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Harmonic analysis, on Ay /k, adelic Poisson summation.

Theorem: Fourier transform is a topological isomorphism
L (ky) — L(ky) and L (Ax) — L (Ag) for number fields k,

completions k, whether archimedean or p-adic, and adeles Ay.

Plancherel: Fourier transform is an L2-isometry on Schwartz
functions.

Then Fourier transforms are extended to L?(k,) and L?(A) by
continuity, giving the Fourier-Plancherel transform, no longer
defined literally by the integrals.
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Fourier series on A/k: For a unimodular topological group G,
let L?(G) be the completion of C2(G) with respect to the usual
L?-norm given by

2= [ 15@F dg (for | € C2(G))
and usual inner product

(f, F) = /Gf-F

(big) Theorem: For a compact abelian group G, with total
measure 1, the continuous group homomorphisms (characters)

Y : G — C* form an orthonormal Hilbert-space basis for L?(G).

That is,
L*(G) = completion of @ C-v¢

and YEGY

f = Z (f, ) - (for f € L*(@G), convergence in L?(G))

PeGY

2
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Remark: As in the elementary example of the circle R/Z and
classical Fourier series, convergence in L? says little directly about
pointwise convergence, much less uniform pointwise convergence.

Proof of big Theorem: Recap so far: orthonormality follows
immediately from the cancellation lemma. This is the trivial half.

Completeness requires existence of sufficiently many eigenvectors
for the action of G on complex-valued functions

g-flzx) = f(xg) (for f € C2(G) and x, g € G)
The eigenvalues \¢(g) are group homomorphisms: for g,h € G,

Ap(gh)-f = (gh)-f = g-(h-f) = g-(Ar(h) f)

= Ap(h) g-f = Ap(h) Ap(9) f
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For G finite, L*(Q) is finite-dimensional. By finite-dimensional
spectral theory for unitary operators, [we saw]

L*(G) = @ C-9 (G finite abelian)
YeGv
We did not use the structure theorem for finite abelian groups.

On infinite-dimensional Hilbert spaces, even for unitary operators,
general spectral theory does not guarantee eigenvectors.

From a spectral viewpoint, the best operators on infinite-
dimensional Hilbert spaces are self-adjoint compact operators.

The self-adjointness is the usual (Tv, w) = (v, Tw).

The compactness is that the image T'B of the unit ball B has
compact closure. Thus, the image {T'v;} of a bounded sequence
{v;} has a convergent subsequence {Tv;, }.

On finite-dimensional vector spaces, every linear operator is
compact.
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One of the most useful theorems in the universe:

Theorem: Let R be a set of compact, self-adjoint, mutually
commuting operators on a Hilbert space V. Suppose the action
is non-degenerate in the sense that for 0 £ v € V thereis T € R
with Tv # 0. Then V has an orthonormal Hilbert-space basis of
simultaneous eigenvectors for R. The joint eigenspaces are finite-
dimensional.

[Simple proof is below. Other useful details arise.]

Mostly, compact operators come from integral operators: 7 in
C?(G) acts on L?*(G) by the integral operator (right averaging)

(- f)(z) = /G n(g) f(zg) dg

There is the compatibility
a-(B-f) = (axp)-f

5



Garrett 02-24-2012 6

A change of variables gives

(o f)a) = /G aly) floy) dy = /G a(zy) f(y) dy

Write K (z,y) = a(zx™ly) to suggest viewing a(x~1y) as a kernel
for an integral operator, analogous to a matrixz, but indexed by
x,y € G: it defines a linear operator T : L?(G) — L?*(G) by

Ti) = (o)) = /G K(z,y) f(y) dy (for € L2(G))

Claim: For locally compact Hausdorff topological spaces X,Y
with nice measures for K(z,y) € C2(X xY), the linear operator

T:L%(Y)— L*(X
/ny

is compact. For X =Y and K(y,z) = K(z,y), the operator T is
self-adjoint.
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Remark Invocation of the spectral theory of compact self-adjoint
operators applies to compact G that are not necessarily abelian, to
decompose L?(G) into irreducible representations, although most
of the irreducibles are not one-dimensional, not spanned by group
homomorphisms G — C*. Even for G non-compact, non-abelian,
for discrete subgroups I' with I'\G compact, the same mechanism

decomposes L?(T'\G).

Specifically, now the left and right actions of G on itself, and,
therefore, on L?(QG),

Lof(x) = f(g~ ') Ry(x) = f(zg)
are not identical. That is, it is really G x G which acts. The
decomposition of L?(G) for non-commutative but still compact

(G is the natural extension of the classical theorem for finite groups
and characteristic 0 representations over algebraically closed fields:

L*(G) = completion of EB v (as repns of G x G)

irreds w of G
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Proof of spectral theorem for commuting compact self-adjoint
operators: The key point is the already-useful spectral theorem
for a single self-adjoint compact operator T' : V. — V. To prove
this, we need

Slightly Clever Lemma: The operator norm |T'| = supy, < [T
of continuous self-adjoint operator T' on a Hilbert space V is

expressible as

7] = sup [(T'v,v)|
[v[<1

Proof of Lemma: On one hand, by Cauchy-Schwarz-Bunyakowsky;,
[(T'v,v)| < |Tv| - |v|, giving the easy direction of inequality.

On the other hand, let ¢ = supy, <1 [(T'v,v)|. A polarization
identity gives
2(Tv,w) + 2{Tw,v) = (T(v+w),v+w) —{(T(v—w),v—w)

With w = t - Tv with ¢t > 0, since T = T*, both (T'v,w) and
(T'w, v) are non-negative real. Taking absolute values,
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we have

ANTvu,t-Tv)y = (T(v+t-Tv),v+t-Tv)—(T'(v—t-Tv),v—1t-Tv)

<o-lvtt-ToP 4o lv—t-Tv]* = 4o (Jv]> +*-|Tv?)

Divide through by 4t and set t = |v|/|Tv| to minimize the right-
hand side, obtaining

Tl < o-[v] - |T0]

giving the other inequality, proving the Lemma. ///

Key Lemma: A compact self-adjoint operator 1" has largest
eigenvalue £|T'|.
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Proof of Key Lemma: Take |T| > 0, or else T" = 0. Using the
re-characterization of operator norm, let v; be a sequence of unit
vectors such that [(Tv;,v;)| — |T|. Let A be +|T| such that there
is an infinite subsequence with (Tv;, ,v;,) — A, and replace v; by
this subsequence. On one hand, using (T'v,v) = (v, Tv),

0 < |Tv; — Mj|? = |Twi|* — 2MTw;, v;) + N2|v;|?

< A = 2X\(Tv;, v;) + N2

By assumption, the right-hand side goes to 0. Using compactness,
replace v; with a subsequence such that T'v; has limit w. Then the
inequality shows that \v; — w, so v; — A~ 'w. Thus, by continuity
of T, Tw = Aw. This proves the key lemma. ///

Spectral theorem: for a single self-adjoint compact operator 7'...
the non-zero eigenvalues are real, have no accumulation point but
{0}, and multiplicities are finite. For 0 # A\ € C not among the
eigenvalues, T' — X is invertible (as continuous linear operator).

Remark: The latter point is that indispensable, since in general
T — )X could fail to be invertible without \ being an eigenvalue.
This would entail some trouble, since there could not possibly be a
basis of eigenvectors.
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Proof of theorem for single operator: In part, this is similar to the
proof for self-adjoint operators on finite-dimensional spaces.

If |T| = 0, then T = 0. Otherwise, the key lemma gives a non-
zero eigenvalue. The orthogonal complement of the corresponding
eigenvector v is T-stable: for w 1 v,

(v, Tw) = (Tv,w) = AMv,w) =0 (for Tv = Av and (v, w) = 0)

The restriction of T' to that orthogonal complement is still
compact (!), so unless that restriction is 0, 7" has a non-zero
eigenvalue there, too. Continue...

For A # 0, the \-eigenspace being infinite-dimensional would
contradict the compactness of T": the unit ball in an infinite-
dimensional inner-product space is not compact, as any infinite
orthonormal set is a sequence with no convergent subsequence.

Similarly, for ¢ > 0, the set of eigenvalues (counting multiplicities)
larger than ¢ being infinite would contradict compactness.

Thus, 0 is the only limit-point of eigenvalues. ...



