Iwasawa-Tate on ζ -functions and *L*-functions

After the main part, namely, *analytic continuation* and *functional* equation of global zeta integrals:

• The elementary global integral is

$$\int_{\mathbb{J}^+/k^{\times}} |x|^{1-s} \, dx = \frac{|\mathbb{J}^1/k^{\times}|}{s-1} \qquad \text{(for } \operatorname{Re}(s) > 1\text{)}$$

But postpone

$$|\mathbb{J}^1/k^{\times}| = \frac{2^{r_1} (2\pi)^{r_2} h R}{D_k^{\frac{1}{2}} w}$$

- Vanishing of ramified elementary integrals
- Good finite-prime *local* zeta integrals

$$\int_{k_v^{\times} \cap \mathfrak{o}_v} |x|^s \, dx = \frac{1}{1 - q_v^{-s}} \qquad \text{(for } \operatorname{Re}(s) > 0\text{)}$$

 \bullet Local functional equation

$$\frac{Z_v(s, f_v)}{Z_v(1-s, \widehat{f_v})} = \frac{Z_v(s, g_v)}{Z_v(1-s, \widehat{g_v})} \qquad (\text{for } f, g \in \mathscr{S}(k_v))$$

The elementary global integral :

The poles and residues of zeta integrals are multiples of an elementary integral over \mathbb{J}^+/k^{\times} , which we claim is

$$\int_{\mathbb{J}^+/k^{\times}} |x|^{1-s} d^{\times}x = \frac{|\mathbb{J}^1/k^{\times}|}{s-1}$$

Multiplicative measures on \mathbb{J} and k_v^{\times} are completely determined by giving local units \mathfrak{o}_v^{\times} measure 1 at *all* finite places, and $d^{\times}x = \frac{d^+x}{|x|_v}$ at archimedean places. Keep in mind that the product-formula norm $|\cdot|_{\mathbb{C}}$ is

$$|x|_{\mathbb{C}} = |N_{\mathbb{R}}^{\mathbb{C}}(x)|_{\mathbb{R}} = |x\,\overline{x}|_{\mathbb{R}} =$$
square of usual complex norm

That is, the usual complex norm *extends* the norm on \mathbb{R} , but for zeta-integrals we must *compose* with the Galois norm.

For *abelian* (hence, *unimodular*) topological groups, the general riff

$$\int_{G} f(g) \, dg = \int_{H \setminus G} \left(\int_{H} f(h\dot{g}) \, dh \right) d\dot{g}$$

applies: fixing any two of the three measures uniquely specifies the normalizing constant for the third so that the equation holds.

Our locally-everywhere normalization of measures on k_v^{\times} specifies the measure on \mathbb{J} . Counting measure on k^{\times} uniquely specifies the measure on \mathbb{J}/k^{\times} by *one* instance of the above identity (with the sum being a type of integral, of course)

$$\int_{\mathbb{J}} f(g) \, dg \; = \; \int_{\mathbb{J}/k^{\times}} \sum_{h \in k^{\times}} f(h\dot{g}) \, d\dot{g}$$

The subgroup \mathbb{J}^1/k^{\times} of \mathbb{J}/k^{\times} is *compact*, by Fujisaki, but we do not try to specify its measure directly. Instead, since \mathbb{J}^1 is the kernel of $|\cdot|$, \mathbb{J}^1/k^{\times} fits into an exact sequence

$$1 \longrightarrow \mathbb{J}^1/k^{\times} \longrightarrow \mathbb{J}/k^{\times} \longrightarrow \mathbb{R}^+ \longrightarrow 1 \qquad (\mathbb{R}^+ = (0, +\infty))$$

Thus, the usual measure $\frac{dx}{x}$ on \mathbb{R}^+ and the measure on \mathbb{J}/k^{\times} uniquely determine the measure on \mathbb{J}^1/k^{\times} by

$$\begin{split} \int_{\mathbb{J}/k^{\times}} f(g) \, dg \, &= \, \int_{(\mathbb{J}/k^{\times})/(\mathbb{J}^{1}/k^{\times})} \left(\int_{\mathbb{J}^{1}/k^{\times}} f(h\dot{g}) \, dh \right) d\dot{g} \\ &= \, \int_{\mathbb{R}^{+}} \left(\int_{\mathbb{J}^{1}/k^{\times}} f(h\dot{g}) \, dh \right) d\dot{g} \end{split}$$

It is not absolutely necessary, but it is easy to identify a section $\sigma:\mathbb{R}^+\to\mathbb{J}$ with

$$|\sigma(t)| = t$$

For $k = \mathbb{Q}$, just map $t \to (t, 1, 1, \ldots)$, the idele with trivial entries except at $\mathbb{Q}_{\infty}^{\times} \approx \mathbb{R}^{\times}$, where the entry is t. For general number fields k, with r_1, r_2 real-and-complex completions, let

$$\sigma(t) = (t^{\frac{1}{r_1 + r_2}}, \dots, t^{\frac{1}{r_1 + r_2}}, 1, 1, 1, 1, \dots)$$

with non-trivial entries at archimedean places.

With f being the product of $|\cdot|^{1-s}$ and the characteristic function of \mathbb{J}^+/k^{\times} , this gives

$$\begin{split} \int_{\mathbb{J}^+/k^{\times}} |g|^{1-s} \, dg \ &= \int_{(\mathbb{J}^+/k^{\times})/(\mathbb{J}^1/k^{\times})} \left(\int_{\mathbb{J}^1/k^{\times}} |gh|^{1-s} \, dh \right) d\dot{g} \\ &= \int_{(\mathbb{J}^+/k^{\times})/(\mathbb{J}^1/k^{\times})} \left(\int_{\mathbb{J}^1/k^{\times}} |g|^{1-s} \, dh \right) d\dot{g} \\ &= \int_{[1,+\infty)} |\dot{g}|^{1-s} \Big(\int_{\mathbb{J}^1/k^{\times}} 1 \, dh \Big) \, d\dot{g} \ &= |\mathbb{J}^1/k^{\times}| \cdot \int_1^{\infty} t^{1-s} \, \frac{dt}{t} \\ &= |\mathbb{J}^1/k^{\times}| \cdot \int_1^{\infty} t^{-s} \, dt \ &= |\mathbb{J}^1/k^{\times}| \cdot \left[\frac{t^{1-s}}{1-s} \right]_1^{\infty} \ &= \frac{|\mathbb{J}^1/k^{\times}|}{s-1} \quad ///$$

Remark: We *postpone* the non-elementary computation that

$$|\mathbb{J}^1/k^{\times}| = \frac{2^{r_1} (2\pi)^{r_2} h R}{D_k^{\frac{1}{2}} w}$$

6

Vanishing of ramified elementary global integrals:

A character χ_v on k_v^{\times} is *unramified* if it factors through the *norm*, that is, is of the form $x \to |x|_v^{s_v}$ for some $s_v \in \mathbb{C}$.

For non-archimedean k_v , for χ_v on k_v^{\times} to be *ramified* means that it is non-trivial on \mathfrak{o}_v^{\times} for finite places. For $k_v \approx \mathbb{R}$, a ramified character depends on *sign*. For $k_v \approx \mathbb{C}$, a ramified character depends on *argument*.

A character χ on \mathbb{J} is *ramified* if it is ramified on some k_v^{\times} . Ramification is equivalent to *not* being \mathbb{J}^1 -invariant. The same terminology applies to characters on \mathbb{J}/k^{\times} .

Claim: For ramified χ , the elementary global integral vanishes:

$$\int_{J^+/k^{\times}} |x|^s \,\chi(x) \,d^{\times}x = 0 \qquad \text{(for } \chi \text{ ramified)}$$

Thus, the residues of global zeta integrals $Z(s, \chi, f)$ at s = 0, 1 are 0 for ramified χ , so such global zeta integrals are *entire*.

Proof: For lighter notation, absorb the $|x|^s$ into χ . Use the integration riff

$$\int_{G} f(g) \, dg = \int_{H \setminus G} \left(\int_{H} f(h\dot{g}) \, dh \right) \, d\dot{g}$$

to obtain

$$\int_{\mathbb{J}^+/k^{\times}} \chi(g) \, dg \; = \; \int_{(\mathbb{J}^+/k^{\times})/(\mathbb{J}^1/k^{\times})} \left(\int_{\mathbb{J}^1/k^{\times}} \chi(\dot{g}h) \, dh \right) \, dg$$

This invites a variant of the cancellation lemma: to be clear, we give the very slightly modified argument... let $h_o \in \mathbb{J}^1$ be such that $\chi(h_o) \neq 1$. Then, replacing h by hh_o ,

$$\int_{\mathbb{J}^1/k^{\times}} \chi(\dot{g}h) \, dh \; = \; \int_{\mathbb{J}^1/k^{\times}} \chi(\dot{g}hh_o) \, dh \; = \; \chi(h_o) \cdot \int_{\mathbb{J}^1/k^{\times}} \chi(\dot{g}h) \, dh$$

Thus, the inner integral cancels, so the whole integral is 0. ///

Good finite-prime local integrals: $\int_{k_v^{\times} \cap \mathfrak{o}_v} |x|_v^s d^{\times} x$

Good includes the assertion that the local Schwartz function f_v in the local zeta integral expression

$$Z_v(s, f_v) = \int_{k_v^{\times}} |x|_v^s f_v(x) d^{\times} x$$

is the *characteristic function* of the local integers \boldsymbol{o}_v .

The good prime assumption also includes less obvious, important points. By convention, archimedean primes are never good.

The good prime assumption includes the assertion that k_v is *absolutely unramified*, meaning k_v is unramified over the corresponding completion \mathbb{Q}_p , meaning *p* stays prime in \mathfrak{o}_v .

We will show that unramifiedness entails that the natural measure is $|\mathfrak{o}_v| = 1$, and the Fourier transform of the characteristic function of \mathfrak{o}_v is *itself*. But these points do not affect the local *multiplicative* computation. First, at finite primes, *always* normalize the multiplicative Haar measure so that $|\mathfrak{o}_v^{\times}| = 1$. Then the usual

$$\int_G f(g) \, dg = \int_{G/H} \int_H f(\dot{g}h) \, dh \, dg$$

with f the product of $|\cdot|_v^s$ and the characteristic function of \mathfrak{o}_v gives

$$\begin{split} &\int_{k_v^{\times}} f(g) \, dg \ = \ \int_{k_v^{\times}/\mathfrak{o}_v^{\times}} \int_{\mathfrak{o}_v^{\times}} f(\dot{g}h) \, dh \ dg \\ &= \int_{(k_v^{\times} \cap \mathfrak{o}_v)/\mathfrak{o}_v^{\times}} \int_{\mathfrak{o}_v^{\times}} |\dot{g}h|_v^s \, dh \ dg \ = \ \int_{(k_v^{\times} \cap \mathfrak{o}_v)/\mathfrak{o}_v^{\times}} |\dot{g}|_v^s \Big(\int_{\mathfrak{o}_v^{\times}} 1 \, dh\Big) \, dg \\ &= \int_{(k_v^{\times} \cap \mathfrak{o}_v)/\mathfrak{o}_v^{\times}} |\dot{g}|_v^s \, dg \ = \ \sum_{n=0}^{\infty} |p^n|_v^s \ = \ \frac{1}{1-|p|_v^{-s}} \ = \ \frac{1}{1-q_v^{-s}} \end{split}$$

where $q_v = |p|_v^{-1}$ is the residue field cardinality.

|||

The same computation applies to the *seemingly* more general

$$Z_v(s,\chi_v,f_v) = \int_{k_v^{\times}} |x|_v^s \chi_v(x) f_v(x) d^{\times}x$$

with f_v the characteristic function of \mathfrak{o}_v and χ_v unramified, meaning that χ_v is trivial on \mathfrak{o}_v^{\times} . That is, the group homomorphism χ_v is \mathfrak{o}_v -invariant, so is inescapably of the form

$$\chi_v(x) = |x|_v^{it_{\chi}}$$
 (for some $t_{\chi} \in \mathbb{R}$ depending on χ_v)

Then the unramified non-archimedean local zeta factor is

$$Z_{v}(s, \chi_{v}, f_{v}) = \int_{k_{v}^{\times}} |x|_{v}^{s} \chi_{v}(x) f_{v}(x) d^{\times}x$$
$$= \int_{k_{v}^{\times}} |x|_{v}^{s+it_{\chi}} f_{v}(x) d^{\times}x = \frac{1}{1 - q_{v}^{-s-it_{\chi}}}$$

This kind of shifting occurs for all kinds of L-functions...