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Harmonic analysis, on Ak/k, adelic Poisson summation.

Corollary: Given non-trivial ψ ∈ A∨, every other element of A∨
is of the form x→ ψ(ξ · x) for some ξ ∈ A.

The standard character ψ1 on Qp is as follows: given x ∈ Qp,
there is x′ ∈ p−kZ for some k ∈ Z, such that x− x′ ∈ Zp, and

ψ1(x) = e−2πix
′

(sign choice for later)

For ξ ∈ Qp, let

ψξ(x) = ψ1(ξ · x) (for x, ξ ∈ Qp)

For a finite extension kv of Qp, the standard character is

ψξ(x) = ψ1

(
trkvQp

(ξ · x)
)

(for x, ξ ∈ kv)

Probably use these without further comment.
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Fourier transform on archimedean or p-adic kv is

Ff(ξ) = f̂(ξ) =

∫
kv

ψξ(x) f(x) dx

Fourier inversion

f(x) =

∫
kv

ψξ(x) f̂(ξ) dξ (for nice functions f)

The usual space S (R) of Schwartz functions on R consists of
infinitely-differentiable functions all of whose derivatives are of
rapid decay, decaying more rapidly at ±∞ than every 1/|x|N . Its
topology is given by semi-norms

νk,N (f) = sup
0≤i≤k

sup
x∈R

(
(1 + |x|)N ·

∣∣f (i)(x)
∣∣)

for 0 ≤ k ∈ Z and 0 ≤ N ∈ Z.

Theorem: F is a topological isomorphism S (R)→ S (R).
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p-adic Fourier transforms, inversions:

Claim: The characteristic function of Zp is its own Fourier
transform. ///

Cancellation Lemma: For continuous group hom ψ : K → C×
on a compact group K,∫

K

ψ(x) dx =

meas (K) (for ψ = 1)

0 (for ψ 6= 1)

Claim: Characteristic function of pkZp is p−k times the
characteristic function of p−kZp. ///

Claim: Characteristic function of Zp + y is ψy times the
characteristic function of Zp. ///
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Combining the two computations above,

F
(

char fcn pkZp + y
)

= ψy · p−k · (char fcn p−kZp)

Conveniently, products ψy · (char fcn p−kZp) are in the same
class of functions, since ψy has a kernel which is an open (and
compact) neighborhood of 0, so Fourier transform sends this class
of functions is mapped to itself under Fourier transform.

Schwartz functions S (Qp) on Qp are these special simple
functions, that is, finite linear combinations of characteristic
functions of sets pkZp + y.

p-adic Fourier inversion:

f(x) =

∫
Qp

ψξ(x) f̂(ξ) dξ (for f ∈ S (Qp))

Thus, F : S (Qp)→ S (Qp) is a bijection.

Earlier, we proved that S (Qp) is dense in Coc (Qp).
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Schwartz functions S (A) on the adeles are finite linear
combinations of monomial functions( ⊗

v≤∞

fv

)
({xv}) =

∏
v

fv(xv)

with fv ∈ S (Qv), and where for all but finitely-many v the local
function fv is the characteristic function of Zv.

Fourier transform on S (A) is the product of all the local Fourier
transforms, and Fourier inversion follows for S (A) because it
holds for each S (Qv).

Identical definitions and properties apply to all number fields k,
their completions kv, and adeles A = Ak, with nearly identical
proofs.
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The harmonic analysis on R really is parallel to that on Qp and A
in many regards. For example,

Plancherel theorem: As on R,
∫
Qp
f̂ · ĝ =

∫
Qp
f · g for

f, g ∈ S (Qp).

Proof: The key point is the surjectivity of F : S (Qp)→ S (Qp):∫
Qp

f · g =

∫
Qp

f ·F−1ĝ =

∫
Qp

∫
Qp

f(x) · ψ1(−ξx) · ĝ(ξ) dξ dx

=

∫
Qp

(∫
Qp

f(x) · ψ1(−ξx) dx
)
· ĝ(ξ) dξ =

∫
Qp

f̂ · ĝ

This is the same proof as for R, and also applies to A. ///

Then F is extended to L2(Qp) by continuity, giving the Fourier-
Plancherel transform, no longer defined literally by the integrals.
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Fourier series on A/k: For a unimodular topological group G,
let L2(G) be the completion of Coc (G) with respect to the usual
L2-norm given by

|f |2 =

∫
G

|f(g)|2 dg (for f ∈ Coc (G))

Remark: The measurable-function version of L2(G) contains this
completion, and is provably equal, but we only need integrals of
continuous compactly-supported functions.

The usual inner product is

〈f, F 〉 =

∫
G

f · F

As usual, the completeness makes L2(G) a Hilbert space.

Remark: Defining or characterizing L2(G) as the completion
of CoC(G) makes it complete. In contrast, giving L2(G) as the
collection of measurable functions meeting a condition leaves us
needing to prove completeness.
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(big) Theorem: For a compact abelian group G, with total
measure 1, the continuous group homomorphisms (characters)
ψ : G → C× form an orthonormal Hilbert-space basis for L2(G).
That is,

L2(G) = completion of
⊕
ψ∈G∨

C · ψ
and

f =
∑
ψ∈G∨

〈f, ψ〉 · ψ (for f ∈ L2(G), convergence in L2(G))

Remark: This applies to the circle R/Z!

Remark: Recall that a Hilbert-space basis of a Hilbert space V is
not a vector-space basis for V , but for a dense subspace.

Remark: For finite abelian groups, this follows from the spectral
theorem for commuting unitary operators on finite-dimensional
C-vectorspaces. (See 2010-11 notes.)

Remark: As in the elementary example of the circle R/Z,
convergence in L2 says nothing directly about pointwise
convergence, much less uniform pointwise convergence.
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Proof: Orthonormality is easy: for ψ 6= ϕ characters,

〈ψ,ϕ〉 =

∫
G

ψ(g) · ϕ(g) dg =

∫
G

ψϕ−1(g) dg

By the cancellation lemma, this is 0 for ψ 6= ϕ.

Completeness is more serious. We must prove existence of
sufficiently many eigenvectors for the action of G on complex-
valued functions

g · f(x) = f(xg) (for f ∈ Coc (G) and x, g ∈ G)

For f to be an eigenfunction means that

g · f = λf (g) · f (for all g ∈ G, with λf (g) ∈ C)

The unitariness is

〈g · f, g · F 〉 =

∫
G

f(xg)ϕ(xg) dx =

∫
G

f(x)ϕ(x) dx = 〈f, F 〉
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The eigenvalues λf (g) cannot be unrelated: for g, h ∈ G,

λf (gh) · f = (gh) · f = g · (h · f) = g · (λf (h) f)

= λf (h) g · f = λf (h)λf (g) f

so λf : G→ C× is a group homomorphism.

For G finite, L2(G) is finite-dimensional. By finite-dimensional
spectral theory for unitary operators, L2(G) is a direct sum of
eigenspaces Vλ, for group homomorphism λ : G→ C×.

Each eigenfunction f is itself a constant multiple of a group
homomorphism G→ C×:

f(x) = f(1 · x) = λf (x) f(1)

If λf = λF , with normalization f(1) = 1 = F (1),

f(x) = f(1 · x) = λf (x) f(1) = λF (x)F (1) = F (x)

That is, each λf occurs with multiplicity one.
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Certainly every group homomorphism G → C× is a complex-
valued function on finite G, so

L2(G) =
⊕
ψ∈G∨

C · ψ (G finite abelian)

We did not use the structure theorem for finite abelian groups.

On infinite-dimensional Hilbert spaces, even for unitary operators,
general spectral theory does not guarantee eigenvectors.

From a spectral viewpoint, the best operators on infinite-
dimensional Hilbert spaces are self-adjoint compact operators.

The self-adjointness is the usual 〈Tv,w〉 = 〈v, Tw〉.
The compactness is that the image TB of the unit ball B has
compact closure. Thus, the image {Tvi} of a bounded sequence
{vi} has a convergent subsequence {Tvik }.
On finite-dimensional vector spaces, every linear operator is
compact.
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One of the most useful theorems in the universe:

Theorem: Let R be a set of compact, self-adjoint, mutually
commuting operators on a Hilbert space V . Suppose the action
is non-degenerate in the sense that for 0 6= v ∈ V there is T ∈ R
with Tv 6= 0. Then V has an orthonormal Hilbert-space basis of
simultaneous eigenvectors for R. The joint eigenspaces are finite-
dimensional.

[The simple proof is below. Other useful details arise.]

Where do compact operators come from?

From integral operators, sometimes misleadingly called convolution
operators. This misnomer is understandable, but does make less
intelligible what’s going on.

A function η ∈ Coc (G) acts on L2(G) by the integral operator

(η · f)(x) =

∫
G

η(g) f(xg) dg
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There is the compatibility

α · (β · f)(x) =

∫
G

∫
G

α(h)β(g) f(xhg) dg dh

=

∫
G

(∫
G

α(hg−1)β(g) dg
)
f(xh) dh

=

∫
G

(α ∗ β)(h) f(xh) dh =
(
(α ∗ β) · f

)
(x)

That α ∗ β is convolution, indeed, but the action on a vector space
on which G acts is much more general than convolution. Further,
there is a discrepancy of inverse-or-not if we try to force the action
of Coc (G) on L2(G) to be convolution.

An innocent change of variables gives

(α · f)(x) =

∫
G

α(y) f(xy) dy =

∫
G

α(x−1y) f(y) dy

Write K(x, y) = α(x−1y) to suggest viewing α(x−1y) as a kernel
for an integral operator, analogous to a matrix, but indexed by
x, y ∈ G.
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Claim: For topological spaces X,Y with nice measures, for
K(x, y) ∈ Coc (X × Y ), the linear operator T : L2(Y ) → L2(X)
by

Tf(x) =

∫
Y

K(x, y) f(y) dy

is compact. For X = Y and K(y, x) = K(x, y), the operator T is
self-adjoint.

Remark: Fredholm, Volterra, Hilbert, Riesz, and others inverted
certain ordinary differential operators (Sturm-Liouville problems)
to integral operators, which happened to be compact, thus giving a
basis of eigenfunctions, enabling solution of such problems.

Remark This same strategy applies to compact G that are
not necessarily abelian, to decompose L2(G) into irreducible
representations, although most of the irreducibles are not one-
dimensional, not spanned by group homomorphisms G → C×.
Even for G non-compact, non-abelian, for discrete subgroups Γ
with Γ\G compact, the same mechanism decomposes L2(Γ\G).
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Proof of spectral theorem for compact self-adjoint operators: The
key point of the theorem above is the spectral theorem for a single
self-adjoint compact operator T : V → V .

Lemma: A continuous self-adjoint operator T on a Hilbert space
V has operator norm |T | = sup|v|≤1 |Tv| expressible as

|T | = sup
|v|≤1

|〈Tv, v〉|

Proof of Lemma: On one hand, certainly |〈Tv, v〉| ≤ |Tv| · |v|,
giving the easy direction of inequality.

On the other hand, let σ = sup|v|≤1 |〈Tv, v〉|. A polarization
identity gives

2〈Tv,w〉+ 2〈Tw, v〉 = 〈T (v + w), v + w〉 − 〈T (v − w), v − w〉

With w = t · Tv with t > 0, since T = T ∗, both 〈Tv,w〉 and
〈Tw, v〉 are non-negative real. Taking absolute values,
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4〈Tv, t · Tv〉 = σ · |v + t · Tv|2 + σ · |v − t · Tv|2

=
∣∣∣〈T (v + t · Tv), v + t · Tv〉 − 〈T (v − t · Tv), v − t · Tv〉

∣∣∣
≤ σ · |v + t · Tv|2 + σ · |v − t · Tv|2 = 4σ ·

(
|v|2 + t2 · |Tv|2)

Divide through by 4t and set t = |v|/|Tv| to minimize the right-
hand side, obtaining

|Tv|2 ≤ σ · |v| · |Tv|

giving the other inequality, proving the Lemma. ///

Key Lemma: A compact self-adjoint operator T has largest
eigenvalue ±|T |.
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Proof of Key Lemma: Take |T | > 0, or else T = 0. Using
the characterization of operator norm, let vi be a sequence of
unit vectors such that |〈Tvi, vi〉| → |T |. On one hand, using
〈Tv, v〉 = 〈v, Tv〉 = 〈Tv, v〉,

0 ≤ |Tvi − λvi|2 = |Tvi|2 − 2λ〈Tvi, vi〉+ λ2|vi|2

≤ λ2 − 2λ〈Tvi, vi〉+ λ2

By assumption, the right-hand side goes to 0. Using compactness,
replace vi with a subsequence such that Tvi has limit w. Then the
inequality shows that λvi → w, so vi → λ−1w. Thus, by continuity
of T , Tw = λw. ///

The commutativity of the set R of operators ensures that
the operators stabilize each others’ eigenspaces. The non-
degeneracy ensures that the orthogonal complement of all the
joint eigenspaces is {0}. ///
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Next, prove that K(x, y) ∈ Coc (X × Y ) gives a compact operator...


