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Harmonic analysis, on Ay /k, adelic Poisson summation.

Theorem: Fourier transform is a topological isomorphism

Plancherel: Fourier transform is an L?-isometry on Schwartz
functions.

(big) Theorem: For a compact abelian group G, with total
measure 1, the continuous group homomorphisms (characters)
Y : G — C* form an orthonormal Hilbert-space basis for L*(QG).
That is,

L*(G) = completion of @ C-y
and YeEGY

f = Z (f,) - (for f € L*(@G), convergence in L?(G))

YeGvY
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Proof of big Theorem: so far: orthonormality is immediate from
cancellation lemma.

Completeness requires existence of sufficiently many eigenvectors...
for the translation action of G on complex-valued functions

For G finite, by finite-dimensional spectral theory for unitary
operators, [we saw)

L*(G) = @ C-9 (G finite abelian)
YeGvY
We did not use the structure theorem for finite abelian groups.

The best operators on infinite-dimensional Hilbert spaces are self-
adjoint compact operators.

Compactness is that the image T'B of the unit ball B has compact
closure. Thus, the image {Tv;} of a bounded sequence {v;} has a
convergent subsequence {Tv;, }.
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One of the most useful theorems in the universe:

Theorem: Let R be a set of compact, self-adjoint, mutually
commuting operators on a Hilbert space V. Suppose the action
is non-degenerate in the sense that for 0 £ v € V thereis T € R
with Tv # 0. Then V has an orthonormal Hilbert-space basis of
simultaneous eigenvectors for R. The joint eigenspaces are finite-
dimensional.

[Simple proof below]
Mostly, compact operators come from integral operators attached

to n in C2(@G), acting on L?(G) by
- D) = [ n(o) flag) do

3
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A change of variables gives

(o f)a) = /G aly) floy) dy = / a(zy) f(y) dy

G

Write K(z,y) = a(z~ty). It defines a linear operator
T : L*(G) — L*(G) defined by

Ti) = (a- () = /G K(z,y) f(y) dy (for € L2(G))

Claim: For locally compact Hausdorft topological spaces X,Y
with nice measures, for K(z,y) € C2(X x Y), the linear operator
T:L*(Y)— L?(X) by

Tf(x) = /Y K(z,y) f(y) dy

is compact. For X =Y and K(y,x) = K(x,y), T is self-adjoint.
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Proof of spectral theorem for commuting compact self-adjoint
operators: The key point is the spectral theorem for a single self-
adjoint compact operator T': V — V. We need

Slightly Clever Lemma: The operator norm |T| = sup),<; [T
of continuous self-adjoint operator T' on a Hilbert space V is

expressible as

7| = sup [(T'v,v)|
lv]<1

Key Lemma: A compact self-adjoint operator 1" has largest
eigenvalue £|7T'|.
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Spectral theorem: for a single self-adjoint compact operator T'...
the non-zero eigenvalues are real, have no accumulation point but
{0}, and multiplicities are finite. For 0 # A\ € C not among the
eigenvalues, T' — X is invertible (as continuous linear operator).

Proof of theorem for single operator: In part, this is similar to the
proof for self-adjoint operators on finite-dimensional spaces.

If |T| = 0, then T = 0. Otherwise, the key lemma gives a non-
zero eigenvalue. The orthogonal complement of the corresponding
eigenvector v is T-stable: for w L v,

(v, Tw) = (Tv,w) = AMv,w) =0 (for Tv = Av and (v, w) = 0)

The restriction of T" to that orthogonal complement is still
compact (!), so unless that restriction is 0, 7" has a non-zero
eigenvalue there, too. Continue...
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For A # 0, the A\-eigenspace being infinite-dimensional would
contradict the compactness of T": the unit ball in an infinite-
dimensional inner-product space is not compact, as any infinite
orthonormal set is a sequence with no convergent subsequence.

Similarly, for ¢ > 0, the set of eigenvalues (counting multiplicities)
larger than ¢ being infinite would contradict compactness.

Thus, 0 is the only limit-point of eigenvalues.

Finally, the restriction of T" to the orthogonal complement of the
sum of all its non-zero eigenspaces is still compact. If its operator
norm were positive, there would be a further non-zero eigenvalue,
contradiction. Thus, that restriction has 0 norm, so is 0. This
proves the spectral theorem for a single self-adjoint compact

operator. ///
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For the commuting family of operators: as usual, the
commutativity ensures that the operators stabilize each others’
eigenspaces: for v a A-eigenvalue for T', for another operator S,

T(Sv) = (T'S)v = (ST)v = S(Tv) = S(A\v) = X-Sv

The non-degeneracy ensures that the orthogonal complement of all
the joint eigenspaces is {0}. ///

Remark: For proving existence of eigenfunctions, there really

is no alternative to self-adjoint compact operators. Meanwhile,
compact operators have been understood, in terms appropriate for
the time, for at least 120 years.

Claim: Hilbert-Schmidt operators K(x,y) € C2(X x Y) give
compact operators T : L?(Y) — L?(X) by

Tf(x) = /Y K(z,y) f(y) dy
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Remark: The class of Hilbert-Schmidt operators often is taken
to include not only operators with kernels in C°(X x Y'), but
also kernels in L?(X x Y). In practice, usually kernels are in L?
because they are in C.

Remark: In fact, the Schwartz Kernel Theorem shows that
continuous operators from C2°(R™) to distributions on R™ are
given by kernels K (x,y), themselves distributions on R™ x R™.
Pseudo-differential operators, singular integral operators, and
Fourier integral operators are important, non-trivial examples.

Proof: We show that T is an operator-norm limit of finite-rank
operators, that is, operators with finite-dimensional images.

Fix € > 0, find a finite collection of functions f;, F; such that

< €

wp [ K(ey)~ Y oo F
z,y p

9
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For each (z,y) in the support of K, let U, x V,, be a neighborhood
of (x,y) such that |[K(z,y)—K(2',y")| < e for 2’ € U, and ¢y’ € V,
where U, and V), are neighborhoods of z,y.

By compactness of the support of K(x,y), there are finitely-many
xj,y; such that U; x V; (abbreviating U, x V,,) cover the support
of K(z,y). Let

¢; = char fen U, and ¢, = K(x;,y,) - (char fcn U;)

The sets U; x V; overlap, so K # Zj v; @ ®;, necessitating minor
adjustments.

One way to compensate for the overlaps is by subtracting two-fold
overlaps, adding back three-fold overlaps, subtracting four-fold,
and so on: let ...
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ZQOZ(X)(I) — Z min (@;, , ©;,) ® min (®;,, B;,)

11 <ig
+ Z min (902.17 @ig? 9023) ® min ((plla ¢227 (p )
11 <12<13
Because the subcover is finite, () is a finite linear combination

Q = >, [; ® Fj. By construction, sup, , ‘K(x,y) — Q(x,y\ < €.
The operator

;o /G Qa,y) () dy

is finite-rank, because the image is in the span of the finitely-many
fi appearing in the definition of Q(x,y).
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Let x be the characteristic function of the closure U of a compact-
closure open U containing the support of K. For every € > 0, the
opens U, and U, can be chosen inside U. Then

[ @@ sw an — [ K f) iy

< / Qe.y) — K(e.)] - 1£ ()] dy
G

< /G (@) - 1f @)l dy < e Ixlee - 1flz:

Thus, the operator norm of the difference can be made arbitrarily
small, proving that the operator T given by K(z,y) € C2(X x Y)
is an operator-norm limit of finite-rank operators. ///
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Prove operator-norm limits of finite-rank operators are compact:

Remark: on Hilbert spaces, the converse is true, that compact
operators are operator-norm limits of finite-rank ones. On Banach
spaces, the converse is false, by counter-examples due to P. Enflo.

Let T' = lim; T;, where T; : X — Y is finite-rank X — Y. Let B
be the unit ball in X. We show that T'B has compact closure by
showing that it is totally bounded, that is, for every € > 0 it can be
covered by finitely-many e-balls.

Given € > 0, let i be large-enough so that |T" — T;| < e. Since T;
is finite-rank, T; B is covered by finitely-many e-balls By,..., B, in
Y with respective centers y1,...,y,. For x € B, with T;x € B;,

Tx —y;| < |Tx—Tz|+|Tix—y;| < e+e¢

Thus, T'B is covered by a finite number of 2e-balls. This holds for
every € > 0, so T'B is totally bounded. ///
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Recall the proof that total boundedness of a set E in a complete
metric space implies compact closure:

Since metric spaces have countable local bases, it suffices to show
sequential compactness. That is, a sequence {v;} in E, exhibit a
convergent subsequence.

Cover E by finitely-many 2~ !-balls, choose one, call it By, with
infinitely-many v; in £ N By, and let w; be one of those infinitely-
many v;.

Next, cover E by finitely-many 2~ 2-balls. Certainly E N B; is
covered by these, and E N By N By contains infinitely-many v; for
at least one of these, call it By. Let wy € E N By N By be one of
these v;, other than w;.

Inductively, find an infinite subsequence w,, of distinct points,
with w, € EN By N...N B,, where B,, is of radius 27". The
sequence w; is Cauchy. ///



