Context: Finiteness of class number, Dirichlet's units theorem, corollaries of Fujisaki (that $\mathbb{J}^{1} / k^{\times}$is compact).
$\ldots \Leftarrow$ existence and uniqueness of Haar measure on \mathbb{A} and $\mathbb{A} / k \ldots$ compactness of \mathbb{A} / k.
$\ldots \Leftarrow$ change-of-measure: for idele α,

$$
\frac{\text { meas }(\alpha E)}{\text { meas }(E)}=|\alpha| \quad(\text { for measurable } E \subset \mathbb{A})
$$

Constructed invariant integral on \mathbb{Q}_{p} by approximating f in $C_{c}^{o}\left(\mathbb{Q}_{p}\right)$ by special, continuous simple functions: linear combinations of characteristic functions of sets $p^{k} \mathbb{Z}_{p}+y$ for $y \in \mathbb{Q}_{p}$.
(Recall) tangible uniqueness: We claim that taking meas $\left(\mathbb{Z}_{p}\right)=1$ and mechanisms as in the construction give the only possible invariant integral/measure on \mathbb{Q}_{p}. Taking advantage of the special features here:
\mathbb{Z}_{p} is open, so is measurable. It is compact, so its measure is finite. Thus, we can renormalize a given Haar measure μ so that $\mu\left(\mathbb{Z}_{p}\right)=1$.
\mathbb{Z}_{p} is a disjoint union of p^{n} translates of $p^{n} \mathbb{Z}_{p}$, all with the same measure, by translation-invariance, so $\mu\left(p^{n} \mathbb{Z}_{p}\right)=p^{-n}$. Thus, integrals of the special simple functions are completely determined.
We saw that each $C_{c}^{o}\left(p^{-k} \mathbb{Z}_{p}\right)$ can be approximated by special simple functions. Positivity/continuity of the invariant integral, this determines integrals of $C_{c}^{o}\left(\mathbb{Q}_{p}\right)$ completely.

Uniqueness by re-usable methods: a topological group G with at least one invariant measure has at most one, up to scalar multiples. The argument is re-usable. For simplicity, suppose G is unimodular, that is, that a left-invariant measure is rightinvariant.

Recall that an approximate identity is a sequence $\left\{\psi_{i}\right\}$ of nonnegative $\psi_{i} \in C_{c}^{o}(G)$ such that $\int_{G} \psi_{i}=1$ for all i, and such that, given a neighborhood U of 1 , there is i_{o} such that for $i \geq i_{o}$ the support of ψ_{i} is inside U.

Remark: This is strictly stronger than requiring that these functions approach the Dirac delta measure in a weak topology.
R, L are the usual right and left translation actions of G on functions f on G :

$$
R_{g} f(h)=f(h g) \quad L_{g} f(h)=f\left(g^{-1} h\right)
$$

It is a two-epsilon argument, using the uniform continuity of continuous functions on compacts, to see that

$$
g \times f \rightarrow R_{g} f \quad g \times f \rightarrow L_{g} f
$$

are continuous maps $G \times C_{c}^{o}(G) \rightarrow C_{c}^{o}(G)$.
Proof for right translation: A two-epsilon argument.
The claim is that, given $\varepsilon>0$, there is a neighborhood N of $1 \in G$ and $\delta>0$ such that, for $g, g^{\prime} \in G$ with $g^{\prime} \in g N$, and $\sup _{x}\left|f(x)-f^{\prime}(x)\right|<\delta$, we have $\sup _{x}\left|f(x g)-f^{\prime}\left(x g^{\prime}\right)\right|<\varepsilon$.
$f \in C_{c}^{o}(K)$ is uniformly continuous, by the same proof as on \mathbb{R}, by the local compactness of G. That is, given $\varepsilon>0$, there is a neighborhood U of $1 \in G$ such that $\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon$ for all $x, x^{\prime} \in G$ with $x^{\prime} \in x U$. Let U be small-enough so that this holds for two $f, f^{\prime} \in C_{c}^{o}(K)$.

Given x in compact K, let $g^{\prime} \in g U$. Then

$$
\left|f(x g)-f^{\prime}\left(x g^{\prime}\right)\right|=\left|f(x g)-f\left(x g^{\prime}\right)\right|+\left|f\left(x g^{\prime}\right)-f^{\prime}\left(x g^{\prime}\right)\right|<\varepsilon+\varepsilon
$$

$$
\text { since } x g^{\prime} \in x(g N)=(x g) N \text { and } \sup _{x}\left|f(x)-f^{\prime}(x)\right|<\varepsilon \text {. This }
$$ proves the continuity.

Remark: This continuity is exactly what is required for the action of G on $C_{c}^{o}(G)$ to be a representation of G.
For F a continuous $C_{c}^{o}(G)$-valued function on G, such as $F(g)=R_{g} f$, and for $\psi \in C_{c}^{o}(G)$, the function-valued integral is characterized by $F \longrightarrow \int_{G} \psi(g) F(g) d g$
$\lambda\left(\int_{G} \psi(g) F(g) d g\right)=\int_{G} \psi(g) \lambda(F(g)) d g \quad$ (for all $\left.\lambda \in C_{c}^{o}(G)^{*}\right)$
By Hahn-Banach, there is at most one such integral: the continuous linear functionals separate points.

Further, granting existence of the integral, Hahn-Banach in fact shows that

$$
\int_{G} \psi(g) F(g) d g \quad \in \quad \text { closure of convex hull of }\{F(g): g \in \operatorname{spt} \psi\}
$$

Proposition:

$$
\int_{G} \psi_{i}(g) F(g) d g \longrightarrow F(1) \quad \text { (in the } C_{c}^{o}(G) \text { topology) }
$$

Proof: given $\varepsilon>0$ and F, let $U \ni 1$ be small-enough so that $|F(x)-F(1)|<\varepsilon$, where $|*|$ is sup-norm on a particular $C_{c}^{o}(K)$. Let i be large enough so that the support of ψ_{i} is inside U. Then

$$
\begin{gathered}
F(1)-\int_{G} \psi_{i}(g) F(g) d g=F(1) \int_{G} \psi_{i}(g) d g-\int_{G} \psi_{i}(g) F(g) d g \\
=\int_{G} \psi_{i}(g)(F(1)-F(g)) d g
\end{gathered}
$$

The absolute value estimate, with $|*|$ sup-norm on K, gives

$$
\begin{gathered}
\left|F(1)-\int_{G} \psi_{i}(g) F(g) d g\right| \leq \int_{G} \psi_{i}(g)|F(1)-F(g)| d g \\
<\int_{G} \psi_{i}(g) \cdot \varepsilon d g=\varepsilon
\end{gathered}
$$

This is the proposition.
Returning to the main thread of the proof, with $F(h)=f(g h)$, for invariant u in $C_{c}^{o}(G)^{*}$, by continuity of u,

$$
u(f)=\lim _{i} u\left(g \rightarrow \int_{G} \psi_{i}(h) f(g h) d h\right)
$$

which is

$$
\lim _{i} u\left(g \rightarrow \int_{G} f(h) \psi_{i}\left(g^{-1} h\right) d h\right)
$$

replacing h by $g^{-1} h$.

Moving the functional u inside the integral the above becomes

$$
u(f)=\lim _{i} \int_{G} f(h) u\left(g \rightarrow \psi_{i}\left(g^{-1} h\right)\right) d h
$$

By left invariance of u,

$$
u(f)=\lim _{i} \int_{G} f(h) u\left(g \rightarrow \psi_{i}(g)\right) d h=\lim _{i} u\left(\psi_{i}\right) \cdot \int_{G} f(h) d h
$$

Thus, for f with $\int_{G} f \neq 0, \lim _{i} u\left(\psi_{i}\right)$ exists. We conclude that $u(f)$ is a constant multiple of the indicated integral with given invariant measure.

Remark: A nearly identical argument proves that G-invariant distributions on Lie groups G are unique up to constants, assuming existence.

In summary: On \mathbb{R} and \mathbb{Q}_{p} and tangible topological groups G it is often easy to give explicit constructions of invariant (Haar) integrals, especially on $C_{c}^{o}(G)$. Often, those constructions give uniqueness.

The general construction/proof-of-existence is reasonable, but the ideas are less re-usable than some.

In contrast, the general uniqueness argument is an instance of an important, re-usable proof mechanism, above.

In any case, what was used in Fujisaki's lemma was existence, uniqueness, and the winding-unwinding property that there is a unique measure on $H \backslash G$ such that

$$
\int_{G} f(g) d g=\int_{H \backslash G}\left(\int_{H} f(h \dot{g}) d h\right) d \dot{g} \quad\left(\text { for } f \in C_{c}^{o}(G)\right)
$$

under the reasonable hypothesis $\Delta_{H}=\left.\Delta_{G}\right|_{H}$.

Next: This adelic harmonic analysis is also exactly what is used in Iwasawa-Tate's modernization of Hecke's treatment of zeta functions of all number fields, and all L-functions for $G L(1)$.

In addition to invariant measures, we need the general abelian topological group analogue of characters $x \rightarrow e^{2 \pi i x \xi}$ for $\xi \in \mathbb{R}$, on \mathbb{R}, and Fourier transforms and inversion

$$
\mathscr{F} f(\xi)=\int_{\mathbb{R}} e^{-2 \pi i x \xi} f(x) d x \quad \text { and } \quad \mathscr{F} \mathscr{F} f(x)=f(-x)
$$

for nice functions f on \mathbb{Q}_{p} and \mathbb{A}. Naturally, we need the same for all completions k_{v} and adeles \mathbb{A}_{k} of number fields. And adelic Poisson summation

$$
\sum_{x \in k} f(x)=\sum_{x \in k} \mathscr{F} f(x) \quad \text { (for suitable } f \text { on } \mathbb{A}_{k} \text {) }
$$

Granting this and Fujisaki's lemma, the argument will be identical to Riemann's!

