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Harmonic analysis, on Ak/k, adelic Poisson summation.

Theorem: Fourier transform is a topological isomorphism
S (kv)→ S (kv) and S (Ak)→ S (Ak).

Plancherel: Fourier transform is an L2-isometry on Schwartz
functions.

(big) Theorem: For a compact abelian group G, with total
measure 1, the continuous group homomorphisms (characters)
ψ : G → C× form an orthonormal Hilbert-space basis for L2(G).
That is,

L2(G) = completion of
⊕
ψ∈G∨

C · ψ
and

f =
∑
ψ∈G∨

〈f, ψ〉 · ψ (for f ∈ L2(G), convergence in L2(G))
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Proof of big Theorem: so far: orthonormality is immediate from
cancellation lemma.

Completeness requires existence of sufficiently many eigenvectors...
for the translation action of G on complex-valued functions

For G finite, by finite-dimensional spectral theory for unitary
operators, [we saw]

L2(G) =
⊕
ψ∈G∨

C · ψ (G finite abelian)

We did not use the structure theorem for finite abelian groups.

The best operators on infinite-dimensional Hilbert spaces are self-
adjoint compact operators.

Compactness is that the image TB of the unit ball B has compact
closure. Thus, the image {Tvi} of a bounded sequence {vi} has a
convergent subsequence {Tvik}.
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One of the most useful theorems in the universe:

Theorem: Let R be a set of compact, self-adjoint, mutually
commuting operators on a Hilbert space V . Suppose the action
is non-degenerate in the sense that for 0 6= v ∈ V there is T ∈ R
with Tv 6= 0. Then V has an orthonormal Hilbert-space basis of
simultaneous eigenvectors for R. The joint eigenspaces are finite-
dimensional.

[Simple proof below]

Mostly, compact operators come from integral operators attached
to η in Coc (G), acting on L2(G) by

(η · f)(x) =

∫
G

η(g) f(xg) dg
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A change of variables gives

(α · f)(x) =

∫
G

α(y) f(xy) dy =

∫
G

α(x−1y) f(y) dy

Write K(x, y) = α(x−1y). It defines a linear operator
T : L2(G)→ L2(G) defined by

Tf(x) = (α · f)(x) =

∫
G

K(x, y) f(y) dy (for f ∈ L2(G))

Claim: For locally compact Hausdorff topological spaces X,Y
with nice measures, for K(x, y) ∈ Coc (X × Y ), the linear operator
T : L2(Y )→ L2(X) by

Tf(x) =

∫
Y

K(x, y) f(y) dy

is compact. For X = Y and K(y, x) = K(x, y), T is self-adjoint.
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Proof of spectral theorem for commuting compact self-adjoint
operators: The key point is the spectral theorem for a single self-
adjoint compact operator T : V → V . We need

Slightly Clever Lemma: The operator norm |T | = sup|v|≤1 |Tv|
of continuous self-adjoint operator T on a Hilbert space V is
expressible as

|T | = sup
|v|≤1

|〈Tv, v〉|

Key Lemma: A compact self-adjoint operator T has largest
eigenvalue ±|T |.
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Spectral theorem: for a single self-adjoint compact operator T ...
the non-zero eigenvalues are real, have no accumulation point but
{0}, and multiplicities are finite. For 0 6= λ ∈ C not among the
eigenvalues, T − λ is invertible (as continuous linear operator).

Proof of theorem for single operator: In part, this is similar to the
proof for self-adjoint operators on finite-dimensional spaces.

If |T | = 0, then T = 0. Otherwise, the key lemma gives a non-
zero eigenvalue. The orthogonal complement of the corresponding
eigenvector v is T -stable: for w ⊥ v,

〈v, Tw〉 = 〈Tv,w〉 = λ〈v, w〉 = 0 (for Tv = λv and 〈v, w〉 = 0)

The restriction of T to that orthogonal complement is still
compact (!), so unless that restriction is 0, T has a non-zero
eigenvalue there, too. Continue...
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For λ 6= 0, the λ-eigenspace being infinite-dimensional would
contradict the compactness of T : the unit ball in an infinite-
dimensional inner-product space is not compact, as any infinite
orthonormal set is a sequence with no convergent subsequence.

Similarly, for c > 0, the set of eigenvalues (counting multiplicities)
larger than c being infinite would contradict compactness.

Thus, 0 is the only limit-point of eigenvalues.

Finally, the restriction of T to the orthogonal complement of the
sum of all its non-zero eigenspaces is still compact. If its operator
norm were positive, there would be a further non-zero eigenvalue,
contradiction. Thus, that restriction has 0 norm, so is 0. This
proves the spectral theorem for a single self-adjoint compact
operator. ///
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For the commuting family of operators: as usual, the
commutativity ensures that the operators stabilize each others’
eigenspaces: for v a λ-eigenvalue for T , for another operator S,

T (Sv) = (TS)v = (ST )v = S(Tv) = S(λv) = λ · Sv
The non-degeneracy ensures that the orthogonal complement of all
the joint eigenspaces is {0}. ///

Remark: For proving existence of eigenfunctions, there really
is no alternative to self-adjoint compact operators. Meanwhile,
compact operators have been understood, in terms appropriate for
the time, for at least 120 years.

Claim: Hilbert-Schmidt operators K(x, y) ∈ Coc (X × Y ) give
compact operators T : L2(Y )→ L2(X) by

Tf(x) =

∫
Y

K(x, y) f(y) dy
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Remark: The class of Hilbert-Schmidt operators often is taken
to include not only operators with kernels in Co(X × Y ), but
also kernels in L2(X × Y ). In practice, usually kernels are in L2

because they are in Coc .

Remark: In fact, the Schwartz Kernel Theorem shows that
continuous operators from C∞c (Rn) to distributions on Rn are
given by kernels K(x, y), themselves distributions on Rn × Rn.
Pseudo-differential operators, singular integral operators, and
Fourier integral operators are important, non-trivial examples.

Proof: We show that T is an operator-norm limit of finite-rank
operators, that is, operators with finite-dimensional images.

Fix ε > 0, find a finite collection of functions fi, Fi such that

sup
x,y

∣∣∣K(x, y)−
∑
i

fi ⊗ Fi
∣∣∣ < ε
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For each (x, y) in the support of K, let Ux × Vy be a neighborhood
of (x, y) such that |K(x, y)−K(x′, y′)| < ε for x′ ∈ Ux and y′ ∈ Vy,
where Ux and Vy are neighborhoods of x, y.

By compactness of the support of K(x, y), there are finitely-many
xj , yj such that Uj ×Vj (abbreviating Uxj ×Vyj ) cover the support
of K(x, y). Let

ϕj = char fcn Uj and Φj = K(xj , yj) · (char fcn Uj)

The sets Uj × Vj overlap, so K 6=
∑
j ϕj ⊗ Φj , necessitating minor

adjustments.

One way to compensate for the overlaps is by subtracting two-fold
overlaps, adding back three-fold overlaps, subtracting four-fold,
and so on: let ...
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Q =
∑
i

ϕi ⊗ Φi −
∑
i1<i2

min (ϕi1 , ϕi2)⊗min (Φi1 ,Φi2)

+
∑

i1<i2<i3

min (ϕi1 , ϕi2 , ϕi3)⊗min (Φi1 ,Φi2 ,Φi3)− . . .

Because the subcover is finite, Q is a finite linear combination
Q =

∑
j fj ⊗ Fj . By construction, supx,y

∣∣K(x, y) − Q(x, y
∣∣ < ε.

The operator

f −→
∫
G

Q(x, y) f(y) dy

is finite-rank, because the image is in the span of the finitely-many
fi appearing in the definition of Q(x, y).
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Let χ be the characteristic function of the closure U of a compact-
closure open U containing the support of K. For every ε > 0, the
opens Ux and Uy can be chosen inside U . Then∣∣∣ ∫

G

Q(x, y) f(y) dy −
∫
G

K(x, y) f(y) dy
∣∣∣

≤
∫
G

|Q(x, y)−K(x, y)| · |f(y)| dy

< ε

∫
G

|χ(x, y)| · |f(y)| dy ≤ ε · |χ|L2 · |f |L2

Thus, the operator norm of the difference can be made arbitrarily
small, proving that the operator T given by K(x, y) ∈ Coc (X × Y )
is an operator-norm limit of finite-rank operators. ///
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Prove operator-norm limits of finite-rank operators are compact:

Remark: on Hilbert spaces, the converse is true, that compact
operators are operator-norm limits of finite-rank ones. On Banach
spaces, the converse is false, by counter-examples due to P. Enflo.

Let T = limi Ti, where Ti : X → Y is finite-rank X → Y . Let B
be the unit ball in X. We show that TB has compact closure by
showing that it is totally bounded, that is, for every ε > 0 it can be
covered by finitely-many ε-balls.

Given ε > 0, let i be large-enough so that |T − Ti| < ε. Since Ti
is finite-rank, TiB is covered by finitely-many ε-balls B1, . . . , Bn in
Y with respective centers y1, . . . , yn. For x ∈ B, with Tix ∈ Bj ,

|Tx− yj | ≤ |Tx− Tix|+ |Tix− yj | < ε+ ε

Thus, TB is covered by a finite number of 2ε-balls. This holds for
every ε > 0, so TB is totally bounded. ///
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Recall the proof that total boundedness of a set E in a complete
metric space implies compact closure:

Since metric spaces have countable local bases, it suffices to show
sequential compactness. That is, a sequence {vi} in E, exhibit a
convergent subsequence.

Cover E by finitely-many 2−1-balls, choose one, call it B1, with
infinitely-many vi in E ∩ B1, and let w1 be one of those infinitely-
many vi.

Next, cover E by finitely-many 2−2-balls. Certainly E ∩ B1 is
covered by these, and E ∩ B1 ∩ B2 contains infinitely-many vi for
at least one of these, call it B2. Let w2 ∈ E ∩ B1 ∩ B2 be one of
these vi, other than w1.

Inductively, find an infinite subsequence wn of distinct points,
with wn ∈ E ∩ B1 ∩ . . . ∩ Bn, where Bn is of radius 2−n. The
sequence wi is Cauchy. ///


