Context: Finiteness of class number, Dirichlet's units theorem, corollaries of Fujisaki (that \mathbb{J}^1/k^{\times} is compact).

... \leftarrow existence and uniqueness of Haar measure on A and A/k... compactness of A/k.

...
$$\leftarrow change-of-measure:$$
 for *idele* α ,
$$\frac{\text{meas}(\alpha E)}{\text{meas}(E)} = |\alpha| \qquad \text{(for measurable } E \subset \mathbb{A})$$

Constructed invariant *integral* on \mathbb{Q}_p by approximating fin $C_c^o(\mathbb{Q}_p)$ by *special, continuous* simple functions: linear combinations of characteristic functions of sets $p^k \mathbb{Z}_p + y$ for $y \in \mathbb{Q}_p$. (Recall) tangible uniqueness: We claim that taking meas $(\mathbb{Z}_p) = 1$ and mechanisms as in the construction give the only possible invariant integral/measure on \mathbb{Q}_p . Taking advantage of the special features here:

 \mathbb{Z}_p is *open*, so is measurable. It is compact, so its measure is *finite*. Thus, we can renormalize a given Haar measure μ so that $\mu(\mathbb{Z}_p) = 1$.

 \mathbb{Z}_p is a disjoint union of p^n translates of $p^n \mathbb{Z}_p$, all with the same measure, by translation-invariance, so $\mu(p^n \mathbb{Z}_p) = p^{-n}$. Thus, integrals of the *special* simple functions are completely determined.

We saw that each $C_c^o(p^{-k}\mathbb{Z}_p)$ can be approximated by special simple functions. Positivity/continuity of the invariant integral, this determines integrals of $C_c^o(\mathbb{Q}_p)$ completely. /// Uniqueness by re-usable methods: a topological group G with at least one invariant measure has at most one, up to scalar multiples. The argument is re-usable. For simplicity, suppose G is unimodular, that is, that a left-invariant measure is right-invariant.

Recall that an *approximate identity* is a sequence $\{\psi_i\}$ of nonnegative $\psi_i \in C_c^o(G)$ such that $\int_G \psi_i = 1$ for all i, and such that, given a neighborhood U of 1, there is i_o such that for $i \ge i_o$ the support of ψ_i is inside U.

Remark: This is strictly stronger than requiring that these functions approach the Dirac delta measure in a weak topology.

R,L are the usual right and left translation actions of G on functions f on G:

$$R_g f(h) = f(hg)$$
 $L_g f(h) = f(g^{-1}h)$

It is a two-epsilon argument, using the *uniform* continuity of continuous functions on compacts, to see that

$$g \times f \to R_g f \qquad \qquad g \times f \to L_g f$$

are continuous maps $G \times C_c^o(G) \to C_c^o(G)$.

Proof for right translation: A two-epsilon argument.

The claim is that, given $\varepsilon > 0$, there is a neighborhood N of $1 \in G$ and $\delta > 0$ such that, for $g, g' \in G$ with $g' \in gN$, and $\sup_x |f(x) - f'(x)| < \delta$, we have $\sup_x |f(xg) - f'(xg')| < \varepsilon$.

 $f \in C_c^o(K)$ is uniformly continuous, by the same proof as on \mathbb{R} , by the local compactness of G. That is, given $\varepsilon > 0$, there is a neighborhood U of $1 \in G$ such that $|f(x) - f(x')| < \varepsilon$ for all $x, x' \in G$ with $x' \in xU$. Let U be small-enough so that this holds for two $f, f' \in C_c^o(K)$. Given x in compact K, let $g' \in gU$. Then

 $|f(xg) - f'(xg')| = |f(xg) - f(xg')| + |f(xg') - f'(xg')| < \varepsilon + \varepsilon$ since $xg' \in x(gN) = (xg)N$ and $\sup_x |f(x) - f'(x)| < \varepsilon$. This proves the continuity.

Remark: This continuity is exactly what is required for the action of G on $C_c^o(G)$ to be a *representation* of G.

For F a continuous $C_c^o(G)$ -valued function on G, such as $F(g) = R_g f$, and for $\psi \in C_c^o(G)$, the function-valued integral

$$F \longrightarrow \int_G \psi(g) F(g) dg$$

is characterized by

$$\lambda\Big(\int_{G} \psi(g) F(g) dg\Big) = \int_{G} \psi(g) \lambda\big(F(g)\big) dg \qquad \text{(for all } \lambda \in C_{c}^{o}(G)^{*}\text{)}$$

By Hahn-Banach, there is *at most one* such integral: the continuous linear functionals separate points.

Further, granting *existence* of the integral, Hahn-Banach in fact shows that

$$\int_{G} \psi(g) F(g) dg \in \text{closure of convex hull of } \{F(g) : g \in \text{spt}\psi\}$$

Proposition:

$$\int_{G} \psi_i(g) F(g) \, dg \longrightarrow F(1) \qquad \text{(in the } C_c^o(G) \text{ topology)}$$

Proof: given $\varepsilon > 0$ and F, let $U \ni 1$ be small-enough so that $|F(x) - F(1)| < \varepsilon$, where |*| is sup-norm on a particular $C_c^o(K)$. Let *i* be large enough so that the support of ψ_i is inside *U*. Then

$$F(1) - \int_{G} \psi_{i}(g) F(g) dg = F(1) \int_{G} \psi_{i}(g) dg - \int_{G} \psi_{i}(g) F(g) dg$$
$$= \int_{G} \psi_{i}(g) \left(F(1) - F(g) \right) dg$$

The absolute value estimate, with |*| sup-norm on K, gives

$$\begin{aligned} \left| F(1) - \int_{G} \psi_{i}(g) F(g) dg \right| &\leq \int_{G} \psi_{i}(g) \left| F(1) - F(g) \right| dg \\ &< \int_{G} \psi_{i}(g) \cdot \varepsilon dg = \varepsilon \end{aligned}$$

This is the proposition.

Returning to the main thread of the proof, with F(h) = f(gh), for invariant u in $C_c^o(G)^*$, by *continuity* of u,

$$u(f) = \lim_{i} u\left(g \to \int_{G} \psi_{i}(h) f(gh) dh\right)$$
$$\lim_{i} u\left(g \to \int_{G} f(h) \psi_{i}(g^{-1}h) dh\right)$$

which is

replacing h by $g^{-1}h$.

///

Moving the functional u inside the integral the above becomes

$$u(f) = \lim_{i} \int_{G} f(h) u\left(g \to \psi_{i}(g^{-1}h)\right) dh$$

By *left* invariance of u,

$$u(f) = \lim_{i} \int_{G} f(h) u(g \to \psi_{i}(g)) dh = \lim_{i} u(\psi_{i}) \cdot \int_{G} f(h) dh$$

Thus, for f with $\int_G f \neq 0$, $\lim_i u(\psi_i)$ exists. We conclude that u(f) is a constant multiple of the indicated integral with given invariant measure. ///

Remark: A nearly identical argument proves that G-invariant distributions on Lie groups G are unique up to constants, assuming existence.

In summary: On \mathbb{R} and \mathbb{Q}_p and tangible topological groups G it is often easy to give explicit constructions of invariant (Haar) integrals, especially on $C_c^o(G)$. Often, those constructions give uniqueness.

The *general* construction/proof-of-existence is reasonable, but the ideas are less re-usable than some.

In contrast, the general *uniqueness* argument is an instance of an important, re-usable proof mechanism, above.

In any case, what was used in Fujisaki's lemma was *existence*, *uniqueness*, and the winding-unwinding property that there is a unique measure on $H \setminus G$ such that

$$\int_{G} f(g) dg = \int_{H \setminus G} \left(\int_{H} f(h\dot{g}) dh \right) d\dot{g} \qquad \text{(for } f \in C_{c}^{o}(G))$$

under the reasonable hypothesis $\Delta_H = \Delta_G|_H$.

Next: This adelic harmonic analysis is also exactly what is used in Iwasawa-Tate's modernization of Hecke's treatment of zeta functions of all number fields, and *all L*-functions for GL(1).

In addition to invariant measures, we need the general abelian topological group analogue of characters $x \to e^{2\pi i x \xi}$ for $\xi \in \mathbb{R}$, on \mathbb{R} , and Fourier transforms and inversion

$$\mathscr{F}f(\xi) = \int_{\mathbb{R}} e^{-2\pi i x\xi} f(x) dx$$
 and $\mathscr{F}\mathscr{F}f(x) = f(-x)$

for nice functions f on \mathbb{Q}_p and \mathbb{A} . Naturally, we need the same for all completions k_v and adeles \mathbb{A}_k of number fields. And *adelic Poisson summation*

$$\sum_{x \in k} f(x) = \sum_{x \in k} \mathscr{F}f(x) \qquad \text{(for suitable } f \text{ on } \mathbb{A}_k)$$

Granting this and Fujisaki's lemma, the argument will be identical to Riemann's!