Garrett 02-22-2012

Harmonic analysis, on Ay /k, adelic Poisson summation.

Corollary: Given non-trivial ¢p € AV, every other element of AY
is of the form x — ¥ (£ - z) for some £ € A.

The standard character v; on Q, is as follows: given z € Q,,
there is 2’ € p~*Z for some k € Z, such that z — 2’ € Z,,, and

i (z) = e 2 (sign choice for later)

For £ € Qp, let

be(z) = P1(E- ) (for z,€ € Qp)

For a finite extension k, of Q,, the standard character is

Ye(r) = ¢r(trgg (€ )) (for ,€ € ky)

Probably use these without further comment.
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Fourier transform on archimedean or p-adic k, is

FHE) = fl©) = /k (@) f() da

Fourier inversion

flx) = /k Ve () f(f) dé (for nice functions f)

The usual space .(R) of Schwartz functions on R consists of
infinitely-differentiable functions all of whose derivatives are of
rapid decay, decaying more rapidly at £oo than every 1/|z|V. Its
topology is given by semi-norms

ven(f) = sup sup ((1+ )™ - | D ()]
0<i<k zeR

for0<keZand 0 < N € Z.
Theorem: .7 is a topological isomorphism .7 (R) — .7 (R).
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p-adic Fourier transforms, tnversions:

Claim: The characteristic function of Z, is its own Fourier
transform. ///

Cancellation Lemma: For continuous group hom ¢ : K — C*
on a compact group K,

meas (K) (for ¢ =1)
/K Wayds = §

Claim: Characteristic function of kap is p~* times the
characteristic function of p=*Z,. ///

(for ¢ # 1)

Claim: Characteristic function of Z, + y is v, times the
characteristic function of Z,. ///
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Combining the two computations above,
ﬁ(char fen p*Z, + y) = 1y, .p~* . (char fcn p*7,)

Conveniently, products v, - (char fen p~*7Z,) are in the same
class of functions, since 1, has a kernel which is an open (and
compact) neighborhood of 0, so Fourier transform sends this class
of functions is mapped to itself under Fourier transform.

Schwartz functions . (Q,) on Q, are these special simple
functions, that is, finite linear combinations of characteristic
functions of sets kap + .

p-adic Fourier inversion:

/ be(e) F6) de (for f € #(Q,))

Thus, # : L(Qp) = L (Qp) is a bijection.
Earlier, we proved that .(Q,) is dense in C2(Q,).
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Schwartz functions .¥’(A) on the adeles are finite linear
combinations of monomial functions

(® £)dwh) = T] Al

<00

with f, € #(Q,), and where for all but finitely-many v the local
function f, is the characteristic function of 7Z,,.

Fourier transform on .#(A) is the product of all the local Fourier
transforms, and Fourier inversion follows for .#(A) because it

holds for each .(Q,).

Identical definitions and properties apply to all number fields k,
their completions k,, and adeles A = Ay, with nearly identical
proofs.
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The harmonic analysis on R really is parallel to that on Q, and A
in many regards. For example,

Plancherel theorem: As on R, f@ f g = f@ f - g for

f7 g S y(@p)
Proof: The key point is the surjectivity of .# : . (Q,) — .Z(Q,):

pa= 07T ] e g d
Qp @p
- [ (] s w1<—£x>dx)-§<£>d£ - [ 73
This is the same proof as for R, and also applies to A. ///

Then .Z is extended to L*(Q,) by continuity, giving the Fourier-
Plancherel transform, no longer defined literally by the integrals.
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Fourier series on A/k: For a unimodular topological group G,
let L?(G) be the completion of C2(G) with respect to the usual
L?-norm given by

P = /G (o) dg (for | € C2(G))

Remark: The measurable-function version of L?(G) contains this
completion, and is provably equal, but we only need integrals of
continuous compactly-supported functions.

The usual inner product is
4P = [ 1F
G

As usual, the completeness makes L?(G) a Hilbert space.

Remark: Defining or characterizing L?(G) as the completion
of C2(G) makes it complete. In contrast, giving L*(G) as the
collection of measurable functions meeting a condition leaves us
needing to prove completeness.
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(big) Theorem: For a compact abelian group G, with total
measure 1, the continuous group homomorphisms (characters)
Y : G — C* form an orthonormal Hilbert-space basis for L*(QG).

That is,
L*(G) = completion of @ C-
and PYEGY

f = Z (f,ah) -2 (for f € L?*(@G), convergence in L?(G))
YeGY
Remark: This applies to the circle R/Z!

Remark: Recall that a Hilbert-space basis of a Hilbert space V' is
not a vector-space basis for V', but for a dense subspace.

Remark: For finite abelian groups, this follows from the spectral
theorem for commuting unitary operators on finite-dimensional
C-vectorspaces. (See 2010-11 notes.)

Remark: As in the elementary example of the circle R/Z,
convergence in L? says nothing directly about pointwise
convergence, much less uniform pointwise convergence.
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Proof: Orthonormality is easy: for v # ¢ characters,

(W, ) = /ng)-wg) dg = /Gw—l@ dg

By the cancellation lemma, this is 0 for ¥ # .

Completeness is more serious. We must prove existence of
sufficiently many eigenvectors for the action of G on complex-
valued functions

g9-flz) = flzg) (for f € C2(G) and 7,9 € G)

For f to be an eigenfunction means that
g-f = Xe(g)- f (for all g € G, with A¢(g) € C)

The unitariness is

g-f. g F) = /G f(2g) B(zg) do = /G (@) p(x)de = (f.F)
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The eigenvalues A¢(g) cannot be unrelated: for g,h € G,
Af(gh) - f = (gh)- [ = g-(h-f) = g-(As(R) f)

= Ar(h) g f = Ap(M) As(9) f
so A : G = C* is a group homomorphism.

For G finite, L*(Q) is finite-dimensional. By finite-dimensional
spectral theory for unitary operators, L?(G) is a direct sum of
eigenspaces V), for group homomorphism A : G — C*.

Each eigenfunction f is itself a constant multiple of a group
homomorphism G — C*:

flz) = f(L-z) = Ap(z) F(1)
If Ay = Ap, with normalization f(1) =1 = F(1),
fla) = f(1-2) = Ap(2) (1) = Ap(z) F(1) = F(2)

That is, each Ay occurs with multiplicity one.
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Certainly every group homomorphism G — C* is a complex-
valued function on finite GG, so

L’G) = @ c-vy (G finite abelian)
YeGvy
We did not use the structure theorem for finite abelian groups.

On infinite-dimensional Hilbert spaces, even for unitary operators,
general spectral theory does not guarantee eigenvectors.

From a spectral viewpoint, the best operators on infinite-
dimensional Hilbert spaces are self-adjoint compact operators.

The self-adjointness is the usual (Tv, w) = (v, Tw).

The compactness is that the image T'B of the unit ball B has
compact closure. Thus, the image {T'v;} of a bounded sequence
{vi} has a convergent subsequence {T, }.

On finite-dimensional vector spaces, every linear operator is
compact.
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One of the most useful theorems in the universe:

Theorem: Let R be a set of compact, self-adjoint, mutually
commuting operators on a Hilbert space V. Suppose the action
is non-degenerate in the sense that for 0 £ v € V thereis T € R
with Tv # 0. Then V has an orthonormal Hilbert-space basis of
simultaneous eigenvectors for R. The joint eigenspaces are finite-
dimensional.

[The simple proof is below. Other useful details arise.]
Where do compact operators come from?

From integral operators, sometimes misleadingly called convolution
operators. This misnomer is understandable, but does make less
intelligible what’s going on.

A function n € C9(G) acts on L?(G) by the integral operator

(- f)z) = /G n(g) f(xg) dg
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There is the compatibility
a8+ @) = [ [ alk)5(g) fahg) dgdn
GJG

= L(/G&(hg_l>5(g)dg>f(xh) dh

_ /G(a*ﬁ)(h) f(zh) dh = ((a*B)- f)(x)

That o * 5 is convolution, indeed, but the action on a vector space
on which G acts is much more general than convolution. Further,

there is a discrepancy of inverse-or-not if we try to force the action
of C°(G) on L*(G) to be convolution.

An innocent change of variables gives

(@ f)a) = /G aly) flay) dy = / a(zy) F(y) dy

G
Write K (z,y) = a(z™ly) to suggest viewing a(z~1y) as a kernel
for an integral operator, analogous to a matrixz, but indexed by
x,y € G.
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Claim: For topological spaces X,Y with nice measures, for
K(z,y) € C°(X xY), the linear operator T' : L*(Y) — L?*(X)
by
Tf@) = [ K.y ) dy

Y
is compact. For X =Y and K(y,x) = K(x,y), the operator T is
self-adjoint.

Remark: Fredholm, Volterra, Hilbert, Riesz, and others inverted
certain ordinary differential operators (Sturm-Liouville problems)
to wntegral operators, which happened to be compact, thus giving a
basis of eigenfunctions, enabling solution of such problems.

Remark This same strategy applies to compact G that are
not necessarily abelian, to decompose L?(G) into irreducible
representations, although most of the irreducibles are not one-
dimensional, not spanned by group homomorphisms G — C*.
Even for G non-compact, non-abelian, for discrete subgroups I'
with T'\G compact, the same mechanism decomposes L?(T'\G).
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Proof of spectral theorem for compact self-adjoint operators: The
key point of the theorem above is the spectral theorem for a single
self-adjoint compact operator T : V — V.

Lemma: A continuous self-adjoint operator T on a Hilbert space
V' has operator norm |T'| = sup|,|<; |T'v| expressible as

7| = sup [(Tv,v)
[v]<1
Proof of Lemma: On one hand, certainly [(Tv,v)| < |Tw| - |v],
giving the easy direction of inequality.

On the other hand, let ¢ = sup,|<; [(T'v,v)|. A polarization
identity gives

2(Tv,w) + 2(Tw,v) = (T(v+w),v+w) —(T(v—w),v—w)

With w = ¢t - Tv with ¢t > 0, since T' = T*, both (Tw,w) and
(T'w,v) are non-negative real. Taking absolute values,
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4HTv,t-Tv) = o-lw+t-Tvf* +0-|jv—1t Toul?
= (Tw+t-Tv),v+t-Tv)— (T(v—1t-Tv),v—1t-Tv)

<o vtt-Tof+o-jv—t-Tvf> = do- (Jv]> +¢*- |Tv|?)

Divide through by 4¢ and set t = |v|/|T'v| to minimize the right-
hand side, obtaining

Tol® < o-Jo] - |T0]

giving the other inequality, proving the Lemma. ///

Key Lemma: A compact self-adjoint operator 1" has largest
eigenvalue £|T|.



Garrett 02-22-2012 17

Proof of Key Lemma: Take |T| > 0, orelse T = 0. Using
the characterization of operator norm, let v; be a sequence of
unit vectors such that |(Tv;,v;)| — |T'|. On one hand, using

(Tv,vy = (v, Tv) = (Tv,v),
0 < |[Tw; — Av|* = |[Tv;]? — 22X (Tvs, ;) + N2 |v; |2

< A% = 2XM{Tv;, v;) + A2

By assumption, the right-hand side goes to 0. Using compactness,

replace v; with a subsequence such that T'v; has limit w. Then the
inequality shows that A\v; — w, so v; — A~ 1w. Thus, by continuity
of T, Tw = \w. ///

The commutativity of the set R of operators ensures that

the operators stabilize each others’ eigenspaces. The non-
degeneracy ensures that the orthogonal complement of all the
joint eigenspaces is {0}. ///
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Nezt, prove that K(z,y) € C2(X x Y) gives a compact operator...



