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Next: harmonic analysis, on R, R/Z, Qp, A, and Ak/k, are the
key ingredients in Iwasawa-Tate’s 1950 modernization of Hecke’s
1918-20 proof of continuation and functional equation of zeta
functions of all number fields, and all L-functions for GL(1).

Riemann’s (1857-8) treatment of ζQ(s) suffices for Dirichlet
L-functions over Q, and complex quadratic extensions of Q.
Reciprocity laws reduce factor zetas of abelian extensions of Q
into Dirichlet L-functions over Q.

Dedekind (∼1870) meromorphically continued zetas of number
fields to small neighborhoods of s = 1, but this is insufficient.

Hecke’s 1918-20 proofs used Poisson summation for o ⊂ k ⊗Q R.
Iwasawa-Tate used the Weil-Pontryagin-Godement harmonic
analysis on abelian topological groups, and everything became
much clearer, and more memorable.
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We need the abelian topological group analogue of characters
x→ e2πixξ for ξ ∈ R, on R, and Fourier transforms

f̂(ξ) = Ff(ξ) =

∫
R
e−2πixξ f(x) dx

and inversion

f(x) = F−1f̂(x) =

∫
R
e2πiξx f̂(ξ) dξ

for nice functions f on Qp and A. Similarly for all completions kv
and adeles Ak of number fields. And adelic Poisson summation∑

x∈k

f(x) =
∑
x∈k

Ff(x) (for suitable f on Ak)

Fujisaki’s lemma packs up the Units Theorem and finiteness of
class groups exactly as needed by Iwasawa-Tate.

After these preparations, the argument will be identical to
Riemann’s!
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April 8, 1952, in Zeta Functions in Geometry, editors N. Kurokawa
and T. Sunada, Adv. Studies in Pure Math. 21 (1992), 445-450.

[Tate 1950/67] J. Tate, Fourier analysis in number fields and
Hecke’s zeta functions, Ph.D. thesis, Princeton (1950), in Alg. No.
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The latter was not public until 1967, although because it was
written out in great detail, received much more publicity than
Iwasawa’s ICM announcement. That story has resulted in these
ideas often being mis-labelled Tate’s thesis. It is better to refer to
these ideas as Iwasawa-Tate theory.
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Iwasawa-Tate was not just a rewrite: made the general case
an obvious parallel to Riemann’s. Further, it was a prototype
for Gelfand-Piatetski-Shapiro’s (1963) and Jacquet-Langlands’
(1971) modernization of the classical theory of L-functions
attached to GL(2). This paved the way for Langlands’ program’s
conception, and the Jacquet-Shalike-PiatetskiShapiro development
of automorphic forms and L-functions on GL(n).

[Selberg 1956] A. Selberg, Harmonic analysis and discontinuous
groups in weakly symmetric spaces, with applications to Dirichlet
series, J. Indian Math. Soc. 20 (1956), 47-87

The latter gave yet-another impetus to the emerging viewpoint
that the discussion of zeta functions and L-functions, which had
appeared from 1830’s through 1930’s to be a conglomeration
of ad hoc manipulations of integrals and sums, instead was
a manifestation of far more structure: harmonic analysis,
representation theory, and spectral theory of operators.
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No small subgroups:

The circle group S1 has no small subgroups, in the sense that
there is a neighborhood U of the identity 1 ∈ S1 such that the
only subgroup of S1 inside U is the trivial group {1}.
Essentially the same proof works for real Lie groups.

Proof: Use the copy of S1 inside the complex plane. We claim
that taking

U = S1 ∩ {z ∈ C : Re(z) > 0}

suffices: the only subgroup G of S1 inside this U is G = {1}.
Suppose not. Let 1 6= eiθ ∈ G ∩ U . We can take 0 < θ < π/2,
since both ±θ must appear. Let 0 < ` ∈ Z be the smallest such
that ` · θ > π/2. Then, since (`− 1) · θ < π/2 and 0 < θ < π/2,

π

2
< ` · θ = (`− 1) · θ + θ <

π

2
+
π

2
= π

Thus, ` · θ falls outside U , contradiction. ///
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Unitary duals of abelian topological groups: For an abelian
topological group G, the unitary dual G∨ is the collection of
continuous group homomorphisms of G to the unit circle in C×.
For example, R∨ ≈ R, by ξ → (x→ eiξx).

Claim: Q∨p ≈ Qp and A∨ ≈ A.

Since C× contains no small subgroups, and since Qp is a union of
compact subgroups p−kZp, every element of Q∨p has image in roots
of unity in C×, identified with Q/Z, so

Q∨p ≈ Homo(Qp, Q/Z) (continuous homomorphisms)

where Q/Z = colim 1
NZ/Z is discrete. As a topological group,

Zp = limZ/p`Z, and Zp is also a limit of the corresponding
quotients of itself, namely,

Zp ≈ limZp/p`Zp
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Generally, any abelian, totally disconnected topological group G is
such a limit of quotients:

G ≈ lim
K
G/K (K compact open subgroup)

We do not need the general case, but its proof is not difficult. As
a topological group,

Qp =
⋃ 1

p`
Zp = colim

1

p`
Zp

Because of the no small subgroups property of the unit circle in
C×, every continuous element of Z∨p = (limZ/pnZ)∨ factors
through some limitand

Zp/p`Zp ≈ Z/p`Z
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Thus,

Z∨p = colim
(
Zp/p`Zp

)∨
= colim

1

p`
Zp/Zp

since 1
p`
Zp/Zp is the dual to Zp/p`Zp under the pairing

1

p`
Zp/Zp × Zp/p`Zp ≈

1

p`
Z/Z × Z/p`Z

by ( x
p`

+ Z
)
×
(
y + p`Z

)
−→ xy + Z ∈ Q/Z

The transition maps in the colimit expression for Z∨p are
inclusions, so

Z∨p = colim
1

p`
Zp/Zp ≈

(
colim

1

p`
Zp
)
/Zp ≈ Qp/Zp
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Thus,

Q∨p =
(

colim
1

p`
Zp
)∨

= lim
1

p`
Z∨p

As a topological group, 1
p`
Zp ≈ Zp by multiplying by p`, so

the dual of 1
p`
Zp is isomorphic to Z∨p ≈ Qp/Zp. However,

the inclusions for varying ` are not the identity map, so for
compatibility take ( 1

p`
Zp
)∨

= Qp/p`Zp
Thus,

Q∨p = limQp/p`Zp ≈ Qp

because, Qp is the projective limit of its quotients by compact
open subgroups. ///
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Claim: Both A∨ ≈ A and A∨fin ≈ Afin.

Proof: The same argument applies to Ẑ = limZ/NZ and finite

adeles Afin = colim 1
N Ẑ, proving the self-duality of Afin. Then the

self-duality of R gives the self-duality of A. ///

Remark: Ẑ does also refer to Homo(Z,Q/Z), but needs to be
topologized by the compact-open topology [below].

Remark: Nearly the same argument applies for an arbitrary
finite extension k of Q.

Corollary: Given non-trivial ψ ∈ Q∨p , every other element of
Q∨p is of the form x → ψ(ξ · x) for some ξ ∈ Qp. Similarly,
given non-trivial ψ ∈ A∨, every other element of A∨ is of the form
x→ ψ(ξ · x) for some ξ ∈ A. [below]

Remark: This sort of result is already familiar from the analogue
for R, that x→ eiξx for ξ ∈ R are all the unitary characters of R.
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Compact-discrete duality

For abelian topological groups G, pointwise multiplication makes
Ĝ an abelian group. A reasonable topology on Ĝ is the compact-
open topology, with a sub-basis

U = UC,E = {f ∈ Ĝ : f(C) ⊂ E}
for compact C ⊂ G, open E ⊂ S1.

Remark: The reasonable-ness of this topology is utilitarian.
For a compact topological space X, Co(X) with the sup-norm
is a Banach space . On non-compact X, the semi-norms given
by sups on compacts make Co(X) a Fréchet space (assuming σ-
compactness). The compact-open topology is the analogue for
Co(X,Y ) where the target Y is not normed. When X,Y are
topological groups, the continuous functions f : X → Y consisting
of group homomorphisms is a (locally compact, Hausdorff)
topological group. [Later]
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Granting for now that the compact-open topology makes Ĝ an
abelian (locally-compact, Hausdorf) topological group,

Theorem: The unitary dual of a compact abelian group is
discrete. The unitary dual of a discrete abelian group is compact.

Proof: Let G be compact. Let E be a small-enough open in
S1 so that E contains no non-trivial subgroups of G. Using the
compactness of G itself, let U ⊂ Ĝ be the open

U = {f ∈ Ĝ : f(G) ⊂ E}

Since E is small, f(G) = {1}. That is, f is the trivial

homomorphism. This proves discreteness of Ĝ for compact G.
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For G discrete, every group homomorphism to S1 is continuous.
The space of all functions G → S1 is the cartesian product of
copies of S1 indexed by G. By Tychonoff’s theorem, this product
is compact. For discrete X, the compact-open topology on the
space Co(X,Y ) of continuous functions from X → Y is the
product topology on copies of Y indexed by X.

The set of functions f satisfying the group homomorphism
condition

f(gh) = f(g) · f(h) (for g, h ∈ G)

is closed, since the group multiplication f(g) × f(h) → f(g) · f(h)

in S1 is continuous. Since the product is also Hausdorff, Ĝ is also
compact. ///
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Theorem: (A/k)̂ ≈ k. In particular, given any non-trivial
character ψ on A/k, all characters on A/k are of the form
x→ ψ(α · x) for some α ∈ k.

Proof: For a (discretely topologized) number field k with adeles A,
A/k is compact, and A is self-dual.

Because A/k is compact, (A/k)̂ is discrete. Since multiplication
by elements of k respects cosets x+ k in A/k, the unitary dual has
a k-vectorspace structure given by

(α · ψ)(x) = ψ(α · x) (for α ∈ k, x ∈ A/k)

There is no topological issue in this k-vectorspace structure,
because (A/k)̂ is discrete. The quotient map A → A/k gives a

natural injection (A/k)̂→ Â.
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Given non-trivial ψ ∈ (A/k)̂, the k-vectorspace k ·ψ inside (A/k)̂
injects to a copy of k · ψ inside Â ≈ A. Assuming for a moment
that the image in A is essentially the same as the diagonal copy of
k, (A/k)̂/k injects to A/k. The topology of (A/k)̂ is discrete,
and the quotient (A/k)̂/k is still discrete. These maps are
continuous group homs, so the image of (A/k)̂/k in A/k is a
discrete subgroup of a compact group, so is finite. Since (A/k)̂
is a k-vectorspace, (A/k)̂/k is a singleton. Thus, (A/k)̂ ≈ k, if

the image of k · ψ in A ≈ Â is the usual diagonal copy.

To see how k · ψ is imbedded in A ≈ Â, fix non-trivial ψ on
A/k, and let ψ be the induced character on A. The self-duality

of A is that the action of A on Â by (x · ψ)(y) = ψ(xy) gives an
isomorphism. The subgroup x · ψ with x ∈ k is certainly the usual
diagonal copy. ///
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Next: Fourier transforms, Fourier inversion, Schwartz spaces of
functions, adelic Poisson summation

Remark: It turns out that the ad hoc classsical manipulations
of congruence conditions (strangely, continuing to this day) is
rendered transparent and sensible by re-packaging them as p-adic
and adelic Fourier transforms.

This organizational principle applies not only to zeta functions
and GL(1) L-functions, but also to automorphic forms for GL(2)
and GL(n) and other groups.


