Harmonic analysis, on \mathbb{A}_k/k , adelic Poisson summation.

Corollary: Given *non-trivial* $\psi \in \mathbb{A}^{\vee}$, every other element of \mathbb{A}^{\vee} is of the form $x \to \psi(\xi \cdot x)$ for some $\xi \in \mathbb{A}$.

The standard character ψ_1 on \mathbb{Q}_p is as follows: given $x \in \mathbb{Q}_p$, there is $x' \in p^{-k}\mathbb{Z}$ for some $k \in \mathbb{Z}$, such that $x - x' \in \mathbb{Z}_p$, and

 $\psi_1(x) = e^{-2\pi i x'}$ (sign choice for later)

For $\xi \in \mathbb{Q}_p$, let

$$\psi_{\xi}(x) = \psi_1(\xi \cdot x) \quad (\text{for } x, \xi \in \mathbb{Q}_p)$$

For a finite extension k_v of \mathbb{Q}_p , the standard character is

$$\psi_{\xi}(x) = \psi_1\left(\operatorname{tr}_{\mathbb{Q}_p}^{k_v}(\xi \cdot x)\right) \qquad (\text{for } x, \xi \in k_v)$$

Probably use these without further comment.

Fourier transform on archimedean or p-adic k_v is

$$\mathscr{F}f(\xi) = \widehat{f}(\xi) = \int_{k_v} \overline{\psi}_{\xi}(x) f(x) dx$$

Fourier inversion

$$f(x) = \int_{k_v} \psi_{\xi}(x) \,\widehat{f}(\xi) \, d\xi \qquad \text{(for nice functions } f)$$

The usual space $\mathscr{S}(\mathbb{R})$ of *Schwartz functions* on \mathbb{R} consists of infinitely-differentiable functions all of whose derivatives are of *rapid decay*, decaying more rapidly at $\pm \infty$ than every $1/|x|^N$. Its topology is given by semi-norms

$$\nu_{k,N}(f) = \sup_{0 \le i \le k} \sup_{x \in \mathbb{R}} \left((1+|x|)^N \cdot |f^{(i)}(x)| \right)$$

for $0 \leq k \in \mathbb{Z}$ and $0 \leq N \in \mathbb{Z}$.

Theorem: \mathscr{F} is a topological isomorphism $\mathscr{S}(\mathbb{R}) \to \mathscr{S}(\mathbb{R})$.

|||

p-adic Fourier transforms, inversions:

Claim: The characteristic function of \mathbb{Z}_p is its own Fourier transform. ///

Cancellation Lemma: For continuous group hom $\psi : K \to \mathbb{C}^{\times}$ on a compact group K,

$$\int_{K} \psi(x) \, dx = \begin{cases} \max(K) & (\text{for } \psi = 1) \\ 0 & (\text{for } \psi \neq 1) \end{cases}$$

Claim: Characteristic function of $p^k \mathbb{Z}_p$ is p^{-k} times the characteristic function of $p^{-k} \mathbb{Z}_p$. ///

Claim: Characteristic function of $\mathbb{Z}_p + y$ is ψ_y times the characteristic function of \mathbb{Z}_p .

Combining the two computations above,

$$\mathscr{F}\left(\operatorname{char}\,\operatorname{fcn}\,p^{k}\mathbb{Z}_{p}+y\right) = \psi_{y}\cdot p^{-k}\cdot\left(\operatorname{char}\,\operatorname{fcn}\,p^{-k}\mathbb{Z}_{p}\right)$$

Conveniently, products $\psi_y \cdot (\text{char fcn } p^{-k}\mathbb{Z}_p)$ are in the same class of functions, since ψ_y has a kernel which is an open (and compact) neighborhood of 0, so Fourier transform sends this class of functions is mapped to itself under Fourier transform.

Schwartz functions $\mathscr{S}(\mathbb{Q}_p)$ on \mathbb{Q}_p are these special simple functions, that is, finite linear combinations of characteristic functions of sets $p^k \mathbb{Z}_p + y$.

p-adic Fourier inversion:

$$f(x) = \int_{\mathbb{Q}_p} \psi_{\xi}(x) \,\widehat{f}(\xi) \, d\xi \qquad (\text{for } f \in \mathscr{S}(\mathbb{Q}_p))$$

Thus, $\mathscr{F} : \mathscr{S}(\mathbb{Q}_p) \to \mathscr{S}(\mathbb{Q}_p)$ is a bijection.

Earlier, we proved that $\mathscr{S}(\mathbb{Q}_p)$ is *dense* in $C_c^o(\mathbb{Q}_p)$.

Schwartz functions $\mathscr{S}(\mathbb{A})$ on the adeles are finite linear combinations of *monomial* functions

$$\left(\bigotimes_{v\leq\infty}f_v\right)(\{x_v\}) = \prod_v f_v(x_v)$$

with $f_v \in \mathscr{S}(\mathbb{Q}_v)$, and where for all but finitely-many v the local function f_v is the characteristic function of \mathbb{Z}_v .

Fourier transform on $\mathscr{S}(\mathbb{A})$ is the product of all the local Fourier transforms, and Fourier inversion follows for $\mathscr{S}(\mathbb{A})$ because it holds for each $\mathscr{S}(\mathbb{Q}_v)$.

Identical definitions and properties apply to all number fields k, their completions k_v , and adeles $\mathbb{A} = \mathbb{A}_k$, with nearly identical proofs.

The harmonic analysis on \mathbb{R} really is parallel to that on \mathbb{Q}_p and \mathbb{A} in many regards. For example,

Plancherel theorem: As on \mathbb{R} , $\int_{\mathbb{Q}_p} \widehat{f} \cdot \overline{\widehat{g}} = \int_{\mathbb{Q}_p} f \cdot \overline{g}$ for $f, g \in \mathscr{S}(\mathbb{Q}_p)$.

Proof: The key point is the surjectivity of $\mathscr{F} : \mathscr{S}(\mathbb{Q}_p) \to \mathscr{S}(\mathbb{Q}_p)$:

$$\int_{\mathbb{Q}_p} f \cdot \overline{g} = \int_{\mathbb{Q}_p} f \cdot \overline{\mathscr{F}^{-1}\widehat{g}} = \int_{\mathbb{Q}_p} \int_{\mathbb{Q}_p} f(x) \cdot \psi_1(-\xi x) \cdot \overline{\widehat{g}}(\xi) \, d\xi \, dx$$
$$= \int_{\mathbb{Q}_p} \left(\int_{\mathbb{Q}_p} f(x) \cdot \psi_1(-\xi x) \, dx \right) \cdot \overline{\widehat{g}}(\xi) \, d\xi = \int_{\mathbb{Q}_p} \widehat{f} \cdot \overline{\widehat{g}}$$

This is the same proof as for \mathbb{R} , and also applies to \mathbb{A} .

Then \mathscr{F} is extended to $L^2(\mathbb{Q}_p)$ by continuity, giving the Fourier-Plancherel transform, no longer defined literally by the integrals. Fourier series on \mathbb{A}/k : For a unimodular topological group G, let $L^2(G)$ be the *completion* of $C_c^o(G)$ with respect to the usual L^2 -norm given by

$$|f|^2 = \int_G |f(g)|^2 dg \qquad \text{(for } f \in C_c^o(G)\text{)}$$

Remark: The measurable-function version of $L^2(G)$ contains this completion, and is provably equal, but we only need integrals of continuous compactly-supported functions.

The usual *inner product* is

$$\langle f, F \rangle = \int_G f \cdot \overline{F}$$

As usual, the completeness makes $L^2(G)$ a Hilbert space.

Remark: Defining or characterizing $L^2(G)$ as the completion of $C_C^o(G)$ makes it complete. In contrast, giving $L^2(G)$ as the collection of *measurable functions* meeting a condition leaves us needing to *prove* completeness. (big) **Theorem:** For a *compact abelian* group G, with total measure 1, the continuous group homomorphisms (*characters*) $\psi: G \to \mathbb{C}^{\times}$ form an orthonormal *Hilbert-space basis* for $L^2(G)$. That is,

 $L^2(G) \ = \ \text{completion of} \bigoplus_{\psi \in G^{\vee}} \mathbb{C} \cdot \psi$

and

$$f = \sum_{\psi \in G^{\vee}} \langle f, \psi \rangle \cdot \psi \qquad \text{(for } f \in L^2(G) \text{, convergence in } L^2(G) \text{)}$$

Remark: This applies to the circle \mathbb{R}/\mathbb{Z} !

Remark: Recall that a *Hilbert-space* basis of a Hilbert space V is not a *vector-space* basis for V, but for a dense subspace.

Remark: For *finite* abelian groups, this follows from the spectral theorem for commuting *unitary* operators on finite-dimensional \mathbb{C} -vectorspaces. (See 2010-11 notes.)

Remark: As in the elementary example of the circle \mathbb{R}/\mathbb{Z} , convergence in L^2 says nothing directly about *pointwise* convergence, much less *uniform* pointwise convergence.

Proof: Orthonormality is easy: for $\psi \neq \varphi$ characters,

$$\langle \psi, \varphi \rangle = \int_{G} \psi(g) \cdot \overline{\varphi}(g) \, dg = \int_{G} \psi \varphi^{-1}(g) \, dg$$

By the *cancellation lemma*, this is 0 for $\psi \neq \varphi$.

Completeness is more serious. We must prove existence of sufficiently many *eigenvectors* for the action of G on complexvalued functions

$$g \cdot f(x) = f(xg)$$
 (for $f \in C_c^o(G)$ and $x, g \in G$)

For f to be an *eigenfunction* means that

 $g \cdot f = \lambda_f(g) \cdot f$ (for all $g \in G$, with $\lambda_f(g) \in \mathbb{C}$)

The *unitariness* is

$$\langle g \cdot f, g \cdot F \rangle = \int_G f(xg) \overline{\varphi}(xg) \, dx = \int_G f(x) \overline{\varphi}(x) \, dx = \langle f, F \rangle$$

The eigenvalues $\lambda_f(g)$ cannot be unrelated: for $g, h \in G$,

$$\lambda_f(gh) \cdot f = (gh) \cdot f = g \cdot (h \cdot f) = g \cdot (\lambda_f(h) f)$$
$$= \lambda_f(h) g \cdot f = \lambda_f(h) \lambda_f(g) f$$

so $\lambda_f: G \to \mathbb{C}^{\times}$ is a group homomorphism.

For *G* finite, $L^2(G)$ is finite-dimensional. By finite-dimensional spectral theory for *unitary* operators, $L^2(G)$ is a direct sum of eigenspaces V_{λ} , for group homomorphism $\lambda : G \to \mathbb{C}^{\times}$.

Each eigenfunction f is itself a constant multiple of a group homomorphism $G \to \mathbb{C}^{\times}$:

$$f(x) = f(1 \cdot x) = \lambda_f(x) f(1)$$

If $\lambda_f = \lambda_F$, with normalization f(1) = 1 = F(1),

$$f(x) = f(1 \cdot x) = \lambda_f(x) f(1) = \lambda_F(x) F(1) = F(x)$$

That is, each λ_f occurs with multiplicity one.

Certainly every group homomorphism $G \to \mathbb{C}^{\times}$ is a complexvalued function on finite G, so

$$L^2(G) = \bigoplus_{\psi \in G^{\vee}} \mathbb{C} \cdot \psi$$
 (*G* finite abelian)

We did *not* use the structure theorem for finite abelian groups.

On infinite-dimensional Hilbert spaces, even for *unitary* operators, general spectral theory does *not* guarantee *eigenvectors*.

From a spectral viewpoint, the best operators on infinitedimensional Hilbert spaces are *self-adjoint compact* operators.

The self-adjointness is the usual $\langle Tv, w \rangle = \langle v, Tw \rangle$.

The compactness is that the image TB of the unit ball B has compact closure. Thus, the image $\{Tv_i\}$ of a bounded sequence $\{v_i\}$ has a convergent subsequence $\{T_{v_{i_k}}\}$.

On finite-dimensional vector spaces, every linear operator is compact.

One of the most useful theorems in the universe:

Theorem: Let R be a set of compact, self-adjoint, mutually commuting operators on a Hilbert space V. Suppose the action is *non-degenerate* in the sense that for $0 \neq v \in V$ there is $T \in R$ with $Tv \neq 0$. Then V has an *orthonormal* Hilbert-space basis of *simultaneous eigenvectors* for R. The joint eigenspaces are finitedimensional.

[The simple proof is below. Other useful details arise.]

Where do compact operators come from?

From *integral operators*, sometimes misleadingly called *convolution operators*. This misnomer is understandable, but does make less intelligible what's going on.

A function $\eta \in C_c^o(G)$ acts on $L^2(G)$ by the integral operator

$$(\eta \cdot f)(x) = \int_G \eta(g) f(xg) dg$$

There is the compatibility

$$\alpha \cdot (\beta \cdot f)(x) = \int_G \int_G \alpha(h) \beta(g) f(xhg) \, dg \, dh$$
$$= \int_G \left(\int_G \alpha(hg^{-1}) \beta(g) \, dg \right) f(xh) \, dh$$
$$= \int_G (\alpha * \beta)(h) \, f(xh) \, dh = \left((\alpha * \beta) \cdot f \right)(x)$$

That $\alpha * \beta$ is convolution, indeed, but the action on a vector space on which G acts is much more general than convolution. Further, there is a discrepancy of inverse-or-not if we try to force the action of $C_c^o(G)$ on $L^2(G)$ to be convolution.

An innocent change of variables gives

$$(\alpha \cdot f)(x) = \int_G \alpha(y) f(xy) \, dy = \int_G \alpha(x^{-1}y) f(y) \, dy$$

Write $K(x, y) = \alpha(x^{-1}y)$ to suggest viewing $\alpha(x^{-1}y)$ as a kernel for an *integral operator*, analogous to a *matrix*, but indexed by $x, y \in G$.

Claim: For topological spaces X, Y with nice measures, for $K(x, y) \in C_c^o(X \times Y)$, the linear operator $T : L^2(Y) \to L^2(X)$ by

$$Tf(x) = \int_Y K(x,y) f(y) dy$$

is compact. For X = Y and $K(y, x) = \overline{K(x, y)}$, the operator T is self-adjoint.

Remark: Fredholm, Volterra, Hilbert, Riesz, and others inverted certain ordinary *differential* operators (*Sturm-Liouville problems*) to *integral* operators, which happened to be *compact*, thus giving a basis of eigenfunctions, enabling solution of such problems.

Remark This same strategy applies to compact G that are not necessarily *abelian*, to decompose $L^2(G)$ into *irreducible representations*, although most of the irreducibles are not onedimensional, *not* spanned by group homomorphisms $G \to \mathbb{C}^{\times}$. Even for G non-compact, non-abelian, for discrete subgroups Γ with $\Gamma \setminus G$ compact, the same mechanism decomposes $L^2(\Gamma \setminus G)$. Proof of spectral theorem for compact self-adjoint operators: The key point of the theorem above is the spectral theorem for a single self-adjoint compact operator $T: V \to V$.

Lemma: A continuous *self-adjoint* operator T on a Hilbert space V has operator norm $|T| = \sup_{|v| < 1} |Tv|$ expressible as

$$|T| = \sup_{|v| \le 1} |\langle Tv, v \rangle|$$

Proof of Lemma: On one hand, certainly $|\langle Tv, v \rangle| \leq |Tv| \cdot |v|$, giving the easy direction of inequality.

On the other hand, let $\sigma = \sup_{|v| \le 1} |\langle Tv, v \rangle|$. A polarization identity gives

$$2\langle Tv, w \rangle + 2\langle Tw, v \rangle = \langle T(v+w), v+w \rangle - \langle T(v-w), v-w \rangle$$

With $w = t \cdot Tv$ with t > 0, since $T = T^*$, both $\langle Tv, w \rangle$ and $\langle Tw, v \rangle$ are non-negative real. Taking absolute values,

|||

$$\begin{aligned} 4\langle Tv, t \cdot Tv \rangle &= \sigma \cdot |v + t \cdot Tv|^2 + \sigma \cdot |v - t \cdot Tv|^2 \\ &= \left| \langle T(v + t \cdot Tv), v + t \cdot Tv \rangle - \langle T(v - t \cdot Tv), v - t \cdot Tv \rangle \right| \\ &\leq \sigma \cdot |v + t \cdot Tv|^2 + \sigma \cdot |v - t \cdot Tv|^2 = 4\sigma \cdot \left(|v|^2 + t^2 \cdot |Tv|^2 \right) \end{aligned}$$

Divide through by 4t and set t = |v|/|Tv| to minimize the right-hand side, obtaining

$$|Tv|^2 \leq \sigma \cdot |v| \cdot |Tv|$$

giving the other inequality, proving the Lemma.

Key Lemma: A compact self-adjoint operator T has largest eigenvalue $\pm |T|$.

Proof of Key Lemma: Take |T| > 0, or else T = 0. Using the characterization of operator norm, let v_i be a sequence of unit vectors such that $|\langle Tv_i, v_i \rangle| \rightarrow |T|$. On one hand, using $\langle Tv, v \rangle = \langle v, Tv \rangle = \overline{\langle Tv, v \rangle},$

$$0 \leq |Tv_i - \lambda v_i|^2 = |Tv_i|^2 - 2\lambda \langle Tv_i, v_i \rangle + \lambda^2 |v_i|^2$$
$$\leq \lambda^2 - 2\lambda \langle Tv_i, v_i \rangle + \lambda^2$$

By assumption, the right-hand side goes to 0. Using compactness, replace v_i with a subsequence such that Tv_i has limit w. Then the inequality shows that $\lambda v_i \to w$, so $v_i \to \lambda^{-1} w$. Thus, by continuity of $T, Tw = \lambda w$.

The commutativity of the set R of operators ensures that the operators stabilize each others' eigenspaces. The nondegeneracy ensures that the orthogonal complement of all the joint eigenspaces is $\{0\}$. /// Next, prove that $K(x,y) \in C_c^o(X \times Y)$ gives a compact operator...