Iwasawa-Tate on ζ-functions and L-functions
After the main part, namely, analytic continuation and functional equation of global zeta integrals:

- The elementary global integral is

$$
\int_{\mathbb{J}^{+} / k^{\times}}|x|^{1-s} d x=\frac{\left|\mathbb{J}^{1} / k^{\times}\right|}{s-1} \quad(\text { for } \operatorname{Re}(s)>1)
$$

But postpone

$$
\left|\mathbb{J}^{1} / k^{\times}\right|=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h R}{D_{k}^{\frac{1}{2}} w}
$$

- Vanishing of ramified elementary integrals
- Good finite-prime local zeta integrals

$$
\int_{k_{v}^{\times} \cap_{\mathfrak{o}_{v}}}|x|^{s} d x=\frac{1}{1-q_{v}^{-s}} \quad(\text { for } \operatorname{Re}(s)>0)
$$

- Local functional equation

$$
\frac{Z_{v}\left(s, f_{v}\right)}{Z_{v}\left(1-s, \widehat{f}_{v}\right)}=\frac{Z_{v}\left(s, g_{v}\right)}{Z_{v}\left(1-s, \widehat{g}_{v}\right)} \quad\left(\text { for } f, g \in \mathscr{S}\left(k_{v}\right)\right)
$$

The elementary global integral :

The poles and residues of zeta integrals are multiples of an elementary integral over $\mathbb{J}^{+} / k^{\times}$, which we claim is

$$
\int_{\mathbb{J}+/ k^{\times}}|x|^{1-s} d^{\times} x=\frac{\left|\mathbb{J}^{1} / k^{\times}\right|}{s-1}
$$

Multiplicative measures on \mathbb{J} and k_{v}^{\times}are completely determined by giving local units $\mathfrak{o}_{v}^{\times}$measure 1 at all finite places, and $d^{\times} x=\frac{d^{+} x}{|x|_{v}}$ at archimedean places. Keep in mind that the productformula norm $|\cdot|_{\mathbb{C}}$ is

$$
|x|_{\mathbb{C}}=\left|N_{\mathbb{R}}^{\mathbb{C}}(x)\right|_{\mathbb{R}}=|x \bar{x}|_{\mathbb{R}}=\text { square of usual complex norm }
$$

That is, the usual complex norm extends the norm on \mathbb{R}, but for zeta-integrals we must compose with the Galois norm.

For abelian (hence, unimodular) topological groups, the general riff

$$
\int_{G} f(g) d g=\int_{H \backslash G}\left(\int_{H} f(h \dot{g}) d h\right) d \dot{g}
$$

applies: fixing any two of the three measures uniquely specifies the normalizing constant for the third so that the equation holds.
Our locally-everywhere normalization of measures on k_{v}^{\times}specifies the measure on \mathbb{J}. Counting measure on k^{\times}uniquely specifies the measure on \mathbb{J} / k^{\times}by one instance of the above identity (with the sum being a type of integral, of course)

$$
\int_{\mathbb{J}} f(g) d g=\int_{\mathbb{J} / k^{\times}} \sum_{h \in k^{\times}} f(h \dot{g}) d \dot{g}
$$

The subgroup $\mathbb{J}^{1} / k^{\times}$of \mathbb{J} / k^{\times}is compact, by Fujisaki, but we do not try to specify its measure directly. Instead, since \mathbb{J}^{1} is the kernel of $|\cdot|, \mathbb{J}^{1} / k^{\times}$fits into an exact sequence

$$
1 \longrightarrow \mathbb{J}^{1} / k^{\times} \longrightarrow \mathbb{J} / k^{\times} \longrightarrow \mathbb{R}^{+} \longrightarrow 1 \quad\left(\mathbb{R}^{+}=(0,+\infty)\right)
$$

Thus, the usual measure $\frac{d x}{x}$ on \mathbb{R}^{+}and the measure on \mathbb{J} / k^{\times} uniquely determine the measure on $\mathbb{J}^{1} / k^{\times}$by

$$
\begin{aligned}
\int_{\mathbb{J} / k^{\times}} f(g) d g & =\int_{\left(\mathbb{J} / k^{\times}\right) /\left(\mathbb{J}^{1} / k^{\times}\right)}\left(\int_{\mathbb{J}^{1} / k^{\times}} f(h \dot{g}) d h\right) d \dot{g} \\
& =\int_{\mathbb{R}^{+}}\left(\int_{\mathbb{J}^{1} / k^{\times}} f(h \dot{g}) d h\right) d \dot{g}
\end{aligned}
$$

It is not absolutely necessary, but it is easy to identify a section $\sigma: \mathbb{R}^{+} \rightarrow \mathbb{J}$ with

$$
|\sigma(t)|=t
$$

For $k=\mathbb{Q}$, just map $t \rightarrow(t, 1,1, \ldots)$, the idele with trivial entries except at $\mathbb{Q}_{\infty}^{\times} \approx \mathbb{R}^{\times}$, where the entry is t. For general number fields k, with r_{1}, r_{2} real-and-complex completions, let

$$
\sigma(t)=\left(t^{\frac{1}{r_{1}+r_{2}}}, \ldots, t^{\frac{1}{r_{1}+r_{2}}}, 1,1,1,1, \ldots\right)
$$

with non-trivial entries at archimedean places.

With f being the product of $|\cdot|^{1-s}$ and the characteristic function of $\mathbb{J}^{+} / k^{\times}$, this gives

$$
\begin{gather*}
\int_{\mathbb{J}^{+} / k^{\times}}|g|^{1-s} d g=\int_{\left(\mathbb{J}^{+} / k^{\times}\right) /\left(\mathbb{D}^{1} / k^{\times}\right)}\left(\int_{\mathbb{J}^{1} / k^{\times}}|g h|^{1-s} d h\right) d \dot{g} \\
=\int_{\left(\mathbb{J}^{+} / k^{\times}\right) /\left(\mathbb{J}^{1} / k^{\times}\right)}\left(\int_{\mathbb{J}^{1} / k^{\times}}|g|^{1-s} d h\right) d \dot{g} \\
=\int_{[1,+\infty)}|\dot{g}|^{1-s}\left(\int_{\mathbb{J}^{1} / k^{\times}} 1 d h\right) d \dot{g}=\left|\mathbb{J}^{1} / k^{\times}\right| \cdot \int_{1}^{\infty} t^{1-s} \frac{d t}{t} \\
= \\
\left|\mathbb{J}^{1} / k^{\times}\right| \cdot \int_{1}^{\infty} t^{-s} d t=\left|\mathbb{J}^{1} / k^{\times}\right| \cdot\left[\frac{t^{1-s}}{1-s}\right]_{1}^{\infty}=\frac{\left|\mathbb{J}^{1} / k^{\times}\right|}{s-1}
\end{gather*}
$$

Remark: We postpone the non-elementary computation that

$$
\left|\mathbb{J}^{1} / k^{\times}\right|=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h R}{D_{k}^{\frac{1}{2}} w}
$$

Vanishing of ramified elementary global integrals:

A character χ_{v} on k_{v}^{\times}is unramified if it factors through the norm, that is, is of the form $x \rightarrow|x|_{v}^{s_{v}}$ for some $s_{v} \in \mathbb{C}$.
For non-archimedean k_{v}, for χ_{v} on k_{v}^{\times}to be ramified means that it is non-trivial on $\mathfrak{o}_{v}^{\times}$for finite places. For $k_{v} \approx \mathbb{R}$, a ramified character depends on sign. For $k_{v} \approx \mathbb{C}$, a ramified character depends on argument.
A character χ on \mathbb{J} is ramified if it is ramified on some k_{v}^{\times}. Ramification is equivalent to not being \mathbb{J}^{1}-invariant. The same terminology applies to characters on \mathbb{J} / k^{\times}.

Claim: For ramified χ, the elementary global integral vanishes:

$$
\int_{J^{+} / k^{\times}}|x|^{s} \chi(x) d^{\times} x=0 \quad \text { (for } \chi \text { ramified) }
$$

Thus, the residues of global zeta integrals $Z(s, \chi, f)$ at $s=0,1$ are 0 for ramified χ, so such global zeta integrals are entire.

Proof: For lighter notation, absorb the $|x|^{s}$ into χ. Use the integration riff

$$
\int_{G} f(g) d g=\int_{H \backslash G}\left(\int_{H} f(h \dot{g}) d h\right) d \dot{g}
$$

to obtain

$$
\int_{\mathbb{J}^{+} / k^{\times}} \chi(g) d g=\int_{\left(\mathbb{J}^{+} / k^{\times}\right) /\left(\mathbb{J}^{1} / k^{\times}\right)}\left(\int_{\mathbb{T}^{1} / k^{\times}} \chi(\dot{g} h) d h\right) d g
$$

This invites a variant of the cancellation lemma: to be clear, we give the very slightly modified argument... let $h_{o} \in \mathbb{J}^{1}$ be such that $\chi\left(h_{o}\right) \neq 1$. Then, replacing h by $h h_{o}$,

$$
\int_{\mathbb{J}^{1} / k^{\times}} \chi(\dot{g} h) d h=\int_{\mathbb{J}^{1} / k^{\times}} \chi\left(\dot{g} h h_{o}\right) d h=\chi\left(h_{o}\right) \cdot \int_{\mathbb{J}^{1} / k^{\times}} \chi(\dot{g} h) d h
$$

Thus, the inner integral cancels, so the whole integral is 0 .

Good finite-prime local integrals: $\int_{k_{v}^{\times} \cap \mathfrak{o}_{v}}|x|_{v}^{s} d^{\times} x$

Good includes the assertion that the local Schwartz function f_{v} in the local zeta integral expression

$$
Z_{v}\left(s, f_{v}\right)=\int_{k_{v}^{\times}}|x|_{v}^{s} f_{v}(x) d^{\times} x
$$

is the characteristic function of the local integers \mathfrak{o}_{v}.
The good prime assumption also includes less obvious, important points. By convention, archimedean primes are never good.

The good prime assumption includes the assertion that k_{v} is absolutely unramified, meaning k_{v} is unramified over the corresponding completion \mathbb{Q}_{p}, meaning p stays prime in \mathfrak{o}_{v}.

We will show that unramifiedness entails that the natural measure is $\left|\mathfrak{o}_{v}\right|=1$, and the Fourier transform of the characteristic function of \mathfrak{o}_{v} is itself. But these points do not affect the local multiplicative computation.

First, at finite primes, always normalize the multiplicative Haar measure so that $\left|\mathfrak{o}_{v}^{\times}\right|=1$. Then the usual

$$
\int_{G} f(g) d g=\int_{G / H} \int_{H} f(\dot{g} h) d h d g
$$

with f the product of $|\cdot|_{v}^{s}$ and the characteristic function of \mathfrak{o}_{v} gives

$$
\begin{gathered}
\int_{k_{v}^{\times}} f(g) d g=\int_{k_{v}^{\times} / \mathfrak{o}_{v}^{\times}} \int_{\mathfrak{o}_{v}^{\times}} f(\dot{g} h) d h d g \\
=\int_{\left(k_{v}^{\times} \cap \mathfrak{o}_{v}\right) / \mathfrak{o}_{v}^{\times}} \int_{\mathfrak{o}_{v}^{\times}}|\dot{g} h|_{v}^{s} d h d g=\int_{\left(k_{v}^{\times} \cap \mathfrak{o}_{v}\right) / \mathfrak{o}_{v}^{\times}}|\dot{g}|_{v}^{s}\left(\int_{\mathfrak{o}_{v}^{\times}} 1 d h\right) d g \\
=\int_{\left(k_{v}^{\times} \cap \mathfrak{o}_{v}\right) / \mathfrak{o}_{v}^{\times}}|\dot{g}|_{v}^{s} d g=\sum_{n=0}^{\infty}\left|p^{n}\right|_{v}^{s}=\frac{1}{1-|p|_{v}^{-s}}=\frac{1}{1-q_{v}^{-s}}
\end{gathered}
$$

where $q_{v}=|p|_{v}^{-1}$ is the residue field cardinality.

The same computation applies to the seemingly more general

$$
Z_{v}\left(s, \chi_{v}, f_{v}\right)=\int_{k_{v}^{\times}}|x|_{v}^{s} \chi_{v}(x) f_{v}(x) d^{\times} x
$$

with f_{v} the characteristic function of \mathfrak{o}_{v} and χ_{v} unramified, meaning that χ_{v} is trivial on $\mathfrak{o}_{v}^{\times}$. That is, the group homomorphism χ_{v} is \mathfrak{o}_{v}-invariant, so is inescapably of the form

$$
\chi_{v}(x)=|x|_{v}^{i t_{\chi}} \quad\left(\text { for some } t_{\chi} \in \mathbb{R} \text { depending on } \chi_{v}\right)
$$

Then the unramified non-archimedean local zeta factor is

$$
\begin{aligned}
& Z_{v}\left(s, \chi_{v}, f_{v}\right)=\int_{k_{v}^{\times}}|x|_{v}^{s} \chi_{v}(x) f_{v}(x) d^{\times} x \\
& =\int_{k_{v}^{\times}}|x|_{v}^{s+i t_{\chi}} f_{v}(x) d^{\times} x=\frac{1}{1-q_{v}^{-s-i t_{\chi}}}
\end{aligned}
$$

This kind of shifting occurs for all kinds of L-functions...

