Harmonic analysis, on \mathbb{A}_{k} / k, adelic Poisson summation.
Corollary: Given non-trivial $\psi \in \mathbb{A}^{\vee}$, every other element of \mathbb{A}^{\vee} is of the form $x \rightarrow \psi(\xi \cdot x)$ for some $\xi \in \mathbb{A}$.

The standard character ψ_{1} on \mathbb{Q}_{p} is as follows: given $x \in \mathbb{Q}_{p}$, there is $x^{\prime} \in p^{-k} \mathbb{Z}$ for some $k \in \mathbb{Z}$, such that $x-x^{\prime} \in \mathbb{Z}_{p}$, and

$$
\psi_{1}(x)=e^{-2 \pi i x^{\prime}} \quad(\text { sign choice for later })
$$

For $\xi \in \mathbb{Q}_{p}$, let

$$
\psi_{\xi}(x)=\psi_{1}(\xi \cdot x) \quad\left(\text { for } x, \xi \in \mathbb{Q}_{p}\right)
$$

For a finite extension k_{v} of \mathbb{Q}_{p}, the standard character is

$$
\psi_{\xi}(x)=\psi_{1}\left(\operatorname{tr}_{\mathbb{Q}_{p}}^{k_{v}}(\xi \cdot x)\right) \quad\left(\text { for } x, \xi \in k_{v}\right)
$$

Probably use these without further comment.

Fourier transform on archimedean or p-adic k_{v} is

$$
\mathscr{F} f(\xi)=\widehat{f}(\xi)=\int_{k_{v}} \bar{\psi}_{\xi}(x) f(x) d x
$$

Fourier inversion

$$
f(x)=\int_{k_{v}} \psi_{\xi}(x) \widehat{f}(\xi) d \xi \quad \text { (for nice functions } f \text {) }
$$

The usual space $\mathscr{S}(\mathbb{R})$ of Schwartz functions on \mathbb{R} consists of infinitely-differentiable functions all of whose derivatives are of rapid decay, decaying more rapidly at $\pm \infty$ than every $1 /|x|^{N}$. Its topology is given by semi-norms

$$
\nu_{k, N}(f)=\sup _{0 \leq i \leq k} \sup _{x \in \mathbb{R}}\left((1+|x|)^{N} \cdot\left|f^{(i)}(x)\right|\right)
$$

for $0 \leq k \in \mathbb{Z}$ and $0 \leq N \in \mathbb{Z}$.
Theorem: \mathscr{F} is a topological isomorphism $\mathscr{S}(\mathbb{R}) \rightarrow \mathscr{S}(\mathbb{R})$.
p-adic Fourier transforms, inversions:
Claim: The characteristic function of \mathbb{Z}_{p} is its own Fourier transform.

Cancellation Lemma: For continuous group hom $\psi: K \rightarrow \mathbb{C}^{\times}$ on a compact group K,

$$
\int_{K} \psi(x) d x=\left\{\begin{array}{cl}
\operatorname{meas}(K) & (\text { for } \psi=1) \\
0 & (\text { for } \psi \neq 1)
\end{array}\right.
$$

Claim: Characteristic function of $p^{k} \mathbb{Z}_{p}$ is p^{-k} times the characteristic function of $p^{-k} \mathbb{Z}_{p}$.

Claim: Characteristic function of $\mathbb{Z}_{p}+y$ is ψ_{y} times the characteristic function of \mathbb{Z}_{p}.

Combining the two computations above,

$$
\mathscr{F}\left(\operatorname{char} \operatorname{fcn} p^{k} \mathbb{Z}_{p}+y\right)=\psi_{y} \cdot p^{-k} \cdot\left(\operatorname{char} \operatorname{fcn} p^{-k} \mathbb{Z}_{p}\right)
$$

Conveniently, products $\psi_{y} \cdot\left(\operatorname{char} \operatorname{fcn} p^{-k} \mathbb{Z}_{p}\right)$ are in the same class of functions, since ψ_{y} has a kernel which is an open (and compact) neighborhood of 0, so Fourier transform sends this class of functions is mapped to itself under Fourier transform.

Schwartz functions $\mathscr{S}\left(\mathbb{Q}_{p}\right)$ on \mathbb{Q}_{p} are these special simple functions, that is, finite linear combinations of characteristic functions of sets $p^{k} \mathbb{Z}_{p}+y$.
p-adic Fourier inversion:

$$
f(x)=\int_{\mathbb{Q}_{p}} \psi_{\xi}(x) \widehat{f}(\xi) d \xi \quad \quad\left(\text { for } f \in \mathscr{S}\left(\mathbb{Q}_{p}\right)\right)
$$

Thus, $\mathscr{F}: \mathscr{S}\left(\mathbb{Q}_{p}\right) \rightarrow \mathscr{S}\left(\mathbb{Q}_{p}\right)$ is a bijection.
Earlier, we proved that $\mathscr{S}\left(\mathbb{Q}_{p}\right)$ is dense in $C_{c}^{o}\left(\mathbb{Q}_{p}\right)$.

Schwartz functions $\mathscr{S}(\mathbb{A})$ on the adeles are finite linear combinations of monomial functions

$$
\left(\bigotimes_{v \leq \infty} f_{v}\right)\left(\left\{x_{v}\right\}\right)=\prod_{v} f_{v}\left(x_{v}\right)
$$

with $f_{v} \in \mathscr{S}\left(\mathbb{Q}_{v}\right)$, and where for all but finitely-many v the local function f_{v} is the characteristic function of \mathbb{Z}_{v}.

Fourier transform on $\mathscr{S}(\mathbb{A})$ is the product of all the local Fourier transforms, and Fourier inversion follows for $\mathscr{S}(\mathbb{A})$ because it holds for each $\mathscr{S}\left(\mathbb{Q}_{v}\right)$.

Identical definitions and properties apply to all number fields k, their completions k_{v}, and adeles $\mathbb{A}=\mathbb{A}_{k}$, with nearly identical proofs.

The harmonic analysis on \mathbb{R} really is parallel to that on \mathbb{Q}_{p} and \mathbb{A} in many regards. For example,
Plancherel theorem: As on $\mathbb{R}, \int_{\mathbb{Q}_{p}} \widehat{f} \cdot \overline{\hat{g}}=\int_{\mathbb{Q}_{p}} f \cdot \bar{g}$ for $f, g \in \mathscr{S}\left(\mathbb{Q}_{p}\right)$.
Proof: The key point is the surjectivity of $\mathscr{F}: \mathscr{S}\left(\mathbb{Q}_{p}\right) \rightarrow \mathscr{S}\left(\mathbb{Q}_{p}\right)$:

$$
\begin{gathered}
\int_{\mathbb{Q}_{p}} f \cdot \bar{g}=\int_{\mathbb{Q}_{p}} f \cdot \overline{\mathscr{F}-1} \widehat{\widehat{g}}=\int_{\mathbb{Q}_{p}} \int_{\mathbb{Q}_{p}} f(x) \cdot \psi_{1}(-\xi x) \cdot \overline{\hat{g}}(\xi) d \xi d x \\
\quad=\int_{\mathbb{Q}_{p}}\left(\int_{\mathbb{Q}_{p}} f(x) \cdot \psi_{1}(-\xi x) d x\right) \cdot \overline{\hat{g}}(\xi) d \xi=\int_{\mathbb{Q}_{p}} \widehat{f} \cdot \overline{\hat{g}}
\end{gathered}
$$

This is the same proof as for \mathbb{R}, and also applies to \mathbb{A}.
Then \mathscr{F} is extended to $L^{2}\left(\mathbb{Q}_{p}\right)$ by continuity, giving the FourierPlancherel transform, no longer defined literally by the integrals.

Fourier series on \mathbb{A} / k : For a unimodular topological group G, let $L^{2}(G)$ be the completion of $C_{c}^{o}(G)$ with respect to the usual L^{2}-norm given by

$$
|f|^{2}=\int_{G}|f(g)|^{2} d g \quad\left(\text { for } f \in C_{c}^{o}(G)\right)
$$

Remark: The measurable-function version of $L^{2}(G)$ contains this completion, and is provably equal, but we only need integrals of continuous compactly-supported functions.

The usual inner product is

$$
\langle f, F\rangle=\int_{G} f \cdot \bar{F}
$$

As usual, the completeness makes $L^{2}(G)$ a Hilbert space.
Remark: Defining or characterizing $L^{2}(G)$ as the completion of $C_{C}^{o}(G)$ makes it complete. In contrast, giving $L^{2}(G)$ as the collection of measurable functions meeting a condition leaves us needing to prove completeness.
(big) Theorem: For a compact abelian group G, with total measure 1, the continuous group homomorphisms (characters) $\psi: G \rightarrow \mathbb{C}^{\times}$form an orthonormal Hilbert-space basis for $L^{2}(G)$. That is,
and

$$
L^{2}(G)=\text { completion of } \bigoplus_{\psi \in G^{\vee}} \mathbb{C} \cdot \psi
$$

$$
f=\sum_{\psi \in G^{\vee}}\langle f, \psi\rangle \cdot \psi \quad\left(\text { for } f \in L^{2}(G), \text { convergence in } L^{2}(G)\right)
$$

Remark: This applies to the circle \mathbb{R} / \mathbb{Z} !
Remark: Recall that a Hilbert-space basis of a Hilbert space V is not a vector-space basis for V, but for a dense subspace.
Remark: For finite abelian groups, this follows from the spectral theorem for commuting unitary operators on finite-dimensional \mathbb{C}-vectorspaces. (See 2010-11 notes.)

Remark: As in the elementary example of the circle \mathbb{R} / \mathbb{Z}, convergence in L^{2} says nothing directly about pointwise convergence, much less uniform pointwise convergence.

Proof: Orthonormality is easy: for $\psi \neq \varphi$ characters,

$$
\langle\psi, \varphi\rangle=\int_{G} \psi(g) \cdot \bar{\varphi}(g) d g=\int_{G} \psi \varphi^{-1}(g) d g
$$

By the cancellation lemma, this is 0 for $\psi \neq \varphi$.
Completeness is more serious. We must prove existence of sufficiently many eigenvectors for the action of G on complexvalued functions

$$
g \cdot f(x)=f(x g) \quad\left(\text { for } f \in C_{c}^{o}(G) \text { and } x, g \in G\right)
$$

For f to be an eigenfunction means that

$$
g \cdot f=\lambda_{f}(g) \cdot f \quad\left(\text { for all } g \in G, \text { with } \lambda_{f}(g) \in \mathbb{C}\right)
$$

The unitariness is

$$
\langle g \cdot f, g \cdot F\rangle=\int_{G} f(x g) \bar{\varphi}(x g) d x=\int_{G} f(x) \bar{\varphi}(x) d x=\langle f, F\rangle
$$

The eigenvalues $\lambda_{f}(g)$ cannot be unrelated: for $g, h \in G$,

$$
\begin{aligned}
\lambda_{f}(g h) \cdot f & =(g h) \cdot f=g \cdot(h \cdot f)=g \cdot\left(\lambda_{f}(h) f\right) \\
& =\lambda_{f}(h) g \cdot f=\lambda_{f}(h) \lambda_{f}(g) f
\end{aligned}
$$

so $\lambda_{f}: G \rightarrow \mathbb{C}^{\times}$is a group homomorphism.
For G finite, $L^{2}(G)$ is finite-dimensional. By finite-dimensional spectral theory for unitary operators, $L^{2}(G)$ is a direct sum of eigenspaces V_{λ}, for group homomorphism $\lambda: G \rightarrow \mathbb{C}^{\times}$.
Each eigenfunction f is itself a constant multiple of a group homomorphism $G \rightarrow \mathbb{C}^{\times}$:

$$
f(x)=f(1 \cdot x)=\lambda_{f}(x) f(1)
$$

If $\lambda_{f}=\lambda_{F}$, with normalization $f(1)=1=F(1)$,

$$
f(x)=f(1 \cdot x)=\lambda_{f}(x) f(1)=\lambda_{F}(x) F(1)=F(x)
$$

That is, each λ_{f} occurs with multiplicity one.

Certainly every group homomorphism $G \rightarrow \mathbb{C}^{\times}$is a complexvalued function on finite G, so

$$
L^{2}(G)=\bigoplus \mathbb{C} \cdot \psi \quad(G \text { finite abelian })
$$

We did not use the structure theorem for finite abelian groups.
On infinite-dimensional Hilbert spaces, even for unitary operators, general spectral theory does not guarantee eigenvectors.

From a spectral viewpoint, the best operators on infinitedimensional Hilbert spaces are self-adjoint compact operators.
The self-adjointness is the usual $\langle T v, w\rangle=\langle v, T w\rangle$.
The compactness is that the image $T B$ of the unit ball B has compact closure. Thus, the image $\left\{T v_{i}\right\}$ of a bounded sequence $\left\{v_{i}\right\}$ has a convergent subsequence $\left\{T_{v_{i_{k}}}\right\}$.
On finite-dimensional vector spaces, every linear operator is compact.

One of the most useful theorems in the universe:
Theorem: Let R be a set of compact, self-adjoint, mutually commuting operators on a Hilbert space V. Suppose the action is non-degenerate in the sense that for $0 \neq v \in V$ there is $T \in R$ with $T v \neq 0$. Then V has an orthonormal Hilbert-space basis of simultaneous eigenvectors for R. The joint eigenspaces are finitedimensional.
[The simple proof is below. Other useful details arise.]
Where do compact operators come from?
From integral operators, sometimes misleadingly called convolution operators. This misnomer is understandable, but does make less intelligible what's going on.
A function $\eta \in C_{c}^{o}(G)$ acts on $L^{2}(G)$ by the integral operator

$$
(\eta \cdot f)(x)=\int_{G} \eta(g) f(x g) d g
$$

There is the compatibility

$$
\begin{gathered}
\alpha \cdot(\beta \cdot f)(x)=\int_{G} \int_{G} \alpha(h) \beta(g) f(x h g) d g d h \\
=\int_{G}\left(\int_{G} \alpha\left(h g^{-1}\right) \beta(g) d g\right) f(x h) d h \\
=\int_{G}(\alpha * \beta)(h) f(x h) d h=((\alpha * \beta) \cdot f)(x)
\end{gathered}
$$

That $\alpha * \beta$ is convolution, indeed, but the action on a vector space on which G acts is much more general than convolution. Further, there is a discrepancy of inverse-or-not if we try to force the action of $C_{c}^{o}(G)$ on $L^{2}(G)$ to be convolution.
An innocent change of variables gives

$$
(\alpha \cdot f)(x)=\int_{G} \alpha(y) f(x y) d y=\int_{G} \alpha\left(x^{-1} y\right) f(y) d y
$$

Write $K(x, y)=\alpha\left(x^{-1} y\right)$ to suggest viewing $\alpha\left(x^{-1} y\right)$ as a kernel for an integral operator, analogous to a matrix, but indexed by $x, y \in G$.

Claim: For topological spaces X, Y with nice measures, for $K(x, y) \in C_{c}^{o}(X \times Y)$, the linear operator $T: L^{2}(Y) \rightarrow L^{2}(X)$ by

$$
T f(x)=\int_{Y} K(x, y) f(y) d y
$$

is compact. For $X=Y$ and $K(y, x)=\overline{K(x, y)}$, the operator T is self-adjoint.

Remark: Fredholm, Volterra, Hilbert, Riesz, and others inverted certain ordinary differential operators (Sturm-Liouville problems) to integral operators, which happened to be compact, thus giving a basis of eigenfunctions, enabling solution of such problems.

Remark This same strategy applies to compact G that are not necessarily abelian, to decompose $L^{2}(G)$ into irreducible representations, although most of the irreducibles are not onedimensional, not spanned by group homomorphisms $G \rightarrow \mathbb{C}^{\times}$. Even for G non-compact, non-abelian, for discrete subgroups Γ with $\Gamma \backslash G$ compact, the same mechanism decomposes $L^{2}(\Gamma \backslash G)$.

Proof of spectral theorem for compact self-adjoint operators: The key point of the theorem above is the spectral theorem for a single self-adjoint compact operator $T: V \rightarrow V$.

Lemma: A continuous self-adjoint operator T on a Hilbert space V has operator norm $|T|=\sup _{|v| \leq 1}|T v|$ expressible as

$$
|T|=\sup _{|v| \leq 1}|\langle T v, v\rangle|
$$

Proof of Lemma: On one hand, certainly $|\langle T v, v\rangle| \leq|T v| \cdot|v|$, giving the easy direction of inequality.

On the other hand, let $\sigma=\sup _{|v| \leq 1}|\langle T v, v\rangle|$. A polarization identity gives

$$
2\langle T v, w\rangle+2\langle T w, v\rangle=\langle T(v+w), v+w\rangle-\langle T(v-w), v-w\rangle
$$

With $w=t \cdot T v$ with $t>0$, since $T=T^{*}$, both $\langle T v, w\rangle$ and $\langle T w, v\rangle$ are non-negative real. Taking absolute values,

$$
\begin{gathered}
4\langle T v, t \cdot T v\rangle=\sigma \cdot|v+t \cdot T v|^{2}+\sigma \cdot|v-t \cdot T v|^{2} \\
=|\langle T(v+t \cdot T v), v+t \cdot T v\rangle-\langle T(v-t \cdot T v), v-t \cdot T v\rangle| \\
\leq \sigma \cdot|v+t \cdot T v|^{2}+\sigma \cdot|v-t \cdot T v|^{2}=4 \sigma \cdot\left(|v|^{2}+t^{2} \cdot|T v|^{2}\right)
\end{gathered}
$$

Divide through by $4 t$ and set $t=|v| /|T v|$ to minimize the righthand side, obtaining

$$
|T v|^{2} \leq \sigma \cdot|v| \cdot|T v|
$$

giving the other inequality, proving the Lemma.
Key Lemma: A compact self-adjoint operator T has largest eigenvalue $\pm|T|$.

Proof of Key Lemma: Take $|T|>0$, or else $T=0$. Using the characterization of operator norm, let v_{i} be a sequence of unit vectors such that $\left|\left\langle T v_{i}, v_{i}\right\rangle\right| \rightarrow|T|$. On one hand, using $\langle T v, v\rangle=\langle v, T v\rangle=\overline{\langle T v, v\rangle}$,

$$
\begin{gathered}
0 \leq\left|T v_{i}-\lambda v_{i}\right|^{2}=\left|T v_{i}\right|^{2}-2 \lambda\left\langle T v_{i}, v_{i}\right\rangle+\lambda^{2}\left|v_{i}\right|^{2} \\
\leq \lambda^{2}-2 \lambda\left\langle T v_{i}, v_{i}\right\rangle+\lambda^{2}
\end{gathered}
$$

By assumption, the right-hand side goes to 0 . Using compactness, replace v_{i} with a subsequence such that $T v_{i}$ has limit w. Then the inequality shows that $\lambda v_{i} \rightarrow w$, so $v_{i} \rightarrow \lambda^{-1} w$. Thus, by continuity of $T, T w=\lambda w$.

The commutativity of the set R of operators ensures that the operators stabilize each others' eigenspaces. The nondegeneracy ensures that the orthogonal complement of all the joint eigenspaces is $\{0\}$.

Next, prove that $K(x, y) \in C_{c}^{o}(X \times Y)$ gives a compact operator...

