Context: Finiteness of class number and Dirichlet's units theorem are corollaries of Fujisaki's lemma, that $\mathbb{J}^{1} / k^{\times}$is compact. ... a corollary of

Measure-theory pigeon-hole principle: for discrete subgroup Γ of a unimodular topological group G, with $\Gamma \backslash G$ of finite measure, if a set $E \subset G$ has measure strictly greater than $\Gamma \backslash G$, then there are $x \neq y \in E$ such that $x^{-1} y \in \Gamma$.

As expected, measure on Γ is counting measure, and

$$
\left.\int_{\Gamma \backslash G} \sum_{\gamma \in \Gamma} f(\gamma g) d g=\int_{G} f(g) d g \quad \text { (for } f \in C_{c}^{o}(G)\right)
$$

Subsumes Minkowski's Geometry of Numbers proposition: for lattices L in \mathbb{R}^{n}, a convex subset C of \mathbb{R}^{n}, symmetric about 0 , with measure strictly greater than 2^{n} times the measure of \mathbb{R}^{n} / L, contains a point of L other than 0 .

Inspection of the arguments shows that we want very few things from (right-invariant) integrals on groups G, which characterize the integrals:

$$
\begin{cases}f \rightarrow \int_{G} f(g) d g \text { defined on } C_{c}^{o}(G) & \text { (functionals on } \left.C_{c}^{o}(G)\right) \\ \int_{G} f(g h) d g=\int_{G} f(g) d g \text { for } h \in G & \text { (right invariance) } \\ f \geq 0 \Longrightarrow \int_{G} f(g) d g \geq 0 & \text { (positivity) }\end{cases}
$$

In fact, the positivity condition implies that $f \rightarrow \int_{G} f$ is a continuous linear functional on $C_{c}^{o}(G)$ in its natural topology, but the arguments here only use the positivity.

Recap of abstracted argument: with f the characteristic function of E, if there were no such x, y, then $\sum_{\gamma \in \Gamma} f(\gamma \cdot x) \leq 1$. But then $\operatorname{meas}(\Gamma \backslash G)<\int_{G} f(g) d g=\int_{\Gamma \backslash G}\left(\sum_{\gamma \in \Gamma} f(\gamma \cdot g)\right) d g \leq \operatorname{meas}(\Gamma \backslash G)$ Impossible. So there is $1 \neq x^{-1} y \notin \Gamma$.

Existence of suitable measure on the quotient does not depend on discreteness of Γ, but on the condition $\left.\Delta_{G}\right|_{H}=\Delta_{H}$, and then, as we proved, there exists a unique measure on $H \backslash G$ such that

$$
\int_{G} f(g) d g=\int_{H \backslash G}\left(\int_{H} f(h \dot{g}) d h\right) d \dot{g}
$$

Another interruption! ... for context. Finite volume of $\mathbb{R}^{n} / \mathbb{Z}^{n}$ is familiar, but we have essentially no experience with discrete subgroups Γ in non-abelian G. The following is a prototype both for the assertion and for the proof mechanisms.

Claim: The quotient $\Gamma \backslash G=S L_{n}(\mathbb{Z}) \backslash S L_{n}(\mathbb{R})$ has finite invariant volume (where $S L_{n}(R)=n \times n$ matrices with entries in ring R). In fact, in a natural normalization,

$$
\operatorname{vol}(S L(n, \mathbb{Z}) \backslash S L(n, \mathbb{R}))=\zeta(2) \zeta(3) \zeta(4) \zeta(5) \ldots \zeta(n)
$$

Remark: Mysterious ζ (odd) values appear.
Minkowski knew the finiteness, and Siegel computed the value. We grant the finiteness, and compute the volume without a fundamental domain.

Proof: (modernization of Siegel's argument) The point is

$$
\int_{\Gamma \backslash G} \sum_{\gamma \in \Gamma} f(\gamma g) d g=\int_{G} f(g) d g
$$

Treat $n=2, G=S L(2, \mathbb{R})$, and $\Gamma=S L(2, \mathbb{Z})$. We showed that a right G-invariant measure on $\Gamma \backslash G$ is described by integrals of $C_{c}^{o}(\Gamma \backslash G)$. Every $F \in C_{c}^{o}(\Gamma \backslash G)$ is expressible as

$$
F(g)=\sum_{\gamma \in \Gamma} f(\gamma \cdot g) \quad\left(\text { for some } f \in C_{c}^{o}(G)\right)
$$

and the integral of F is sufficiently-defined and well-defined by

$$
\int_{\Gamma \backslash G} F(g) d g=\int_{\Gamma \backslash G} \sum_{\gamma \in \Gamma} f(\gamma \cdot g) d g=\int_{G} f(g) d g
$$

Although we do not describe the geometry of $\Gamma \backslash G$, we do need details about the Haar measure on G, since a constant ambiguous by a constant is not interesting.
G is unimodular, since $G=[G, G]$. (!) To describe the measure on G usefully, we do need coordinates on G, but not the naive $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Let K be the usual special orthogonal group

$$
K=S O(2)=\left\{g \in G: g^{\top} g=1_{2}\right\}=\left\{\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)\right\}
$$

and

$$
P^{+}=\left\{\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right): a>0, b \in \mathbb{R}\right\}
$$

Compact K is unimodular, while P^{+}is not. The Iwasawa decomposition (not too hard an exercise, in this example!) is

$$
G=P^{+} \cdot K \approx P^{+} \times K
$$

Lemma: Haar measure on G is $d(p k)=d p \cdot d k$, where $d p$ is left Haar measure on P^{+}, and $d k$ is right Haar on K. That is,

$$
\int_{G} \varphi(g) d g=\int_{P^{+}} \int_{K} \varphi(p k) d k d p \quad\left(\text { for } \varphi \in C_{c}^{o}(G)\right)
$$

Proof: Let the group $P^{+} \times K$ act on G by $(p \times k)(g)=p^{-1} g k$. (The inverse is for associativity!) The isotropy subgroup in $P^{+} \times K$ of $1 \in G$ is $\left\{p \times k: p^{-1} \cdot 1 \cdot k=1\right\}=P^{+} \cap K=\{1\}$. Thus, there is a unique $P^{+} \times K$-invariant measure on G, and it fits into $\int_{G}=\int_{P} \int_{K}$. The Haar measure on G gives such a thing, as does a Haar measure on G.

Now completely specify the Haar measure on G. Normalize the Haar measure on the circle (!) K to have total measure 2π. Normalize the left Haar measure $d p$ on P^{+}to (!)

$$
d\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right)=\frac{1}{t^{2}} d x \frac{d t}{t} \quad(x \in \mathbb{R} \text { and } t>0)
$$

Corresponding to a nice (Schwartz?) function f on \mathbb{R}^{2}, let F on G be

$$
F(g)=\sum_{v \in \mathbb{Z}^{2}} f(v g)
$$

By design, this function F is left Γ-invariant. Eevaluating

$$
\int_{\Gamma \backslash G} F(g) d g
$$

in two different ways will determine the volume of $\Gamma \backslash G$.

Lemma: Given coprime $c, d \in \mathbb{Z}$, there exists $\left(\begin{array}{ll}* & * \\ c & d\end{array}\right) \in \Gamma$. Proof: The ideal $\mathbb{Z} c+\mathbb{Z} d$ is \mathbb{Z}, so there are $a, b \in \mathbb{Z}$ such that $a d+b c=1$. Then $\left(\begin{array}{cc}a & -b \\ c & d\end{array}\right) \in \Gamma$.

Thus, for a fixed positive integer ℓ, the set $\{(c, d): \operatorname{gcd}(c, d)=\ell\}$ is an orbit of Γ in \mathbb{Z}^{2}. Take $(0,1)$ as convenient base point and observe that

$$
\mathbb{Z}^{2}-\{0\}=\{\ell \cdot(0,1) \cdot \gamma: \text { for } \gamma \in \Gamma, 0<\ell \in \mathbb{Z}\}
$$

Let

$$
N=\left\{\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \in G\right\} \quad N_{\mathbb{Z}}=N \cap \Gamma
$$

The stabilizer of $(0,1)$ in Γ is $N_{\mathbb{Z}}$, and there is a bijection

$$
\mathbb{Z}^{2}-\{0\} \longleftrightarrow\{\ell>0\} \times N_{\mathbb{Z}} \backslash \Gamma
$$

by

$$
\ell(0,1) \gamma \leftarrow \ell \times N_{\mathbb{Z}} \gamma
$$

Then

$$
\begin{gathered}
\int_{\Gamma \backslash G} F(g) d g=\int_{\Gamma \backslash G} f(0) d g+\int_{\Gamma \backslash G} \sum_{x \neq 0} f(x g) d g \\
=\int_{\Gamma \backslash G} f(0) d g+\sum_{\ell>0} \int_{N_{\mathbb{Z}} \backslash G} f(\ell \cdot(0,1) g) d g
\end{gathered}
$$

Writing the integral on G as an iterated integral on P^{+}and K, $\int_{\Gamma \backslash G} F$ is

$$
\int_{\Gamma \backslash G} f(0) d g+\sum_{\ell>0} \int_{N_{\mathbb{Z}} \backslash P} \int_{K} f(\ell \cdot(0,1) p k) d g
$$

With f rotation invariant, so $f(\ell(0,1) p k)=f(\ell(0,1) p)$, the integral is

$$
\int_{\Gamma \backslash G} f(0) d g+2 \pi \cdot \sum_{\ell>0} \int_{N_{\mathbb{Z}} \backslash P} f(\ell(0,1) p) d p
$$

since the total measure of K is 2π. Expressing the Haar measure on P^{+}in coordinates as above, the integral is
$\int_{\Gamma \backslash G} f(0) d g+2 \pi \sum_{\ell} \int_{0}^{\infty} \int_{\mathbb{Z} \backslash \mathbb{R}} f\left(\ell(0,1)\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right)\right) d x \frac{d t}{t^{2}}$ Note that N fixes $(0,1)$, so the integral over $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ is $\int_{\mathbb{Z} \backslash \mathbb{R}} 1 d x=1$, and the whole integral is

$$
\begin{aligned}
& \begin{aligned}
& \int_{\Gamma \backslash G} F(g) d g=\int_{\Gamma \backslash G} f(0) d g+2 \pi \sum_{\ell} \int_{M} f\left(\ell(0,1)\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right)\right) \frac{1}{t^{2}} \frac{d t}{t} \\
&= \int_{\Gamma \backslash G} f(0) d g+2 \pi \sum_{\ell} \int_{0}^{\infty} f\left(\ell\left(0, t^{-1}\right)\right) \frac{1}{t^{2}} \frac{d t}{t} \\
&=f(0) \cdot \operatorname{vol}(\Gamma \backslash G)+2 \pi \sum_{\ell} \int_{0}^{\infty} f(0, \ell t) t^{2} \frac{d t}{t}
\end{aligned} \\
& \text { replacing } t \text { by } t^{-1} .
\end{aligned}
$$

Replacing t by t / ℓ gives

$$
\begin{gathered}
\int_{\Gamma \backslash G} F(g) d g=f(0) \cdot \operatorname{vol}(\Gamma \backslash G)+2 \pi \cdot \sum_{\ell} \ell^{-2} \int_{0}^{\infty} f(0, t) t^{2} \frac{d t}{t} \\
=f(0) \cdot \operatorname{vol}(\Gamma \backslash G)+2 \pi \zeta(2) \cdot \int_{0}^{\infty} f(0, t) t^{2} \frac{d t}{t}
\end{gathered}
$$

Using the rotation invariance of f,

$$
\int_{0}^{\infty} f(0, t) t^{2} \frac{d t}{t}=\int_{0}^{\infty} f(0, t) t d t=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} f(x) d x=\frac{1}{2 \pi} \hat{f}(0)
$$

The 2π 's cancel, and

$$
\int_{\Gamma \backslash G} F(g) d g=\int_{\Gamma \backslash G} \sum_{x \in \mathbb{Z}^{2}} f(x g) d g=f(0) \cdot \operatorname{vol}(\Gamma \backslash G)+\zeta(2) \hat{f}(0)
$$

On the other hand, by Poisson summation,

$$
\sum_{x \in \mathbb{Z}^{2}} f(x g)=\frac{1}{|\operatorname{det} g|} \sum_{x \in \mathbb{Z}^{2}} \hat{f}\left(x^{\top} g^{-1}\right)=\sum_{x \in \mathbb{Z}^{2}} \hat{f}\left(x^{\top} g^{-1}\right)
$$

(since $\operatorname{det} g=1$). Γ is stable under transpose-inverse, allowing an analogous computation with the roles of f and \hat{f} reversed, obtaining

$$
\begin{gathered}
f(0) \cdot \operatorname{vol}(\Gamma \backslash G)+\zeta(2) \hat{f}(0)=\int_{\Gamma \backslash G} F(g) d g \\
=\hat{f}(0) \cdot \operatorname{vol}(\Gamma \backslash G)+\zeta(2) f(0)
\end{gathered}
$$

from which

$$
(f(0)-\hat{f}(0)) \cdot \operatorname{vol}(\Gamma \backslash G)=(f(0)-\hat{f}(0)) \cdot \zeta(2)
$$

With $f(0) \neq \hat{f}(0), \operatorname{vol}(\Gamma \backslash G)=\zeta(2)$.

Next: More about Haar measure...

Change-of-measure and Haar measure on \mathbb{A} and k_{v} :

Another thing used in the proof of Fujisaki's lemma was that, for idele α, the change-of-measure on \mathbb{A} is

$$
\frac{\operatorname{meas}(\alpha E)}{\text { meas }(E)}=|\alpha| \quad(\text { for measurable } E \subset \mathbb{A})
$$

Naturally, this should be examined...

