Harmonic analysis, on \mathbb{A}_k/k , adelic Poisson summation.

Theorem: Fourier transform is a topological isomorphism $\mathscr{S}(k_v) \to \mathscr{S}(k_v)$ and $\mathscr{S}(\mathbb{A}_k) \to \mathscr{S}(\mathbb{A}_k)$ for number fields k, completions k_v whether archimedean or p-adic, and adeles \mathbb{A}_k .

Plancherel: Fourier transform is an L^2 -isometry on Schwartz functions.

Then Fourier transforms are extended to $L^2(k_v)$ and $L^2(\mathbb{A})$ by continuity, giving the Fourier-Plancherel transform, no longer defined literally by the integrals.

Fourier series on \mathbb{A}/k : For a unimodular topological group G, let $L^2(G)$ be the *completion* of $C_c^o(G)$ with respect to the usual L^2 -norm given by

$$|f|^2 = \int_G |f(g)|^2 dg$$
 (for $f \in C_c^o(G)$)

and usual inner product

and

$$\langle f, F \rangle = \int_G f \cdot \overline{F}$$

(big) Theorem: For a compact abelian group G, with total measure 1, the continuous group homomorphisms (characters) $\psi: G \to \mathbb{C}^{\times}$ form an orthonormal Hilbert-space basis for $L^2(G)$. That is,

$$L^2(G) \ = \ \text{completion of} \bigoplus_{\psi \in G^\vee} \mathbb{C} \cdot \psi$$

 $f = \sum_{\psi \in G^{\vee}} \langle f, \psi \rangle \cdot \psi$ (for $f \in L^2(G)$, convergence in $L^2(G)$)

Remark: As in the elementary example of the circle \mathbb{R}/\mathbb{Z} and classical Fourier series, convergence in L^2 says little directly about pointwise convergence, much less uniform pointwise convergence.

Proof of big Theorem: Recap so far: orthonormality follows immediately from the *cancellation lemma*. This is the trivial half.

Completeness requires existence of sufficiently many eigenvectors for the action of G on complex-valued functions

$$g \cdot f(x) = f(xg)$$
 (for $f \in C_c^o(G)$ and $x, g \in G$)

The eigenvalues $\lambda_f(g)$ are group homomorphisms: for $g, h \in G$,

$$\lambda_f(gh) \cdot f = (gh) \cdot f = g \cdot (h \cdot f) = g \cdot (\lambda_f(h) f)$$
$$= \lambda_f(h) g \cdot f = \lambda_f(h) \lambda_f(g) f$$

For G finite, $L^2(G)$ is finite-dimensional. By finite-dimensional spectral theory for unitary operators, $[we\ saw]$

$$L^{2}(G) = \bigoplus_{\psi \in G^{\vee}} \mathbb{C} \cdot \psi \qquad (G \text{ finite abelian})$$

We did *not* use the structure theorem for finite abelian groups.

On infinite-dimensional Hilbert spaces, even for *unitary* operators, general spectral theory does *not* guarantee *eigenvectors*.

From a spectral viewpoint, the best operators on infinitedimensional Hilbert spaces are *self-adjoint compact* operators.

The self-adjointness is the usual $\langle Tv, w \rangle = \langle v, Tw \rangle$.

The compactness is that the image TB of the unit ball B has compact closure. Thus, the image $\{Tv_i\}$ of a bounded sequence $\{v_i\}$ has a convergent subsequence $\{Tv_{i_k}\}$.

On finite-dimensional vector spaces, *every* linear operator is compact.

One of the most useful theorems in the universe:

Theorem: Let R be a set of compact, self-adjoint, mutually commuting operators on a Hilbert space V. Suppose the action is non-degenerate in the sense that for $0 \neq v \in V$ there is $T \in R$ with $Tv \neq 0$. Then V has an orthonormal Hilbert-space basis of simultaneous eigenvectors for R. The joint eigenspaces are finite-dimensional.

[Simple proof is below. Other useful details arise.]

Mostly, compact operators come from integral operators: η in $C_c^o(G)$ acts on $L^2(G)$ by the integral operator (right averaging)

$$(\eta \cdot f)(x) = \int_G \eta(g) f(xg) dg$$

There is the compatibility

$$\alpha \cdot (\beta \cdot f) = (\alpha * \beta) \cdot f$$

A change of variables gives

$$(\alpha \cdot f)(x) = \int_G \alpha(y) f(xy) dy = \int_G \alpha(x^{-1}y) f(y) dy$$

Write $K(x,y) = \alpha(x^{-1}y)$ to suggest viewing $\alpha(x^{-1}y)$ as a kernel for an integral operator, analogous to a matrix, but indexed by $x,y \in G$: it defines a linear operator $T: L^2(G) \to L^2(G)$ by

$$Tf(x) = (\alpha \cdot f)(x) = \int_G K(x, y) f(y) dy \qquad (\text{for } f \in L^2(G))$$

Claim: For locally compact Hausdorff topological spaces X, Y with nice measures, for $K(x,y) \in C_c^o(X \times Y)$, the linear operator $T: L^2(Y) \to L^2(X)$ by

$$Tf(x) = \int_Y K(x,y) f(y) dy$$

is compact. For X=Y and $K(y,x)=\overline{K(x,y)},$ the operator T is self-adjoint.

Remark Invocation of the spectral theory of compact self-adjoint operators applies to compact G that are not necessarily abelian, to decompose $L^2(G)$ into irreducible representations, although most of the irreducibles are not one-dimensional, not spanned by group homomorphisms $G \to \mathbb{C}^{\times}$. Even for G non-compact, non-abelian, for discrete subgroups Γ with $\Gamma \setminus G$ compact, the same mechanism decomposes $L^2(\Gamma \setminus G)$.

Specifically, now the *left* and *right* actions of G on itself, and, therefore, on $L^2(G)$,

$$L_g f(x) = f(g^{-1}x) R_g(x) = f(xg)$$

are not identical. That is, it is really $G \times G$ which acts. The decomposition of $L^2(G)$ for non-commutative but still *compact* G is the natural extension of the classical theorem for finite groups and characteristic 0 representations over algebraically closed fields:

$$L^2(G) = \text{completion of } \bigoplus_{\text{irreds } \pi \text{ of } G} \pi \otimes \pi^{\vee}$$
 (as repns of $G \times G$)

Proof of spectral theorem for commuting compact self-adjoint operators: The key point is the already-useful spectral theorem for a single self-adjoint compact operator $T: V \to V$. To prove this, we need

Slightly Clever Lemma: The operator norm $|T| = \sup_{|v| \le 1} |Tv|$ of continuous self-adjoint operator T on a Hilbert space V is expressible as

$$|T| = \sup_{|v| \le 1} |\langle Tv, v \rangle|$$

Proof of Lemma: On one hand, by Cauchy-Schwarz-Bunyakowsky, $|\langle Tv, v \rangle| \leq |Tv| \cdot |v|$, giving the easy direction of inequality.

On the other hand, let $\sigma = \sup_{|v| \le 1} |\langle Tv, v \rangle|$. A polarization identity gives

$$2\langle Tv, w \rangle + 2\langle Tw, v \rangle = \langle T(v+w), v+w \rangle - \langle T(v-w), v-w \rangle$$

With $w = t \cdot Tv$ with t > 0, since $T = T^*$, both $\langle Tv, w \rangle$ and $\langle Tw, v \rangle$ are non-negative real. Taking absolute values,

we have

$$4\langle Tv,t\cdot Tv\rangle \ = \ \Big|\langle T(v+t\cdot Tv),v+t\cdot Tv\rangle - \langle T(v-t\cdot Tv),v-t\cdot Tv\rangle\Big|$$

$$\leq \sigma \cdot |v + t \cdot Tv|^2 + \sigma \cdot |v - t \cdot Tv|^2 = 4\sigma \cdot (|v|^2 + t^2 \cdot |Tv|^2)$$

Divide through by 4t and set t=|v|/|Tv| to minimize the right-hand side, obtaining

$$|Tv|^2 \le \sigma \cdot |v| \cdot |Tv|$$

giving the other inequality, proving the Lemma.

Key Lemma: A compact self-adjoint operator T has largest eigenvalue $\pm |T|$.

Proof of Key Lemma: Take |T| > 0, or else T = 0. Using the re-characterization of operator norm, let v_i be a sequence of unit vectors such that $|\langle Tv_i, v_i \rangle| \to |T|$. Let λ be $\pm |T|$ such that there is an infinite subsequence with $\langle Tv_{i_k}, v_{i_k} \rangle \to \lambda$, and replace v_i by this subsequence. On one hand, using $\langle Tv, v \rangle = \langle v, Tv \rangle$,

$$0 \le |Tv_i - \lambda v_i|^2 = |Tv_i|^2 - 2\lambda \langle Tv_i, v_i \rangle + \lambda^2 |v_i|^2$$
$$\le \lambda^2 - 2\lambda \langle Tv_i, v_i \rangle + \lambda^2$$

By assumption, the right-hand side goes to 0. Using compactness, replace v_i with a subsequence such that Tv_i has limit w. Then the inequality shows that $\lambda v_i \to w$, so $v_i \to \lambda^{-1}w$. Thus, by continuity of T, $Tw = \lambda w$. This proves the key lemma.

Spectral theorem: for a *single* self-adjoint compact operator T... the non-zero eigenvalues are *real*, have no accumulation point but $\{0\}$, and multiplicities are finite. For $0 \neq \lambda \in \mathbb{C}$ not among the eigenvalues, $T - \lambda$ is *invertible* (as continuous linear operator).

Remark: The latter point is that indispensable, since in general $T - \lambda$ could fail to be invertible without λ being an eigenvalue. This would entail some trouble, since there could not possibly be a basis of eigenvectors.

Proof of theorem for single operator: In part, this is similar to the proof for self-adjoint operators on finite-dimensional spaces.

If |T| = 0, then T = 0. Otherwise, the key lemma gives a non-zero eigenvalue. The orthogonal complement of the corresponding eigenvector v is T-stable: for $w \perp v$,

$$\langle v, Tw \rangle = \langle Tv, w \rangle = \lambda \langle v, w \rangle = 0$$
 (for $Tv = \lambda v$ and $\langle v, w \rangle = 0$)

The restriction of T to that orthogonal complement is still compact (!), so unless that restriction is 0, T has a non-zero eigenvalue there, too. Continue...

For $\lambda \neq 0$, the λ -eigenspace being infinite-dimensional would contradict the compactness of T: the unit ball in an infinite-dimensional inner-product space is not compact, as any infinite orthonormal set is a sequence with no convergent subsequence.

Similarly, for c > 0, the set of eigenvalues (counting multiplicities) larger than c being infinite would contradict compactness.

Thus, 0 is the only limit-point of eigenvalues. ...