $e^{2 \pi i(u x+v y)}$. To compare to this, in the integral above replace u by $u / 2$ and v by $-v / 2$, giving

$$
\frac{c^{2}}{2^{2}} \cdot \int_{\mathbb{C}} \int_{\mathbb{C}} e^{2 \pi i(u(x-\xi)+v(y-\eta))} f(\zeta) d \zeta d w=\frac{c^{2}}{2^{2}} \cdot f(z)
$$

Thus, the proper normalization of measure on \mathbb{C} for Iwasawa-Tate is

$$
d_{\mathbb{C}}(z)=2 \cdot d_{\text {usual }}(z)
$$

Next, determine a Gaussian $e^{-c\left(x^{2}+y^{2}\right)}$ which is its own Fourier transform.

$$
\begin{gathered}
2 \cdot \int_{\mathbb{C}} e^{-4 \pi i(u x-v y)} e^{-c\left(x^{2}+y^{2}\right)} d x d y \\
=\frac{2 \pi}{c} \cdot \int_{\mathbb{C}} e^{-2 \pi i((2 u) x-(2 v) y)} e^{-\pi\left(x^{2}+y^{2}\right)} d x d y=\frac{2 \pi}{c} \cdot e^{-\frac{4 \pi^{2}}{c}\left(u^{2}+v^{2}\right)}
\end{gathered}
$$

Thus, two reasons for $c=2 \pi$, so $f(w)=e^{-2 \pi w \bar{w}}$.

Try taking corresponding multiplicative measure $2 d z /|z|_{\mathbb{C}}$. Thus, the standard unramified complex zeta integral is

$$
\begin{array}{r}
\int_{\mathbb{C}}|z|_{\mathbb{C}}^{s} e^{-2 \pi z \bar{z}} \frac{2 d z}{|z|_{\mathbb{C}}}=4 \pi \int_{0}^{\infty} r^{2 s} e^{-2 \pi r^{2}} r \frac{d r}{r^{2}} \\
=4 \pi \int_{0}^{\infty} r^{2 s} e^{-2 \pi r^{2}} \frac{d r}{r}=2 \pi \int_{0}^{\infty} r^{s} e^{-2 \pi r} \frac{d r}{r}=2 \pi \cdot(2 \pi)^{-s} \Gamma(s)
\end{array}
$$

The extra constant 2π in front (not the $(2 \pi)^{-s}$) suggests renormalizing the multiplicative measure by dividing through by 2π. Some sources do this, others leave the extra 2π.

The ramified unitary characters of \mathbb{C}^{\times}are

$$
\chi_{\ell}\left(r e^{i \theta}\right)\left|r e^{i \theta}\right|_{\mathbb{C}}^{s}=e^{i \ell \theta} \cdot r^{2 s} \quad(\text { for } \ell \in \mathbb{Z})
$$

The standard choice of Schwartz function for the complex zeta integral depends on the sign of $\ell \in \mathbb{Z}$. For $\ell \geq 0$, it is

$$
\begin{gathered}
\int_{\mathbb{C}}|z|_{\mathbb{C}}^{s} \chi_{\ell}(z) \bar{z}^{\ell} e^{-2 \pi z \bar{z}} \frac{2 d z}{|z| \mathbb{C}} \\
=\int_{0}^{2 \pi} \int_{0}^{\infty} r^{2 s} e^{i \ell \theta}\left(r e^{-i \theta}\right)^{\ell} e^{-2 \pi z \bar{z}} \frac{2 d z}{|z|_{\mathbb{C}}} \\
=4 \pi \int_{0}^{\infty} r^{2 s+\ell} e^{-2 \pi r^{2}} r \frac{d r}{r^{2}}=4 \pi \int_{0}^{\infty} r^{2 s+\ell} e^{-2 \pi r^{2}} \frac{d r}{r} \\
=2 \pi \int_{0}^{\infty} r^{s+\frac{\ell}{2}} e^{-2 \pi r} \frac{d r}{r}=2 \pi \cdot(2 \pi)^{-\left(s+\frac{\ell}{2}\right)} \int_{0}^{\infty} r^{s+\frac{\ell}{2}} e^{-r} \frac{d r}{r} \\
=2 \pi \cdot(2 \pi)^{-\left(s+\frac{\ell}{2}\right)} \Gamma\left(s+\frac{\ell}{2}\right) \quad \quad(\text { for } 0 \leq \ell \in \mathbb{Z})
\end{gathered}
$$

For $\ell \leq 0$, the standard ramified complex local zeta integral is

$$
\begin{gathered}
\int_{\mathbb{C}}|z|_{\mathbb{C}}^{s} \chi_{\ell}(z) z^{|\ell|} e^{-2 \pi z \bar{z}} \frac{2 d z}{|z|_{\mathbb{C}}} \\
=\int_{0}^{2 \pi} \int_{0}^{\infty} r^{2 s} e^{i \ell \theta}\left(r e^{i \theta}\right)^{-\ell} e^{-2 \pi z \bar{z}} \frac{2 d z}{|z|_{\mathbb{C}}} \\
=4 \pi \int_{0}^{\infty} r^{2 s-\ell} e^{-2 \pi r^{2}} r \frac{d r}{r^{2}}=4 \pi \int_{0}^{\infty} r^{2 s-\ell} e^{-2 \pi r^{2}} \frac{d r}{r} \\
=2 \pi \int_{0}^{\infty} r^{s-\frac{\ell}{2}} e^{-2 \pi r} \frac{d r}{r}=2 \pi \cdot(2 \pi)^{-\left(s-\frac{\ell}{2}\right)} \int_{0}^{\infty} r^{s-\frac{\ell}{2}} e^{-r} \frac{d r}{r} \\
=2 \pi \cdot(2 \pi)^{-\left(s-\frac{\ell}{2}\right)} \Gamma\left(s-\frac{\ell}{2}\right) \quad(\text { for } \ell \leq 0)
\end{gathered}
$$

Thus, for both $\ell \geq 0$ and $\ell \leq 0$, the local zeta integral is

$$
2 \pi \cdot(2 \pi)^{-\left(s+\frac{|\ell|}{2}\right)} \Gamma\left(s+\frac{|\ell|}{2}\right) \quad(\text { for both } \ell \geq 0 \text { and } \ell \leq 0)
$$

