Harmonic analysis, on \mathbb{A}_k/k , adelic Poisson summation.

Theorem: Fourier transform is a topological isomorphism $\mathscr{S}(k_v) \to \mathscr{S}(k_v)$ and $\mathscr{S}(\mathbb{A}_k) \to \mathscr{S}(\mathbb{A}_k)$.

Plancherel: Fourier transform is an L^2 -isometry on Schwartz functions.

(big) Theorem: For a compact abelian group G, with total measure 1, the continuous group homomorphisms (characters) $\psi: G \to \mathbb{C}^{\times}$ form an orthonormal Hilbert-space basis for $L^2(G)$. That is,

and

That is,
$$L^2(G) = \text{completion of} \bigoplus_{\psi \in G^{\vee}} \mathbb{C} \cdot \psi$$
 and
$$f = \sum_{\psi \in G^{\vee}} \langle f, \psi \rangle \cdot \psi \qquad \text{(for } f \in L^2(G), \text{ convergence in } L^2(G))$$

Proof of big Theorem: so far: orthonormality is immediate from cancellation lemma.

Completeness requires existence of sufficiently many eigenvectors... for the translation action of G on complex-valued functions

For G finite, by finite-dimensional spectral theory for unitary operators, $[we\ saw]$

$$L^{2}(G) = \bigoplus_{\psi \in G^{\vee}} \mathbb{C} \cdot \psi \qquad (G \text{ finite abelian})$$

We did *not* use the structure theorem for finite abelian groups.

The best operators on infinite-dimensional Hilbert spaces are self-adjoint *compact* operators.

Compactness is that the image TB of the unit ball B has compact closure. Thus, the image $\{Tv_i\}$ of a bounded sequence $\{v_i\}$ has a convergent subsequence $\{Tv_{i_k}\}$.

One of the most useful theorems in the universe:

Theorem: Let R be a set of compact, self-adjoint, mutually commuting operators on a Hilbert space V. Suppose the action is non-degenerate in the sense that for $0 \neq v \in V$ there is $T \in R$ with $Tv \neq 0$. Then V has an orthonormal Hilbert-space basis of simultaneous eigenvectors for R. The joint eigenspaces are finite-dimensional.

[Simple proof below]

Mostly, compact operators come from integral operators attached to η in $C_c^o(G)$, acting on $L^2(G)$ by

$$(\eta \cdot f)(x) = \int_G \eta(g) f(xg) dg$$

A change of variables gives

$$(\alpha \cdot f)(x) = \int_G \alpha(y) f(xy) dy = \int_G \alpha(x^{-1}y) f(y) dy$$

Write $K(x,y) = \alpha(x^{-1}y)$. It defines a linear operator $T: L^2(G) \to L^2(G)$ defined by

$$Tf(x) \ = \ (\alpha \cdot f)(x) \ = \ \int_G K(x,y) \, f(y) \; dy \qquad \qquad (\text{for } f \in L^2(G))$$

Claim: For locally compact Hausdorff topological spaces X, Y with nice measures, for $K(x,y) \in C_c^o(X \times Y)$, the linear operator $T: L^2(Y) \to L^2(X)$ by

$$Tf(x) = \int_{Y} K(x, y) f(y) dy$$

is compact. For X = Y and $K(y, x) = \overline{K(x, y)}$, T is self-adjoint.

Proof of spectral theorem for commuting compact self-adjoint operators: The key point is the spectral theorem for a single self-adjoint compact operator $T: V \to V$. We need

Slightly Clever Lemma: The operator norm $|T| = \sup_{|v| \le 1} |Tv|$ of continuous self-adjoint operator T on a Hilbert space V is expressible as

$$|T| = \sup_{|v| \le 1} |\langle Tv, v \rangle|$$

Key Lemma: A compact self-adjoint operator T has largest eigenvalue $\pm |T|$.

Spectral theorem: for a *single* self-adjoint compact operator T... the non-zero eigenvalues are *real*, have no accumulation point but $\{0\}$, and multiplicities are finite. For $0 \neq \lambda \in \mathbb{C}$ not among the eigenvalues, $T - \lambda$ is *invertible* (as continuous linear operator).

Proof of theorem for single operator: In part, this is similar to the proof for self-adjoint operators on finite-dimensional spaces.

If |T| = 0, then T = 0. Otherwise, the key lemma gives a non-zero eigenvalue. The orthogonal complement of the corresponding eigenvector v is T-stable: for $w \perp v$,

$$\langle v, Tw \rangle = \langle Tv, w \rangle = \lambda \langle v, w \rangle = 0$$
 (for $Tv = \lambda v$ and $\langle v, w \rangle = 0$)

The restriction of T to that orthogonal complement is still compact (!), so unless that restriction is 0, T has a non-zero eigenvalue there, too. Continue...

For $\lambda \neq 0$, the λ -eigenspace being infinite-dimensional would contradict the compactness of T: the unit ball in an infinite-dimensional inner-product space is not compact, as any infinite orthonormal set is a sequence with no convergent subsequence.

Similarly, for c > 0, the set of eigenvalues (counting multiplicities) larger than c being infinite would contradict compactness.

Thus, 0 is the only limit-point of eigenvalues.

Finally, the restriction of T to the orthogonal complement of the sum of all its non-zero eigenspaces is still compact. If its operator norm were positive, there would be a further non-zero eigenvalue, contradiction. Thus, that restriction has 0 norm, so is 0. This proves the spectral theorem for a single self-adjoint compact operator.

For the commuting family of operators: as usual, the commutativity ensures that the operators stabilize each others' eigenspaces: for v a λ -eigenvalue for T, for another operator S,

$$T(Sv) = (TS)v = (ST)v = S(Tv) = S(\lambda v) = \lambda \cdot Sv$$

The non-degeneracy ensures that the orthogonal complement of all the joint eigenspaces is $\{0\}$.

Remark: For proving existence of eigenfunctions, there really is no alternative to self-adjoint compact operators. Meanwhile, compact operators have been understood, in terms appropriate for the time, for at least 120 years.

Claim: Hilbert-Schmidt operators $K(x,y) \in C_c^o(X \times Y)$ give compact operators $T: L^2(Y) \to L^2(X)$ by

$$Tf(x) = \int_Y K(x, y) f(y) dy$$

Remark: The class of *Hilbert-Schmidt* operators often is taken to include not only operators with kernels in $C^o(X \times Y)$, but also kernels in $L^2(X \times Y)$. In practice, usually kernels are in L^2 because they are in C_c^o .

Remark: In fact, the Schwartz Kernel Theorem shows that continuous operators from $C_c^{\infty}(\mathbb{R}^n)$ to distributions on \mathbb{R}^n are given by kernels K(x,y), themselves distributions on $\mathbb{R}^n \times \mathbb{R}^n$. Pseudo-differential operators, singular integral operators, and Fourier integral operators are important, non-trivial examples.

Proof: We show that T is an operator-norm limit of finite-rank operators, that is, operators with finite-dimensional images.

Fix $\varepsilon > 0$, find a *finite* collection of functions f_i, F_i such that

$$\sup_{x,y} \left| K(x,y) - \sum_{i} f_{i} \otimes F_{i} \right| < \varepsilon$$

For each (x, y) in the support of K, let $U_x \times V_y$ be a neighborhood of (x, y) such that $|K(x, y) - K(x', y')| < \varepsilon$ for $x' \in U_x$ and $y' \in V_y$, where U_x and V_y are neighborhoods of x, y.

By compactness of the support of K(x, y), there are finitely-many x_j, y_j such that $U_j \times V_j$ (abbreviating $U_{x_j} \times V_{y_j}$) cover the support of K(x, y). Let

$$\varphi_j = \text{char fen } U_j \quad \text{and} \quad \Phi_j = K(x_j, y_j) \cdot (\text{char fen } U_j)$$

The sets $U_j \times V_j$ overlap, so $K \neq \sum_j \varphi_j \otimes \Phi_j$, necessitating minor adjustments.

One way to compensate for the overlaps is by subtracting two-fold overlaps, adding back three-fold overlaps, subtracting four-fold, and so on: let ...

$$Q = \sum_{i} \varphi_{i} \otimes \Phi_{i} - \sum_{i_{1} < i_{2}} \min (\varphi_{i_{1}}, \varphi_{i_{2}}) \otimes \min (\Phi_{i_{1}}, \Phi_{i_{2}})$$

$$+ \sum_{i_{1} < i_{2} < i_{3}} \min (\varphi_{i_{1}}, \varphi_{i_{2}}, \varphi_{i_{3}}) \otimes \min (\Phi_{i_{1}}, \Phi_{i_{2}}, \Phi_{i_{3}}) - \dots$$

Because the subcover is finite, Q is a finite linear combination $Q = \sum_j f_j \otimes F_j$. By construction, $\sup_{x,y} |K(x,y) - Q(x,y)| < \varepsilon$. The operator

$$f \longrightarrow \int_G Q(x,y) f(y) dy$$

is finite-rank, because the image is in the span of the finitely-many f_i appearing in the definition of Q(x, y).

Let χ be the characteristic function of the closure \overline{U} of a compactclosure open U containing the support of K. For every $\varepsilon > 0$, the opens U_x and U_y can be chosen inside U. Then

$$\left| \int_{G} Q(x,y) f(y) dy - \int_{G} K(x,y) f(y) dy \right|$$

$$\leq \int_{G} |Q(x,y) - K(x,y)| \cdot |f(y)| dy$$

$$< \varepsilon \int_{G} |\chi(x,y)| \cdot |f(y)| dy \leq \varepsilon \cdot |\chi|_{L^{2}} \cdot |f|_{L^{2}}$$

Thus, the operator norm of the difference can be made arbitrarily small, proving that the operator T given by $K(x,y) \in C_c^o(X \times Y)$ is an operator-norm limit of finite-rank operators.

Prove operator-norm limits of finite-rank operators are compact:

Remark: on Hilbert spaces, the converse is true, that compact operators are operator-norm limits of finite-rank ones. On Banach spaces, the converse is false, by counter-examples due to P. Enflo.

Let $T = \lim_i T_i$, where $T_i : X \to Y$ is finite-rank $X \to Y$. Let B be the unit ball in X. We show that TB has compact closure by showing that it is *totally bounded*, that is, for every $\varepsilon > 0$ it can be covered by finitely-many ε -balls.

Given $\varepsilon > 0$, let *i* be large-enough so that $|T - T_i| < \varepsilon$. Since T_i is finite-rank, $T_i B$ is covered by finitely-many ε -balls B_1, \ldots, B_n in Y with respective centers y_1, \ldots, y_n . For $x \in B$, with $T_i x \in B_j$,

$$|Tx - y_j| \le |Tx - T_ix| + |T_ix - y_j| < \varepsilon + \varepsilon$$

Thus, TB is covered by a finite number of 2ε -balls. This holds for every $\varepsilon > 0$, so TB is totally bounded.

Recall the proof that $total\ boundedness$ of a set E in a complete metric space implies compact closure:

Since metric spaces have countable local bases, it suffices to show sequential compactness. That is, a sequence $\{v_i\}$ in E, exhibit a convergent subsequence.

Cover E by finitely-many 2^{-1} -balls, choose one, call it B_1 , with infinitely-many v_i in $E \cap B_1$, and let w_1 be one of those infinitely-many v_i .

Next, cover E by finitely-many 2^{-2} -balls. Certainly $E \cap B_1$ is covered by these, and $E \cap B_1 \cap B_2$ contains infinitely-many v_i for at least one of these, call it B_2 . Let $w_2 \in E \cap B_1 \cap B_2$ be one of these v_i , other than w_1 .

Inductively, find an infinite subsequence w_n of distinct points, with $w_n \in E \cap B_1 \cap \ldots \cap B_n$, where B_n is of radius 2^{-n} . The sequence w_i is Cauchy.