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Harmonic analysis, on Ak/k, adelic Poisson summation.

Theorem: Fourier transform is a topological isomorphism
S (kv) → S (kv) and S (Ak) → S (Ak) for number fields k,
completions kv whether archimedean or p-adic, and adeles Ak.

Plancherel: Fourier transform is an L2-isometry on Schwartz
functions.

Then Fourier transforms are extended to L2(kv) and L2(A) by
continuity, giving the Fourier-Plancherel transform, no longer
defined literally by the integrals.
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Fourier series on A/k: For a unimodular topological group G,
let L2(G) be the completion of Coc (G) with respect to the usual
L2-norm given by

|f |2 =

∫
G

|f(g)|2 dg (for f ∈ Coc (G))

and usual inner product

〈f, F 〉 =

∫
G

f · F

(big) Theorem: For a compact abelian group G, with total
measure 1, the continuous group homomorphisms (characters)
ψ : G → C× form an orthonormal Hilbert-space basis for L2(G).
That is,

L2(G) = completion of
⊕
ψ∈G∨

C · ψ
and

f =
∑
ψ∈G∨

〈f, ψ〉 · ψ (for f ∈ L2(G), convergence in L2(G))
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Remark: As in the elementary example of the circle R/Z and
classical Fourier series, convergence in L2 says little directly about
pointwise convergence, much less uniform pointwise convergence.

Proof of big Theorem: Recap so far: orthonormality follows
immediately from the cancellation lemma. This is the trivial half.

Completeness requires existence of sufficiently many eigenvectors
for the action of G on complex-valued functions

g · f(x) = f(xg) (for f ∈ Coc (G) and x, g ∈ G)

The eigenvalues λf (g) are group homomorphisms: for g, h ∈ G,

λf (gh) · f = (gh) · f = g · (h · f) = g · (λf (h) f)

= λf (h) g · f = λf (h)λf (g) f
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For G finite, L2(G) is finite-dimensional. By finite-dimensional
spectral theory for unitary operators, [we saw]

L2(G) =
⊕
ψ∈G∨

C · ψ (G finite abelian)

We did not use the structure theorem for finite abelian groups.

On infinite-dimensional Hilbert spaces, even for unitary operators,
general spectral theory does not guarantee eigenvectors.

From a spectral viewpoint, the best operators on infinite-
dimensional Hilbert spaces are self-adjoint compact operators.

The self-adjointness is the usual 〈Tv,w〉 = 〈v, Tw〉.
The compactness is that the image TB of the unit ball B has
compact closure. Thus, the image {Tvi} of a bounded sequence
{vi} has a convergent subsequence {Tvik}.
On finite-dimensional vector spaces, every linear operator is
compact.
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One of the most useful theorems in the universe:

Theorem: Let R be a set of compact, self-adjoint, mutually
commuting operators on a Hilbert space V . Suppose the action
is non-degenerate in the sense that for 0 6= v ∈ V there is T ∈ R
with Tv 6= 0. Then V has an orthonormal Hilbert-space basis of
simultaneous eigenvectors for R. The joint eigenspaces are finite-
dimensional.

[Simple proof is below. Other useful details arise.]

Mostly, compact operators come from integral operators: η in
Coc (G) acts on L2(G) by the integral operator (right averaging)

(η · f)(x) =

∫
G

η(g) f(xg) dg

There is the compatibility

α · (β · f) = (α ∗ β) · f
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A change of variables gives

(α · f)(x) =

∫
G

α(y) f(xy) dy =

∫
G

α(x−1y) f(y) dy

Write K(x, y) = α(x−1y) to suggest viewing α(x−1y) as a kernel
for an integral operator, analogous to a matrix, but indexed by
x, y ∈ G: it defines a linear operator T : L2(G)→ L2(G) by

Tf(x) = (α · f)(x) =

∫
G

K(x, y) f(y) dy (for f ∈ L2(G))

Claim: For locally compact Hausdorff topological spaces X,Y
with nice measures, for K(x, y) ∈ Coc (X × Y ), the linear operator
T : L2(Y )→ L2(X) by

Tf(x) =

∫
Y

K(x, y) f(y) dy

is compact. For X = Y and K(y, x) = K(x, y), the operator T is
self-adjoint.
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Remark Invocation of the spectral theory of compact self-adjoint
operators applies to compact G that are not necessarily abelian, to
decompose L2(G) into irreducible representations, although most
of the irreducibles are not one-dimensional, not spanned by group
homomorphisms G → C×. Even for G non-compact, non-abelian,
for discrete subgroups Γ with Γ\G compact, the same mechanism
decomposes L2(Γ\G).

Specifically, now the left and right actions of G on itself, and,
therefore, on L2(G),

Lgf(x) = f(g−1x) Rg(x) = f(xg)

are not identical. That is, it is really G × G which acts. The
decomposition of L2(G) for non-commutative but still compact
G is the natural extension of the classical theorem for finite groups
and characteristic 0 representations over algebraically closed fields:

L2(G) = completion of
⊕

irreds π of G

π ⊗ π∨ (as repns of G×G)
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Proof of spectral theorem for commuting compact self-adjoint
operators: The key point is the already-useful spectral theorem
for a single self-adjoint compact operator T : V → V . To prove
this, we need

Slightly Clever Lemma: The operator norm |T | = sup|v|≤1 |Tv|
of continuous self-adjoint operator T on a Hilbert space V is
expressible as

|T | = sup
|v|≤1

|〈Tv, v〉|

Proof of Lemma: On one hand, by Cauchy-Schwarz-Bunyakowsky,
|〈Tv, v〉| ≤ |Tv| · |v|, giving the easy direction of inequality.

On the other hand, let σ = sup|v|≤1 |〈Tv, v〉|. A polarization
identity gives

2〈Tv,w〉+ 2〈Tw, v〉 = 〈T (v + w), v + w〉 − 〈T (v − w), v − w〉

With w = t · Tv with t > 0, since T = T ∗, both 〈Tv,w〉 and
〈Tw, v〉 are non-negative real. Taking absolute values,
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we have

4〈Tv, t ·Tv〉 =
∣∣∣〈T (v+ t ·Tv), v+ t ·Tv〉− 〈T (v− t ·Tv), v− t ·Tv〉

∣∣∣
≤ σ · |v + t · Tv|2 + σ · |v − t · Tv|2 = 4σ ·

(
|v|2 + t2 · |Tv|2)

Divide through by 4t and set t = |v|/|Tv| to minimize the right-
hand side, obtaining

|Tv|2 ≤ σ · |v| · |Tv|

giving the other inequality, proving the Lemma. ///

Key Lemma: A compact self-adjoint operator T has largest
eigenvalue ±|T |.
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Proof of Key Lemma: Take |T | > 0, or else T = 0. Using the
re-characterization of operator norm, let vi be a sequence of unit
vectors such that |〈Tvi, vi〉| → |T |. Let λ be ±|T | such that there
is an infinite subsequence with 〈Tvik , vik〉 → λ, and replace vi by
this subsequence. On one hand, using 〈Tv, v〉 = 〈v, Tv〉,

0 ≤ |Tvi − λvi|2 = |Tvi|2 − 2λ〈Tvi, vi〉+ λ2|vi|2

≤ λ2 − 2λ〈Tvi, vi〉+ λ2

By assumption, the right-hand side goes to 0. Using compactness,
replace vi with a subsequence such that Tvi has limit w. Then the
inequality shows that λvi → w, so vi → λ−1w. Thus, by continuity
of T , Tw = λw. This proves the key lemma. ///

Spectral theorem: for a single self-adjoint compact operator T ...
the non-zero eigenvalues are real, have no accumulation point but
{0}, and multiplicities are finite. For 0 6= λ ∈ C not among the
eigenvalues, T − λ is invertible (as continuous linear operator).

Remark: The latter point is that indispensable, since in general
T − λ could fail to be invertible without λ being an eigenvalue.
This would entail some trouble, since there could not possibly be a
basis of eigenvectors.
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Proof of theorem for single operator: In part, this is similar to the
proof for self-adjoint operators on finite-dimensional spaces.

If |T | = 0, then T = 0. Otherwise, the key lemma gives a non-
zero eigenvalue. The orthogonal complement of the corresponding
eigenvector v is T -stable: for w ⊥ v,

〈v, Tw〉 = 〈Tv,w〉 = λ〈v, w〉 = 0 (for Tv = λv and 〈v, w〉 = 0)

The restriction of T to that orthogonal complement is still
compact (!), so unless that restriction is 0, T has a non-zero
eigenvalue there, too. Continue...

For λ 6= 0, the λ-eigenspace being infinite-dimensional would
contradict the compactness of T : the unit ball in an infinite-
dimensional inner-product space is not compact, as any infinite
orthonormal set is a sequence with no convergent subsequence.

Similarly, for c > 0, the set of eigenvalues (counting multiplicities)
larger than c being infinite would contradict compactness.

Thus, 0 is the only limit-point of eigenvalues. . . .


